

Features and Effects

Rendering

Passes

Outputs

Special Camera
Effects

Geometry

Primitives

Instanced
Geometry

Particles

Fur and Hair

CSG

Understanding
Shaders

Shaders and RenderMan

Proceduralism

Textures

Bump and
Displacement Shaders

Illumination

Shadows

Reflections and
Refractions

Global Illumination

MEL Scripting

Passes

RenderMan
Attributes

RfM Pro

RfM and RIB

RfM and RSL

Ri for MEL

RfM Plugins

Navigate using the menus on the left.

Ri Filters

RiProcedurals

What is Supported

Prev | Next

Rendering
1.1 Passes
1.2 Outputs
1.3 Special Camera Effects

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Rendering Passes
Introduction
Creating Passes
Managing Passes
Secondary Outputs
Strategies
2D Textures Vs. 3D Point Clouds
Conclusion

Introduction
Fundamentally, RenderMan renders images using passes. Just about any but the simplest of
scenes will require multiple passes to render: a shadow pass for shadows (deep or not), a txmake
pass for textures, and so on, all leading to the final pass for your fully rendered image. Most of
these passes are pre-defined and happen �behind the scenes� without requiring you to do anything �
you set up your scene and RenderMan does the rest � but you can also take advantage of passes
by creating them yourself.

RenderMan for Maya provides sophisticated machinery for creating and managing passes. During
a render job, pre-defined passes can be generated to compute data before the final image is
rendered. This data can be referenced during the rendering of the final image, and it can be
cached to use in subsequent renders, if you so desire. Pre-computed passes can be used to create
everything from depth maps to reference images to occlusion passes.

Creating Passes
Passes are created either explicitly or implicitly. Explicit passes are created purposefully by the
user and can be used for computing all sorts of calculations before the rendering of the final
frame. The generation of reference image passes may be one of the most common and useful pre-
computed passes.

To create a pass explicitly, open the Passes Tab of the Render Globals. From the pull-down menu
next to the Passes field, select the type of pass to be created:

 Pass Menu: Create Pass-> Pass Type

Implicit passes, on the other hand, are created automatically by RenderMan for Maya as the need
arises. For example, when creating a subsurface scattering effect, RenderMan for Maya
automatically creates a sequence of passes to generate the effect: a pass for generating a point
cloud, another for filtering the point cloud, and a pass to make the brickmap so it can be used in
the beauty (Final) pass.

file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/rfm/User_Interface/Passes_.html

Managing Passes
All passes can be configured independently of other passes. Each pass has its own custom
settings that override the settings in the Render Globals. Any individual pass can have its own
quality settings, its own pass-specific camera, or many other kinds of independent behaviors as
defined in the pass tab.

All passes (whether explicit and implicit) can be controlled via the Passes Tab of the Render
Globals. The Settings sub-tab provides controls for the pass that is currently selected in the
passes tab. Additional attributes may be added to passes to provide additional control.

Secondary Outputs
With RenderMan for Maya any pass in a render job can output its own secondary outputs, created
during the primary pass. RenderMan for Maya has a flexible advanced system for constructing
passes and secondary outputs. The most common use of secondary outputs is the creation of
additional image elements for compositing, like specular, beauty, diffuse, etc. For more
information about secondary outputs refer to the Secondary Outputs document.

Strategies
There are several strategies for computing pre-passes. Proper setup of pre-passes can have a
substantial impact on render speeds. The most important pass settings are described below.

Caching Behavior
It is important to set the caching behavior for the shot. There are three types of caching
behavior: compute, reuse, and disable.

Compute � Causes the pass to be computed every time the frame is rendered,
whether or not a pass has previously been rendered.

Reuse � Causes previously cached data to be used again. No additional calculations
are peformed in reuse mode, but the cached data must exist on disk.

Disable � Simply disables the pass, causing the entire pass to be ignored.

When tweaking shaders during iterative renderings, the caching
behavior of shadow maps can often be set to reuse. By reusing shadow
maps, the shadows only have to be calculated once and are reused for

file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/rfm/User_Interface/Passes_.html

each iterative rendering. No more waiting for shadow map calculations.

Phase
Most passes have a Phase parameter that determines how often a pass is calculated. The choices
are: Once Per Job and Every Frame.

Once Per Job � Calculates the pass for the first frame of an animated sequence.

Every Frame � Calculates a pass for each frame of an animation.

For single frames, both settings have the same effect. When rendering animated sequences is
where the Once Per Job setting can be advantageous.

How often a pass needs to be computed is dependent on the shot. For shots where the elements
in a pass are not moving from frame to frame, Once Per Job would be the right setting. However,
in cases where objects in passes are moving and deforming during a shot, each frame would
require a new calculation. In those cases Every Frame would be the correct setting.

It is common to use the Once Per Job setting with shadow maps. For
instance if the elements in a shadow pass are not moving during a shot
(like 3D models of skyscrapers) then only one shadow map needs to be
computed for the entire shot. By using the Once Per Job setting (as
opposed to the every frame setting), the scene will render much faster,
more efficiently, and require significantly less disk resources.

Sets
Controlling the membership of objects rendered in pre-passes can provide additional
optimizations. Unnecessary calculations can be avoided by selecting only those objects that are
required to participate in the pre-computed pass.

To control this set behavior, create a Maya set that only includes the appropriate geometry and
enter the name of the Maya set in the Set parameter of the pass.

Images that aren't moving in a shot can be put into one Maya set and
that pre-pass can be calculated Once Per Job. Moving objects can be
stuck into their own Maya set.

2D Textures Vs. 3D Point Clouds
RenderMan for Maya is capable of caching pre-pass data as 2D textures or as 3D point cloud files.
Whether a pre-computed pass is a 2D texture or a 3D point cloud is largely transparent, but it
does have some impact on workflow.

2D Texture Passes
Most pre-computed passes are cached into 2D textures. Some 2D textures, like
shadow maps, also contain depth values, but are fundamentally 2D textures.

3D Point Clouds
Pixar has developed the technology of "3D textures", which are basically point clouds
(color data stored in x, y, and z). RenderMan for Maya automatically bakes certain
types of computations into 3D point clouds. Subsurface scattering is an example of
this. Other calculations, like occlusion, can be baked into either format. By default,
occlusion is baked into 3D point clouds, but it can be baked into 2D camera projected
textures instead. For instance, 3D point clouds can occasionally consume much more
disk space that 2D textures would, and in that case 2D textures would be preferable.

RenderMan for Maya will generally choose the proper format for baking data, but RenderMan for
Maya also provides controls for additional customization.

Conclusion
RenderMan for Maya provides advanced controls for independently configuring individual pre-
passes of a render job. Proper management of pre-passes can dramatically optimize and
accelerate rendering.

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Secondary Outputs (AOVs)

Introducing Secondary Outputs
Another feature of RenderMan for Maya is the ability to generate secondary outputs (also called Arbitrary
Output Variables, or AOVs). While rendering, RenderMan for Maya can output additional data (specular
highlights, reflections, shadows, etc.) into separate image files, called secondary outputs. These outputs are
not rendered in multiple passes, but are created at the same time the main image is being rendered

Secondary outputs are useful for compositing. It can be more efficient to adjust certain effects in compositing
(such as tweaking specularity) than rendering the image over and over again. Secondary outputs can also be
used to create special effects. RenderMan for Maya provides controls to generate exactly the kinds of
secondary outputs required.

For more information about workflow associated with creating secondary outputs refer to the Secondary
Outputs Tutorial. What follows here is an overview of the basic outputs and how they are combined to
create your final image.

About Outputs
Here is a list of shadingmodel outputs. These additive terms are required to reconstruct the beauty render.
They all must be passed through layering operations.

AmbientConstant

The (surface?) shaders' constant "built-in" ambient illumination

AmbientLight

Illumination from ambient lights

Backscattering

Total contribution of backscattering effects

DiffuseDirect

Unoccluded diffuse response to direct lights

DiffuseDirectShadow

Diffuse response that is shadowed (subtract this from DiffuseDirect)

DiffuseEnvironment

Diffuse response from environments

DiffuseIndirect

Diffuse response reflected from other objects

Incandescence

Total contribution of incandescent effects

Refraction

Total contribution of refraction effects

Rim

Total contribution of rim effect

SpecularDirect

file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/Recipes_and_Tutorials/Secondary_Outputs.html
file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/Recipes_and_Tutorials/Secondary_Outputs.html

Specular response from direct lights

SpecularDirectShadow

Specular response that is shadowed, subtract this from SpecularDirect

SpecularEnvironment

(Unoccluded) specular response from environments

SpecularIndirect

Specular light reflected from other objects (coherent reflections)

Subsurface

Total contribution of subsurface scattering

Translucence

Total contribution of cheap/thin translucence

The recipe for compositing your beauty image is a simple additive process using these outputs:

 result = SpecularDirect - SpecularDirectShadow + SpecularIndirect +
 SpecularEnvironment + AmbientConstant + AmbientLight +
 DiffuseDirect + Translucence - DiffuseDirectShadow +
 DiffuseIndirect + DiffuseEnvironment + Backscattering +
 Subsurface + Rim + Refraction + Incandescence

Additionally, there are �ancillary outputs� that are not used to create the beauty render but can be useful for
other compositing tasks:

SpecularColor

Color used to scale specular illumination

DiffuseColor

Color used to scale ambient and diffuse illumination

OcclusionDirect

Occlusion of direct illumination (shadows)

OcclusionIndirect

Occlusion of indirect (ambient) illumination

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Special RenderMan Camera Effects
Introduction
Motion Blur
Depth of Field and Bokeh

Introduction
RenderMan provides users with big time camera effects for your use and enjoyment, including
highest-quality motion blur, depth of field, and special effects implemented to help you simulate
�imperfections� in your camera lens to enhance your efforts to create �photorealistic� renders.

Motion Blur
Pixar's RenderMan can motion blur until the cows come home, offering users unparalleled quality
and control. The RenderMan for Maya plugin offers simple control over motion blur effects via the
Render Settings, including the new shutter open and close settings introduced in version 13 of the
renderer. Additionally, multi-segment motion blur can be enabled by adding the Motion Samples
attribute to the blurred object's Transform node.

Motion Blur!

Multi-Segment Motion Blur!

Multi-Segment Motion Blur
Slow Shutter Open, Fast Close

Multi-Segment Motion Blur
Fast Shutter Open, Slow Close

Depth of Field and Bokeh
The RenderMan for Maya plugin uses the Depth of Field settings for your Maya camera. In
addition, you can add Aperture Controls to your camera via the Attributes menu in the Maya
Attribute Editor. The Aperture Controls allow you to manipulate the shape and other
characteristics of your �lens�, simulating the imperfections found in an actual camera's lens.

RenderMan Aperture Control Attributes

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Geometry
2.1 Primitives
2.2 Instanced Geometry
2.3 Particles
2.4 Fur and Hair
2.5 CSG

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Geometric Primitives

Subdivision Surfaces
NURBS
Polygons

Subdivision Surfaces
RenderMan for Maya supports Maya subdivision surfaces (available in Maya Unlimited), including
support for hierarchical editing, which allows for exact control over components of the subdivision
mesh at finer levels of subdivision. Also, since RenderMan renders true curved surfaces,
tessellation is never an issue. RenderMan handles subdivision surfaces well.

The subdivision surface is a relatively new geometric primitive which combines strengths of both
NURBS and polygons. These combined strengths make subdivision surfaces well suited for
modeling complex objects, especially organic objects that require animation, like characters.

A polygon model. A subdivision surface is
completely smooth.

A subdivision surface is described by a control mesh of points, like a NURBS surface. Additionally,
a subdivision surface's control mesh is not confined to being rectangular, which is a major
limitation of NURBS. In this respect, a subdivision surface's control mesh is analogous to a
polygon model. But where polygon models require many facets to approximate being smooth, a
subdivision surface is smooth; it is a true curved surface, meaning that Pixar's RenderMan
actually renders the high-level subdivision surface (and only tessellates on a pixel basis).
Subdivision surfaces will never have a faceted look (like polygon models can), no matter how the
surface animates or how closely it is viewed.

A subdivision surface can be constructed to make highly efficient use of geometry, putting
geometry only where it is needed � and not where it's not � a great benefit for animation.

Subdivision Surface Strengths:

1. A true curved surface (like NURBS) � with unique support for creases and points.

2. Animation � No patch cracks (like can happen with NURBS). Put geometry only
where needed (unlike NURBS and polygons).

3. Displacements � High quality. (No cracks, a common artifact with displacements
on polygons.)

With RenderMan, rendering a complex subdivision surface is much more efficient than rendering
the equivalent polygon model (a model which would require many model facets to approximate a
smooth surface).

(top)

NURBS
RenderMan for Maya provides complete support for Maya NURBS, including trimmed
surfaces. NURBS (or nonuniform rational B-splines) are essentially rectangular 2D patches which
are stretched and bent into 3D shapes. Because RenderMan renders true curved surfaces,
tessellation is never an issue; NURBS are always smooth.

Maya uses U & V coordinates to parameterize NURBS surfaces, while RenderMan
similarly uses S & T. RenderMan for Maya correctly interprets S & T values
automatically. This would only be an issue when importing custom RenderMan
shaders.

(top)

Polygons
RenderMan for Maya provides full support for Maya polygons, including Maya's UV mapping tools.
A single polygon is a face, with any number of edges and corners (vertices). A polygon mesh is
composed of many individual polygons, a polygonal mesh. Polygons tend to be easier to model
than NURBS since a polygonal mesh can be any arbitrary topology, whereas NURBS must be
carefully organized patches. Polygons have several inherent disadvantages, however, when
compared to NURBS or subdivision surfaces:

1) Polygons are susceptible to faceting artifacts

2) Polygons require dense geometry to approximate smooth surfaces

3) Polygons do not displace satisfactorily (due to their essentially discontinuous
topology)

For users of Maya Unlimited, there are often benefits to be gained by converting
polygons to subdivision surfaces, especially when displacements are being used. The
caveat here is to make sure that the polygonal geometry is not too dense, which

could create an inefficient subdivision surface.

(top)

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Instanced Geometry

Support for Instancing
RenderMan for Maya supports Maya's instancing of geometry. Instanced geometry is a reference
to an original geometric master and is particularly efficient, being only a reference to the original
object. Using instanced geometry can accelerate Maya's interactive display. Unfortunately, it also
has some restrictions, inasmuch as any changes made to the original object affect the instance as
well.

There are several added benefits to using instanced geometry with RenderMan for Maya.
Instanced geometry is much more efficiently represented internally in the renderer. A scene
rendered using Pixar's RenderMan with fifty folding chairs would be much less efficient than the
same scene rendered with one folding chair and forty-nine instances. Instancing geometry can be
a very useful technique for optimizing rendering.

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Particles
Particle Support
Software Rendering
Per-Particle Effects & Arbitrary Attributes
Particle Instancing

Particle Support
RenderMan for Maya provides automatic support for Maya particles, including Maya particle
instancing. RenderMan for Maya supports the Maya particle types listed here.

Software Rendering
RenderMan for Maya renders particles using pure software rendering. RenderMan's highly optimized
particle primitives are fast and efficient. There are added benefits to software rendering over
hardware rendering:

Benefits of software rendered particles:

 1) Antialiasing, motion blur, and full integration into the scene

 2) Particles can cast shadows

 3) Arbitrary shaders can be attached

Also, when rendering particles through RenderMan you have control over the physical size of the
particles in world space units. This is due to the fact that Pixar's RenderMan is resolution-
independent, while hardware rendering modes commonly work in pixel units.

Per-Particle Effects & Arbitrary Attributes
RenderMan for Maya automatically establishes the correct rendering context for variations in
particle color, opacity, and radius. You can write MEL expressions to calculate per-particle radii
(radiusPP), color (rgbPP), opacity (opacityPP), and lifespan (lifespanPP and useLifespanPP).
You can also use Maya to setup procedural ramps which remap these values.

Finally, you can create arbitrary attributes and associate them with the RenderMan representation
of your particle objects. This might be of use if you plan to write a custom shader to perform
calculations using per-particle or per-particle-object attributes. For more on the general mechanism
for transmitting arbitrary primitive attributes through RenderMan, please refer to the primitive
variables reference.

Particle Instancing

file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/rfm/Overview/What_is_Supported.html#PARTICLES

RenderMan for Maya supports Maya particle
instancing. For complete details on how to set up your scene for particle instancing, please refer to
the Maya documentation.

There are some cases where RenderMan for Maya does not correctly translate Maya's configuration.
Generally, if you stick to the proscribed steps and avoid obscure orientation configurations, you'll
get good results.

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Fur and Hair

Introduction
RenderMan for Maya supports Maya Fur and Hair (available with Maya Unlimited), for the creation
of highly convincing fur effects. Fur and hair is fully supported, from keyframe animation to
dynamic simulations. RenderMan for Maya will automatically render Maya fur and hair, requiring
no additional setup.

RenderMan renders these effects fast and efficiently, although rendering fur can be an
computationally expensive operation. In addition, both fur and hair are rendered as another
scene element in software (RenderMan does not treat fur as a post-process effect), which allows
full integration for anti-aliasing, shadows, etc.

Fur and Shadows
Shadows can give fur the added depth needed for exceptional realism, and Pixar's Deep Shadows
are ideal for this purpose. Deep Shadows are capable of creating soft, subtle shadows, free of
artifacts. They are more expensive than traditional shadow maps, but are well worth it when
rendering fur, due to issues associated with using traditional shadow maps and fur. As shown in
the image below, fur with traditional shadow maps has several undesirable artifacts, especially in
animation. Deep Shadows, however, are perfect for use with fur.

Fur with Depth Map Shadows Fur with Deep Shadows

In this image, the shadow on the floor has the
artifacts that typically occur when using traditional
shadow maps and fur. The only way to compensate
for this is by dramatically increasing the resolution of
the shadow map, which has its own issues. These
artifacts will pop and flicker when animated.

With Deep Shadows, the shadows of the fur are much
better looking. Deep Shadows allow the shadow to be
filtered, eliminating blocky artifacts. Deep Shadows
also can be semi-transparent, which adds additional
character to the fur, and they look totally excellent
when animated.

For information about fur workflow see the Fur and Hair Tutorial.

file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/rfm/Recipes_and_Tutorials/Fur_and_Hair.html

Prev | Next

CSG (Constructive Solid Geometry)

RenderMan for Maya provides functionality for CSG Boolean operations on geometric surfaces � computed in
the renderer. CSG stands for �Constructive Solid Geometry,� allowing two, or more, objects (or groups of
objects) to be combined in a number of ways, creating complicated geometry and special effects.

Using CSG requires that objects have RenderMan attributes attached to designate them as special CSG
primitives. Then they must be grouped together and that group must have a CSG attribute applied to it as
well. Here's how❭

1 - Create Geometric CSG primitives

First create two pieces of geometry in Maya, as seen
here. (For best results the geometry should be a closed
solid, with no open holes.)

Next designate each geometric piece as a CSG primitve.
Select the geometry (not the Shape node) and then
from the Attributes menu, in the Attribute Editor❭

Attributes-> RenderMan-> Add CSG Solid Type

This will add a dropdown menu to the Extra RenderMan
Attributes. The objects at the base of a CSG hierarchy
should always be designated as a CSG Primitive.

2 - Group and Apply CSG Operation

Group the two objects together. Now apply a CSG
operation on the grouped node, in the same way you
did to each piece of geometry.

3 - Render "Difference"

Select Difference as the Solid Type for your grouped
node. Render the scene.

The final image give us a CSG difference, with the
cylinder making a hole through the sphere. In this case
the hole is made in the sphere since it is the first item in
the group. If the cylinder was first, then the sphere
would make a hole in the cylinder. An objects order in
the hierarchy of the group determines how objects are
subtracted.

Note: The section the cylinder cuts away is shaded by
the cylinder's shader.

4 - The "Intersection"

Change the Solid Type to Intersection. Now render.

An object is formed from only the area that the objects
both occupy.

5 - The "Union"

Finally, use the third operator by changing the type to
Union Render. A single object is created from the
intersecting objects.

Note: These two pieces of geometry are now "fused"
together into one piece. This can be useful in cases
where the fused geometry will be used to perform other
CSG operations on other geometry.

6 - Conclusion

CSG is a powerful technique for the following reasons:

● Groups of objects, entire characters or vehicles,
can be added to CSG operations. (Be sure to
designate all components of a object hierarchy
(such as a character) as CSG primitives, grouping
them with "Union" operators.)

● Easily animated, including motion blur.

● Multiple primitives can be grouped in a CSG
operation.

● Hierarchies of consecutive CSG operations can be
constructed. (For example, an "intersection" can
be applied to a group of primitves and that result
can be used in a "difference" operation against
another primitive, and even that can be
subtracted from another object.)

The image to the right was created by adding the
cylinder and sphere to a larger hierarchy of CSG
operations. We'll leave it as an exercise to the reader to
figure out how this bizarre geometric artifact was
accomplished.

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Understanding Shaders
3.1 Shaders and RenderMan
3.2 Proceduralism
3.3 Textures
3.4 Bump and Displacement Shaders

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Shaders and RenderMan
Introduction
Shader Types
Shader Space

Introduction
At the core of RenderMan is the versatile
RenderMan Shading Language. What follows is a
discussion of some related key concepts which may
benefit users of RenderMan for Maya. Because
Maya Materials are automatically converted this
knowledge isn't absolutely required, but it is
valuable for understanding how shaders are
implemented in RenderMan and will be of benefit
for those who wish to create well-executed
shaders.

All shaders answer the question, "What's going on at this point?" That is, a shader determines the
color of a point by running algorithms to gather information about certain scene elements. The
RenderMan Shading Language allows shaders to ask very complicated questions about what is
happening at any given point. With the RenderMan Shading Language, shaders can be created
without limitations, familiar shading models can be extended, or totally unique shaders can be
developed. Physical properties of materials can be simulated or flat out defied in order to deliver
whatever look is desired. The effects of studio lighting can be constructed by building lights that
have special lenses, concentrators, flaps, or diffusers. Material types can also be combined,
simulating the many coats of paint or finish applied to a surface. Remarkably realistic images can
be produced with a few fairly simple shapes which have shaders that are asking the right
questions.

Shaders can be generated in a number of ways. RenderMan for Maya renders Maya Materials and
shaders created by Slim. Alternatively, shaders can be written using the RenderMan Shading
Language for custom purposes, which can then be imported into RenderMan for Maya. Either way,
high-quality shaders can be created, no matter which workflow is preferred.

Custom RenderMan shaders can be imported into RenderMan for Maya. Once
imported into Maya the parameters of these custom RenderMan shaders can be
animated, but other Maya Materials cannot be wired into them. These RenderMan
shaders can be connected to a top-level shading group, but these connections are
constrained by the three available slots: surface, displacement, and volume.

Shader Types
RenderMan understands five types of shaders:

Surface Shader: Surface shaders are attached to all geometric primitives and are used to model
the optical properties of materials from which the primitive was constructed. A surface shader
computes the light reflected in a particular direction by summing over the incoming light and
considering the properties of the surface.

Displacement Shader: Displacement shaders change the position and/or normals of points on the
surface and can be used to place bumps on surfaces.

Light Shader: Lights may exist alone or be attached to geometric primitives. A light source shader
calculates the color of the light emitted from a point on the light source towards a point on the
surface being illuminated. A light will typically have a color or spectrum, an intensity, a directional
dependency, and a fall-off with distance.

Volume Shader: Volume shaders modulate the color of a light ray as it travels through a volume.
Volumes are defined as the insides of solid objects. The atmosphere is the initial volume defined
before any objects are created.

Imager Shader: Imager shaders are used to program pixel operations that are done before the
image is quantized and output.

Shader Space
RenderMan for Maya automatically translates Maya Materials, including associated projections.
You might find that, in certain cases, these RenderMan shader space attributes are helpful (e.g.
when using imported custom RenderMan Shaders or when an esoteric shader space like "NDC" is
required).

Shader space is used to define how 3D procedural shaders and 2D projections are applied to
objects in a scene. This is in contrast to using the natural parameterization of a surface (UV
mapping) to map 2D textures onto objects. A 3D procedural shader emanates in three
dimensions. Such shaders are often called solid shaders. Naturally, a point in 3D space must be
given to a solid shader as the center starting point from which the shader expands. To define this
point we use coordinate systems.

Now any node in Maya (object, light, etc.) can be used to declare a coordinate system for a
procedural shader, but it turns out that the RISpec already contains a number of quite helpful
predeclared shader spaces:

Coordinate System Description

"object" The coordinate system in which the current geometric
primitive is defined. The modeling transformation converts
from object coordinates to world coordinates.

"world" The standard reference coordinate system. The camera
transformation converts from world coordinates to camera
coordinates.

"camera" A coordinate system with the vantage point at the origin and
the direction of view along the positive z-axis. The projection
and screen transformation convert from camera coordinates to
screen coordinates.

"screen" The 2-D normalized coordinate system corresponding to the
image plane. The raster transformation converts to raster
coordinates.

"raster" The raster or pixel coordinate system. An area of 1 in this
coordinate system corresponds to the area of a single pixel.
This coordinate system is either inherited from the display or
set by selecting the resolution of the image desired.

"NDC" Normalized device coordinates � like "raster" space, but
normalized so that x and y both run from 0 to 1 across the
whole (un-cropped) image, with (0,0) being at the upper left
of the image, and (1,1) being at the lower right (regardless of
the actual aspect ratio).

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Proceduralism
Introduction
A Procedural Example

Introduction
One of the benefits of having a shading language is being able to generate
patterns and textures from functions, such as solid fractal noise, ramps, or
other useful functions (also known as procedural textures). Procedurals have
several strengths over the the alternative for texturing objects (image
maps). Ultimately, however, the decision on whether to use a procedural
texture or an image map largely depends on circumstances. Sometimes
procedural textures are the clear solution, sometimes images maps are more
appropriate, and often a combination of the two is required.

Strengths of procedurals:

1) Procedurals can require less time to create. Image maps must be painted or
photographed. Painting requires the time and talent of an artist. Photographs also
require additional processing to be suitable textures. Procedural textures, on the
other hand, are already to go (given a collection of pre-made fractal, ramp, and
other stock procedurals). An original texture can be created quickly just by tweaking
the parameters of a procedural texture.

2) Procedural textures have no pixel artifacts, like images are susceptible to. Zoom
in too close to a texture map and you can see the original pixels. Procedural textures
always look uniform whether viewed up close or far away.

3) Procedural textures spread out to infinity, with no repetition. Images do not. In
order to cover large areas textures must repeat at some point and begin tiling. Tiling
can produce artifacts when the same texture is repeated over and over. An
acceptable repeating texture must be created by a trained artist. Procedural textures
suffer none of these issues.

4) Procedural functions are simple to animate, just by key framing a parameter.
Animating textures maps is much more difficult.

5) Procedural textures require little disk space, unlike high-resolution image maps.

Strengths of Image Maps:

1) Maps are easier to control. For instance, a specular map for a character's face
must be shiny in certain places, the nose and cheeks, and less shiny in other areas.
It's obvious that such a map must be painted, rather than constructed from
procedural textures.

2) Maps are easier to edit. For instance, if the director demands that a dent or wood

knot must appear in an exact location, it is simpler to paint the detail directly . . .
and an image is much easier to edit when the director decides to change the location
later. It can be difficult to edit individual elements of a procedural texture without
changing the entire pattern.

3) Fewer artifacts. When animated procedural textures can occasionally exhibit
artifacts (popping, flickering, etc) caused by improper anti-aliasing. Image maps are
already aliased. No problems there.

A Procedural Example
One of the strengths of procedural shaders is their ability to give simple geometry a realistic look
and feel. Below, a flat plane has a complex animated procedural water shader attached to it. This
final shader not only creates a physically accurate ray traced refraction, but it also displaces the
geometry of the plane, effectively adding real geometric detail without modeling.

The water is an animated procedural shader

The water is built from layers of simple procedural textures, as can be seen in the smaller
images. The water was created with an interactive editor and required no programming.

Simple layers are combined to create a complex procedural shader

Prev | Next

Prev | Next

Textures
Introduction
Supported Formats
Textures

Introduction
The following describes the use of textures in RenderMan for Maya. Texture
files are often used in shaders, as an alternative to procedural textures.

Supported Formats
RenderMan for Maya accepts source textures in many image formats, including: TIFF, Alias,
mayaiff, Radiance, JPEG, HDRI, and SGI RGB. RenderMan For Maya will maintain the precision of
32 bit floating point images by default.

Source images for texture maps can be any resolution; however, RenderMan's
conversion process causes these files to be resized into various other resolutions for
fast filtered access, each being some even power of two resolution in both width and
height. To avoid resizing (and the consequential interpolation of your pixels) use
resolutions with a power of two: 256 x 256, 512 x 512, 1024 x 1024, etc.

Textures
RenderMan handles textures very efficiently, and many textures may be used in a single scene.
There is, in principle, no limit to the number of texture maps per surface.

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Bump and Displacement Shaders
Introduction
Bump
Displacement
Avoiding Artifacts
Conclusion

Introduction
RenderMan For Maya supports both bump and displacement shaders.

Bump

Bump mapping simulates roughness by perturbing the surface normal at any given point on an
object. An object with a bump map appears to have pits and gouges, but the actually underlying
geometry is unchanged. The normals are bent in ways that make the surface appear to be
bumpy. The silhouette of a bumped surface will be the same as the original surface, as shown in
the image on the right. Bump mapping can be useful, but when it is desirable to perturb the
actual geometry of a surface, the more expensive option, displacement, can be used.

Displacement
One of the most interesting, powerful, and unique features of RenderMan is the ability to displace
the surface geometry during shading. This allows the modeling of true dents, wrinkles, and other
rough features which are only approximated by other techniques, such as bump maps. Since the
geometry is actually moved by the displacement shader, not only the shading is changed, as in
bump mapping, but the silhouette is changed and parts the surface can occlude other parts, just
as they do in "real life." Displaced surfaces can also cast displaced shadows. Displacements can
also be animated with interesting results. None of these effects can be achieved with bump
mapping.

Displacements are sometimes tricky to use, however, and often lead to unexpected artifacts or
performance problems. In particular, the fact that displacements are made to the surface
geometry during the shading means that all of the code earlier in the rendering pipeline can only
guess what the displacement might eventually be like. By following the guidelines presented here,
it should be possible to eliminate most of the artifacts.

Avoiding Artifacts
Displacement shaders are evaluated and applied to the surface of objects during the shading
stage. In fact, the displacement shader is the first shader that is evaluated on a surface, so that
the subsequent light, surface, and atmosphere shaders are operating on the correctly moved
data. The problem is, of course, that the various geometric operations which operate on the
original surface geometry before shading (for example, bounding boxes and size estimation) don't
know how much (if at all) the surface will move under the displacement. Therefore, the
mechanisms that exist to eliminate geometric artifacts like polygonal silhouettes are occasionally
outsmarted by the displacement.

Here are some of the artifacts that can be seen, and some hints on how to avoid them.

Displacement Bounds
All objects have a bounding box associated with them. This bounding box determines when the
object is loaded into memory by the renderer, and it is usually tightly bound to the object in
question. However, displaced geometry can be pushed outside of that box, and RenderMan
doesn't pay any attention to an object until it reaches a pixel inside an object's bounding box, so
things that are displaced out of the box will get missed, leaving large holes in the object. The
following images show the artifacts associated with poorly set displacement bounds:

The displacement bound should be bound to the furthest extent of possible displacement (e.g. If
your displacement has an amplitude of "1," the displacement bound should similarly be set to
"1"). If you make the displacement bound too small, the object will still fall outside the bounding
box and pieces may still disappear. If you make the displacement bound too large, then the
bounding box will be too big and RenderMan will do far too much work processing the primitive
and use up lots of memory storing the pieces that were done too early. Now we can see why
getting the getting reasonable amplitude control are so helpful: because with both of those in
place, figuring out the correct bound is much easier!

Conclusion
With care, it is possible to use displacement shaders in RenderMan with no objectionable artifacts
and with almost no speed penalty. The most critical parameter is the displacement bound. In
most case, this parameter should be easy to calculate. Since displacement shaders operate
independently of surface shaders, it is possible to displace surfaces made of any type of material.

Clearly, displacement shaders are a powerful tool for making interesting and highly detailed
photorealistic images.

For more information about creating displacements refer to the Displacements Tutorial.

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/Recipes_and_Tutorials/Displacements.html
http://www.pixar.com/

Prev | Next

Illumination
4.1 Shadows
4.2 Reflections and Refractions
4.3 Global Illumination

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Shadows
Introduction
Shadow Maps

Depth Map Shadows
Deep Shadows

Ray-Traced Shadows

Introduction
Adding shadows is one of the most effective ways of adding realism to a computer-generated image. The
human visual system uses shadows to determine depth, light location, and direction, as well as
spatial relationships between objects. Additionally, shadows are invaluable for creating moods and
motivating the emotion of an image or scene.

There are several types of shadows available with Pixar's RenderMan: depth map shadows, deep shadows,
or ray-traced shadows. Each method has it own advantages. Shadow maps offer efficient shadow generation
and a reusable resource. Deep Shadows are a feature-rich shadow map that combine the benefits of
shadow maps with support for semi-transparent and motioned-blurred shadows. Ray-traced shadows
offer greater ease of use, more features, and higher quality, but at the price of slower execution speed.
What follows is a discussion of these three formats.

top

Shadow Maps
The basic idea behind shadow maps is simple. For each light that casts a shadow, a shadow map image must
be rendered during a pre-pass. Each shadow map is rendered from the location of its respective light source.
As an external resource, shadow maps can be reused, if light and object positions do not change. There
are three types of shadow maps: depth maps, deep shadows, and soft shadows. All types generate
shadow maps, but have their own features, as outlined below.

Depth Map Shadows
Overview
Depth map shadows produce good results in many situations. They are efficient but have a number of
limitations (as outlined below). The basic idea is simple. For each light that casts a shadow, a shadow
map image must be rendered during a pre-pass. Each shadow map is rendered from the location of
its respective light source. The final result is shown in the image below. Each type of light creates
distinctly characteristic shadows.

The image on the right is a depth map for the image of the teapot at the top of the page. This depth map
was generated as a pre-pass before the final image was rendered. A depth map represents the distance from
a specific light to the surfaces the light illuminates. A depth map contains depth info from a light's point of
view. Each pixel in the depth map represents the distance from the light to the nearest shadow casting
surface in a specific direction.

Limitations
Depth shadows have some limitations, which also make depth map shadows efficient by requiring less work
on their part. As long as your shadows do not require the following effects, depth map shadows may suffice.

● Depth Map Limitations

�❍ No support for motion blur

�❍ No support for transparent surfaces

�❍ No filtering

Set Up
The simplest way to get depth map shadows with RenderMan for Maya is to create a spot, point, or
directional light in your scene. RenderMan for Maya will automatically generate shadow maps when Depth
Map Shadows are enabled on a light. RenderMan uses the settings in the Render Globals as defaults for
the depth map, these can be overridden on a per-light basis. Here's the number of depth maps required for
each light source type:

● Spot Light - 1 map

● Point Light - 6 maps

● Directional Light - 1 map

Shadow Map Knobs
In the Render Globals Passes tab, you're able to configure the settings of your shadow maps. Here are some
of the settings that are often configured on a shot by shot basis:

● Phase � Controls how often you want to compute your shadow map. Usually you should choose "Every Frame"
but if you know that the map's contents are invariant over a sequence, choose "Once Per Job."

● Shading Rate � Controls the shading quality for your shadow map; lower numbers provide higher quality images.

● Pixel Samples � The number of samples to take of the map. Use larger numbers when you need smooth
blurring effects.

● Ray Tracing � Ray tracing can be disabled explicitly for shadow passes.

● Depth Filter � The algorithm for calculating shadow maps.

● Expand checkboxes � Enables or disables Surface, Displacement, Light, and Volume shaders in the shadow
map pass.

top

file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/rfm/User_Interface/Passes_.html

Deep Shadows
Overview
Deep Shadows are a feature rich depth map shadow that support transparency and volumetric data.
Deep shadows can also be pre-sampled.

Deep Shadows with semi-transparent shadows

Same image rendered with Depth Map Shadows.
The inferiority of the Depth Map Shadow is clear.

Deep Shadow Benefits
Deep Shadows have the following advantages over traditional depth map shadows, advantages that make
deep shadows ideal for fur, or when shadowing any collection of small, semi-transparent objects.

Deep Shadow Features:

1. Semi-transparent shadows

2. Colored shadows

3. Motion-blurred shadows

4. Multi-sampling

5. Far fewer animation artifacts than standard shadow maps

6. Subtler, better-looking shadows than depth maps

Motion blurred teapot and shadows

Deep Shadow Cons
If deep shadows have a fault, it is that they store more data than standard shadow maps. This means larger
files and increased render times. Deep Shadows should be used only when their benefits are useful and are not
a replacement for traditional depth maps in general. Note however that by pre-filtering a deep shadow map
a shadow map can be generated at a lower resolution than would be required by a traditional shadow
map, which can mean that in some instances a lower resolution deep shadow map will render faster and
require less disk space than an equivalent standard shadow map generated at a necessarily higher resolution.

Deep Shadows Vs. Ray Tracing
Deep Shadows can create many effects that could be also be created via ray tracing. Creating these effects
with deep shadows is generally much faster and more efficient than generating the same effect with ray tracing.

For more information see the Deep Shadow Tutorial.

top

Ray-Traced Shadows
Overview
Light sources can ray trace shadows, and ray-traced shadows have several features that traditional depth
map shadows lack. Traced shadows can be used to create soft shadows, colored shadows, and motion-
blurred shadows. They are also resolution independent, unlike shadow maps. Ray-traced shadows, however,
can be costly to render.

Ray traced shadows offer these effects:

1. Semi-transparent shadows

2. Colored shadows

3. Motion-blurred shadows

4. Soft shadows

Blurred Shadows
Ray-traced shadows can create soft shadows. To create soft shadows just increase the amount of by
increasing the Light Angle. The higher the value, the greater the blur (see images below). Blurred
shadows usually demand a corresponding increase of the shadow "samples" ()to eliminate "dotty" artifacts.

Ray-Traced Shadow Knobs

● Shadow Rays � The number of rays cast. More rays allow you to achieve higher quality shadows (see
images below). More rays also means slower rendering.

● Light Angle � Controls the blurriness of your shadows. Increase the number of Shadow Rays to reduce noise.

● Bias � The bias value for ray-traced shadows is controlled via the Trace Bias parameter in the Ray Tracing
section of the Features tab in the Render Globals. Adjusting this parameter affects shadow creep. If it is too
low the shadows will creep onto the front of objects. If it is too high the shadows will creep away from the
bases. The size of objects, in world coordinates, affects the ideal value for this setting and must be adjusted on
a per scene basis.

file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/rfm/Recipes_and_Tutorials/Deep_Shadows.html

Ray-Traced Shadow Examples

Light Radius 0.25 ~ Shadow Rays 1 Light Radius 0.25 ~ Shadow Rays 24

Light Radius 1.0 ~ Shadow Rays 1

Light Radius 1.0 ~ Shadow Rays 24

top

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Reflections and Refractions

Ray Tracing Reflections & Refractions
Global Controls
Ray Tracing Features

Ray Tracing Reflections & Refractions
RenderMan's advanced ray-tracing sub-system allows the creation of physically correct reflections
and refractions. RenderMan has special attributes available for controlling how rays behave for
the creation of special effects like, blurry reflections, anti-aliasing, and bias. Below some of these
controls will be explored. These controls work similarly for both reflections and refractions.

Global Controls
Ray Tracing must be enabled in the Features Tab of the Render Globals in order to ray trace
reflections or refractions. Once ray tracing is enabled, the global controls for ray tracing are
available.

Ray Tracing Features
Adding RenderMan Controls
In general, RenderMan for Maya renders ray traced reflections using the same workflow as Maya.
There are, however, some special ray tracing features for RenderMan which are not directly
supported by Maya. You can add these controls to your Maya Materials as needed, which will
allow you to take advantage of these effects. To add these controls to a Material open it in Maya's
Attribute Editor, then go to the Attributes menu and select RenderMan-> Add Reflection Controls
(or Refraction Controls). New ray tracing controls will appear under the Extra RenderMan
Attributes.

Samples
By increasing the ray samples, we increase the amount of rays cast from any point. For some
effects a sample of "1" may be sufficient. However, other times casting multi-sample allows for
greater image quality (using multi-sampling for anti-aliasing) and special effects (like blurry
reflections). Higher samples will also dramatically add more time to rendering and should be
increased with care.

Single sample Multi-sampling

Blur

file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/rfm/User_Interface/Features.html

Both reflections and refractions can be blurred. Increasing the value of blur increases size of the
ray's sample cone. This allows the creation of blurry reflections, refractions, subsurface
scattering, etc. Blurring traces also requires a greater number of samples to be cast from any
given point in order to reduce splotchy artifacts.

In the images on the below, the number of samples has a large effect on the quality of the
resulting image. In this case, twelve samples might not be enough for a high quality render, but
twelve produces a much more acceptable effect than one single sample.

1 Sample "0.25" Blur 12 Samples "0.25" Blur

1 Sample "1.0" Blur 12 Samples "1.0" Blur

Trace Sets
Trace sets provide a method to define which objects a particular shader will trace. Objects can be
defined as trace sets (which are simple Maya sets with an added attribute). These sets can be
referenced in shaders in the "Trace Set" parameter.

The visibility of objects to tracing can still be enabled and disabled on a global level (using Maya's
Attribute Spread Sheet). The Trace Set brings an added level of control where objects can be
visible to tracing on a per-shader basis.

The effective use of trace sets can limit the total amount of ray tracing calculations which are
performed in a scene, significantly reducing memory requirements.

Reflections without trace sets

The yellow and blue cylinder are added to a trace set called, "two_cylinders"

The reflection is limited to the trace set "two_cylinders" and rendered.
Note neither the sky or the middle cylinder are included in the reflection.

Max Distance
The distance that rays travel from surfaces can be limited so that the rays are cast a fixed
distance. This allows rays to sample only objects which are within a set proximity, saving the
added cost of probing a scene, hitting and dicing geometry, and running shaders of remote
objects that have little bearing on the effect. Max distance is especially useful when used when
indirect illumination, or other effects which require many blurry samples when occlusion culling of
nearby objects is most important, and far away objects have less relevance.

If a ray travels the entire max distance without hitting any objects, it expires; the ray misses.
When a ray misses it returns the environment color.

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Global Illumination

Global Illumination
Soft Shadows
Image Based Lighting
Baking Data
Point-Based Global Illumination

Global Illumination
Introduction
With global illumination techniques, highly realistic lighting effects can be created with minimal
setup. Ray-traced global illumination carries a large overhead, and these effects can be
computationally expensive to render. However, with RenderMan for Maya 2.0 users can now take
advantage of point-based �approximate� global illumination, a new technique, using ptfilter, that
was introduced to RenderMan in the 13.0 release. Without taking the place of ray-traced global
illumination, it offers users an alternate, faster workflow for using global illumination in their
scenes.

About Global Illumination
There are several methods for creating global illumination with RenderMan for Maya, but global
illumination generally has two components: hemispherical sampling for shadows and image based
lighting for surface illuminance. It's important to keep in mind that either component may be
used on its own or both components may be used in conjuction with normal scene lighting. Next
we'll explore soft shadows and image based lighting a bit more.

Soft Shadows

Hemispherical Sampling
The effect of soft shadows can be generated by determining the amount a point is obscured by
other surfaces, an effect otherwise known as occlusion. This occlusion information can be
determined by casting many hemispherical samples from a given surface point, and because so
many rays must be cast, computing these calculations can be expensive.

RenderMan's efficient hemispherical sampling algorithm only samples at points where it has to;
and the Max Variation setting allows you to control the quality/speed trade off.

Global Vs. Direct Illumination
The two images below show the difference between global and direct lighting. The scene has one
light, which doesn't cast shadows. The only difference between the two images is the addition of

file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/rfm/User_Interface/RenderMan_Environment_Light.html#Max Variation

global illumination. Global illumination provides many subtle shading effects but these effects
have a high cost at render time. Subtle shadows can also be faked, and while this takes more
setup time during lighting and shading, the images will render much faster. The choice to use
global illumination, or to fake it, should be a conscious decision.

Direct Light

A scene with one direct light, with no shadows.

Occlusion

The same scene as above, with the addition of global illumination.

Color Bleeding
Like occlusion, color bleeding uses hemispherical sampling to calculate its effect. Color bleeding is
different than occlusion because each hemispherical sample that hits a surface will run that
object's shader. This is much more expensive than occlusion calculations, but it has the
advantage of getting colors to bounce from one object to another. Color bleeding is also required
for true image based lighting.

Color Bleeding
The blue color bounces off the wall onto the white sphere.

Image Based Lighting
Image based lighting uses environment maps (not scene lights) to illuminate objects. In this
method scene lighting is derived from an environment map, which can be a high dynamic range
image, HDRI. Through image based lighting, realistic lighting can be quickly integrated into a
scene. Below is a picture of an HDRI image of a forest which will be used to illuminate the
geometry on the right, the clump of mushrooms.

In the image on the right, the HDRI has been
applied to the geometry using the RenderMan
Environment Light. All of the lighting is coming
from the image. There are no direct lights in this
scene.

There are no shadows, however. We can add
shadows by using the Occlusion shadowing mode of
the RenderMan Environment Light.

Pure image based lighting

To showcase occlusion, the scene has been
rendered with simple materials, without the
environment map, and with occlusion enabled.

Notice how occlusion creates smooth subtle
shadowing based on the amount points are
obscured by other points. This shadowing will be
combined with the image based lighting above.

Pure Occlusion

Finally, the scene is rendered with the complicated
materials, the HDRI environment map, and with
occlusion enabled.

When used together image based lighting and
occlusion can produce some great effects with
minimal setup.

Image based lighting with occlusion

Baking Data

Global illumination can be baked and stored on disk. Once generated, this cached data can be
reused, dramatically decreasing render times.

To bake global illumination with RenderMan for Maya, create a connection to the Bake
parameter of the RenderMan Environment Light. Once a cache file is baked it can be referenced
in subsequent renders. Data can be reused as long as the relevant object(s) doesn't move. If the
object moves the global illumination data must be recalculated on a per-frame basis.

Point-Based Global Illumination
Using pre-baked point clouds, RenderMan can now calculate global illumination without the
expense of ray tracing. The technique is essentially an extension of baking your global
illumination data. You now have the option of creating an �Approximate Global Diffuse Pass�
connected to your RenderMan Environment Light (which can now be created without enabling ray
tracing).

The advantages of our point-based approach are:

● No noise.

● Faster computation times. (No ray tracing.)

● The geometric primitives do not need to be visible for ray tracing; this can significantly
reduce the memory consumed during rendering.

● Color bleeding is nearly as fast as occlusion. (No evaluation of shaders at ray hit points.)

● (HDRI) environment map illumination can be computed at the same time as the occlusion.

● Displacement mapped surfaces take no more time than non-displaced surfaces.

For More Information❭

The basic workflow for ray-traced and point-based global illumination is covered in the Global
Illumination tutorial.

You can find more technical information about global illumination in the RenderMan Application
Notes: Ambient Occlusion, Image-Based Illumination, and Global Illumination and Point-Based
Approximate Ambient Occlusion and Color Bleeding.

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/rfm/User_Interface/RenderMan_Environment_Light.html#Bake
file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/rfm/User_Interface/RenderMan_Environment_Light.html#Bake
file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/Recipes_and_Tutorials/Global_Illumination.html
file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/Recipes_and_Tutorials/Global_Illumination.html
file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/rman/prman_technical_rendering/AppNotes/globillum.html
file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/rman/prman_technical_rendering/AppNotes/pointbased.html
file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/rman/prman_technical_rendering/AppNotes/pointbased.html
http://www.pixar.com/

Prev | Next

MEL Scripting
5.1 Passes
5.2 RenderMan Attributes

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Passes

Creating passes with MEL
How to find out what kinds of passes there are
Instantiating passes
Adding a secondary output to a pass
Listing of known channels
How to get a list of a pass's outputs
Deleting a pass's extra outputs
Refreshing the Attribute Editor after adding settings to a node

Creating passes with MEL
RenderMan for Maya provides controls for advanced pass manipulation. Passes can be created
and modified via MEL scripting. What follows is an examination of how to manipulate passes for
RenderMan for Maya using MEL scripting.

How to find out what kinds of passes there are
RenderMan pass nodes in Maya are based on nodetype templates defined in
RenderMan_for_Maya.ini. Here's what the beginning of the Shadow pass template looks like:

 nodetype pass:render:Shadow {

The part of the node type after the last colon is what will be refered to as its class. You could
browse RenderMan_for_Maya.ini looking for pass classes. An easier place to look would be under
the Passes tab in the render globals. If you click on the "Create Pass" button you can see an
option menu containing all the known pass classes. Another easy way to get a list of pass classes
is with this MEL command:

 rmanGetPassClasses;
 // Result: Custom DeepShadow EnvCube EnvMap EnvNx EnvNy EnvNz EnvPx
 EnvPy EnvPz EnvRender Final MakeGlobalDiffuse2d MakeGlobalDiffuse3d
 Reference ReferenceImage Reflection RenderGlobalDiffuse2d
 RenderGlobalDiffuse3d SSDiffuse SSMakeBrickmap SSRender Shadow TxMake //

Pass Class Description

Custom
A basic pass that's mostly empty of settings. You'd make it into
something by adding extra settings.

DeepShadow Renders a deep shadow.

EnvCube Makes an environment map from six input images.

EnvMap Makes an environment map from one lat-long input image.

EnvNx A subpass of EnvRender, renders a view down the negative x axis.

EnvNy A subpass of EnvRender, renders a view down the negative y axis.

EnvNz A subpass of EnvRender, renders a view down the negative z axis.

EnvPx A subpass of EnvRender, renders a view down the positive x axis.

EnvPy A subpass of EnvRender, renders a view down the positive y axis.

EnvPz A subpass of EnvRender, renders a view down the positive z axis.

EnvRender
Renders six images, one down each axis, and makes an environment
map out of them.

Final A final beauty render.

MakeGlobalDiffuse2d
Generates a texture map from 2d data global illumination data. Used for
baking global illumination data.

MakeGlobalDiffuse3d
Generates a brick map from point cloud data. used for baking global
illumination data.

Reference Makes a texture map out of a ReferenceImage.

ReferenceImage
Subpass of Reference which turns this image rendered by this pass into a
texture map.

Reflection

RenderGlobalDiffuse2d
A subpass of MakeGlobalDiffuse2d which takes the global illumination
data rendered by this pass and makes it into a texture map.

RenderGlobalDiffuse3d
A subpass of MakeGlobalDiffuse3d which takes the 3d point cloud data
rendered by this pass and makes it into a brick map.

SSDiffuse
A subpass of SSMakeBrickmap, this pass filters the point cloud generated
by SSRender.

SSMakeBrickmap
This pass converts the point cloud generated by SSDiffuse into a brick
map.

SSRender This pass generates a point cloud containing subsurface scattering data.

Shadow Renders a shadow map.

TxMake Converts an input image file into a pixar texture

(top)

Instantiating passes
Once you know which class of pass you're interested in, instantiating it in Maya is as simple as
typing the following MEL command.

Its definition looks like this:

 global proc string rmanCreatePass(string $passclass)

And here's an example:

 rmanCreatePass Shadow;
 // Result: rmanShadowPass //

Once you've created a pass you can always find it again by looking under the Passes tab of the
RenderMan Settings.

(top)

Adding an secondary output to a pass
Here's the command you can use to add an extra output to a pass. Note, passes are normally
instantiated with at least one output, so adding outputs is only necessary if you want extra
outputs. This command creates an output node and wires it into the pass node.

 global proc string rmanAddOutput(string $passnode, string $channels)

The $channels parameter refers to the name of the output channel you're interested in.

Examples:

This causes a "specular" output to be added to all final passes.

 rmanAddOutput rmanFinalGlobals specular;
 // Result: rmanFinalOutput1 //

This adds an output containting surface normals to a specific render pass.

 rmanAddOutput rmanFinalPass N;
 // Result: rmanFinalOutput2 //

It's possible to put more than one channel into an output by separating channel names with
commas. For example, this will generate an output containing u and v data.

 rmanAddOutput rmanFinalPass "u,v";
 // Result: rmanFinalOutput3 //

(top)

Listing known channels
There's a command called rmanGetChannelClasses which will return a string array of the channels
which are understood by the rmanAddOutput command.

Example

 rmanGetChannelClasses;
 // Result: Ci Cs N Ng Oi Os P SSAlbedo SSArea SSDMFP SSRadiance
 ambient diffuse environmentdir globaldiffuse incandescence irradiance
 occlusion reflection refraction s shadow specular subsurface t u v
 velocity //

(top)

How to get a list of a pass's outputs
To get a list of the output nodes of a pass, use this command:

 global proc string[] rmanGetOutputs(string $passnode)

Example:

 rmanGetOutputs rmanFinalGlobals;
 // Result: rmanFinalOutputGlobals0 rmanFinalOutput1 //

(top)

Deleting a pass's extra outputs
You can get rid of a pass's extra outputs with this command:

 global proc rmanDeleteOutput(string $passnode, int $idx)

This command takes an index, where "1" is the primary output, which can't be deleted. So the
index you supply should be greater than 1.

You can get also delete extra outputs by simply deleting a pass's output nodes (which are wired
in to the pass).

Example:

 delete rmanFinalOutput1;

(top)

Refreshing the Attribute Editor after adding settings to a node
To cause the Attribute Editor's Extra RenderMan Attributes section to update, use this command:

 rmanUpdateAE

(top)

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

RenderMan Attributes

 The Anatomy of a RenderMan attribute
 How to figure out the name of an attribute
 Which attributes might you want to add to a node?
 How to add an attribute to a node
 How to add bunches of attributes to nodes
 How to delete attributes
 How to set attribute values
 How to set Render Global values

The Anatomy of a RenderMan attribute
All RenderMan attributes are prefixed with "rman__" (that's two underscores), and all RenderMan
attributes follow this naming convention:

rman__setting-type__namespace_setting-name

But luckily, you don't need to remember that. There are ways to query the name of a setting
which will be described in the next section.

Setting types include:

toropt

Translator options. These settings are used in the process of translating a
maya scene. They apply across an entire rendering job.

torattr

Translator attributes. These settings are also used in the process of translating
a maya scene. They can vary between passes, but they don't have to. For
example, it's possible to render multiple passes for which only some have
motionBlur enabled.

riopt

RenderMan Options are settings that affect the rendering of an entire image.
The names of some riopts and riattrs may require a namespace.

riattr

RenderMan Attributes are settings that are part of the graphics state, and
unlike Options can be associated with individual primitives.

param

Params can refer to either shader parameters or command parameters. In the
case of shading parameters a simpler naming convention is followed:
rman__param-name. Command parameters follow the same convention as
other setting types.

(top)

How to figure out the name of an attribute
There are a couple ways you can find out the name of an attribute. The easiest is to select the
node you want to add an attribute to, then open the RenderMan Attributes window (Attributes-
>RenderMan->Manage Attributes...) The window lists all the attributes that you can add to the
selected node. These are listed as labels, because they're more readable that way. When you
click on one of the labels, the corresponding name of the attribute appears in the description field
at the bottom of the window. You can jot it down for future use.

Another way to find out the name of an attribute is to look in the DeclarationTable in
RenderMan_for_Maya.ini. It lists all the known attributes, but their names aren't quite in the
format you need. Here's are a couple example declarations:

 declare riattr {float ShadingRate} {
 label "Shading Rate"
 range {0 100 0.1}
 subtype slider
 description "Values from 5 to 100 allow for faster
 renders, while a value of 1 is high quality and slower."
 }
 declare riattr {int trace:maxspeculardepth} {
 label "Max Specular Depth"
 subtype slider
 range {0 10 1}
 description "Number of bounces for reflections and
 refractions. Value of 1 or 2 is sufficient unless you
 need multi bounce effects."
 }

The piece of this declaration that you can use to find out the corresonding
attribute name in maya is the name of the setting -- the portion after the data
type. In these two examples that's "ShadingRate" and "trace:maxspeculardepth".
Note the latter has what's called a namespace, and the former doesn't. That's
nothing you need to be particularly conscious of, just know that it takes part in
the attribute name. You can pass the name of the setting to a MEL script called:

 global proc string rmanGetAttrName(string $declname)

For example:

 rmanGetAttrName "ShadingRate";
 // Result: rman__riattr___ShadingRate //
 rmanGetAttrName "trace:maxspeculardepth";

 // Result: rman__riattr__trace_maxspeculardepth //

(top)

Which attributes might you want to add to a node?
To get a list of the attributes you might want to add to a node, try this command:

 global proc string[] rmanGetOptionalAttrs(string $node)

Example:

 rmanGetOptionalAttrs nurbsSphereShape1;
 // Result: rman__riattr___ShadingRate rman__riattr___SmoothShade
 rman__riattr___MatteObject rman__riattr___DoubleSided
 rman__riattr___ReverseOrientation rman__riattr___MotionFactor
 rman__riattr__cull_backfacing rman__riattr__cull_hidden
 rman__riattr__derivatives_centered rman__riattr__derivatives_extrapolate
 rman__riattr__dice_binary rman__riattr__dice_hair
 rman__riattr__dice_rasterorient rman__riattr__grouping_membership
 rman__riattr__identifier_name rman__riattr__identifier_objectid
 rman__riattr__sides_backfacetolerance rman__riattr__sides_doubleshaded
 rman__riattr__stitch_enable rman__riattr__stitch_newgroup
 rman__riattr__trace_bias rman__riattr__trace_displacements
 rman__riattr__trace_maxdiffusedepth rman__riattr__trace_maxspeculardepth
 rman__riattr__trace_samplemotion rman__riattr__visibility_camera
 rman__riattr__visibility_specular rman__riattr__visibility_diffuse
 rman__riattr__visibility_transmission rman__riattr__visibility_midpoint
 rman__riattr__visibility_photon rman__torattr___outputSurfaceShaders
 rman__torattr___outputDisplacementShaders rman__torattr___outputLightShaders
 rman__torattr___outputVolumeShaders rman__torattr___subdivScheme //

(top)

How to add an attribute to a node
Now that you know how to figure out the name of an attribute, the recommended way of adding
it to a node is with a MEL script called "rmanAddAttr". Here's its definition:

 global proc rmanAddAttr(string $node, string $attr, string $val)

It takes three arguments, the node name, the attribute name, and the default value. RFM will
figure out the appropriate type of attribute to add to the maya node, and will convert the value
string to the expected type. The value can be an empty string if you want RFM to use its own
default for the setting.

Some examples:

 rmanAddAttr nurbsSphereShape1 `rmanGetAttrName ShadingRate` "";
 rmanAddAttr nurbsSphereShape1 `rmanGetAttrName "trace:maxspeculardepth"` "4";

(top)

How to add bunches of attributes to nodes
The selection sensitive menu entries which appear in the Attribute Editor under the Attributes-
>RenderMan menu usually add more than one attribute. And some of them, like "Add Subsurface
Scattering", even do more complex things like creating a new network of pass nodes. It might be
handy to invoke these entries via MEL rather than from the menu. Here's how you can do that.

Note, it's also possible for you to add menu entries to the Attributes->RenderMan menu. These
are defined toward the end of RenderMan_for_Maya.ini.

The command definition is:

 global proc rmanExecAEMenuCmd(string $node, string $menuItemLabel)

Here's an example which adds subsurface scattering to a material node:

 rmanExecAEMenuCmd blinn1 "Add Subsurface Scattering";

(top)

How to delete attributes
There's nothing special you need to know about deleting attributes. It's done in the same way as
deleteing other maya attributes, with the deleteAttr command.

Example:

 deleteAttr nurbsSphereShape1.rman__riattr___ShadingRate

(top)

How to set attribute values
If you know the name of the node and attribute, you can use maya's setAttr command. RFM also
provides a command that might make setting attributes a little easier in the respect that you
don't need to know the data type of the attribute, and the value can be supplied as a string. Feel
free to use whichever you prefer. This is its definition:

 global proc rmanSetAttr(string $node, string $attr, string $val)

And some examples:

 rmanSetAttr nurbsSphereShape1 rman__riattr___ShadingRate 5;
 setAttr nurbsSphereShape1.rman__riattr___ShadingRate 5;

 rmanSetAttr renderManGlobals rman__riopt___PixelSamples "5 5";
 setAttr renderManGlobals.rman__riopt___PixelSamples 5 5;

 rmanSetAttr renderManGlobals rman__GDScheme occlusion;
 setAttr -type "string" renderManGlobals.rman__GDSchemeocclusion;

(top)

How to set Render Global values

The render globals nodes may not exist in your maya scene; they're typicaly created when the
Render Globals window is raised. This command can be used to create them:

 rmanCreateGlobals;

This command creates an environment light:

 rmanCreateEnvLight;

Render globals can be set like other attributes with the rmanSetAttr command; the trick is
knowing which attribute each render global corresponds to. Here's a table...

Render
Global

node attribute type values

Common

Image File
Output

File Name
Prefix

defaultRenderGlobals imageFilePrefix

Frame/
Animation Ext

rmanFinalGlobals
rman__torattr___passNameFormat
rman__torattr___passExtFormat

Image Format rmanFinalOutputGlobals0 rman__riopt__Display_type

Start Frame defaultRenderGlobals startFrame

End Frame defaultRenderGlobals endFrame

By Frame defaultRenderGlobals byFrameStep

Frame
Padding

defaultRenderGlobals extensionPadding

Renderable
Objects

defaultRenderGlobals renderAll int
0
1

Camera camera node renderable

RGB Channel
(Color)

camera node image

Alpha
Channel
(Mask)

camera node mask

Depth
Channel (Z
Depth)

camera node depth

Custom
Extension

Use Custom
Extension

defaultRenderGlobals outFormatControl

Renumber
Frames

Renumber
Frames Using

renderManGlobals rman__toropt___renumber

Start Frame renderManGlobals rman__toropt___renumberStart

By Frame renderManGlobals rman__toropt___renumberBy

Resolution

Maintain
Width/Height
Ratio

defaultRenderGlobals aspect

Width rmanFinalGlobals rman__riopt__Format_resolution0

Height renderManGlobals rman__riopt__Format_resolution1

Pixel Aspect
Ratio

renderManGlobals rman__riopt__Format_pixelaspectratio

Enable
Default Light

defaultRenderGlobals enableDefaultLight

Pre Render
MEL

rmanFinalGlobals rman__torattr___preRenderScript

Post Render
MEL

rmanFinalGlobals rman__torattr___postRenderScript

Quality

Shading Rate renderManGlobals rman__riattr___ShadingRate float

Pixel Samples renderManGlobals rman__riopt___PixelSamples
float
[2]

Filter rmanFinalOutputGlobals0 rman__riopt_Display_filter string

box
triangle
catmull-rom
sinc
gaussian
mitchell
seperable-
catmull-rom
blackman-
harris

Filter Size rmanFinalOutputGlobals0 rman__riopt_Display_filterwidth
float
[2]

Features

Motion Blur

Motion Blur renderManGlobals rman__torattr___motionBlur int
0
1

Camera Blur renderManGlobals rman__torattr___cameraBlur int
0
1

Shutter Angle renderManGlobals rman__torattr___shutterAngle float

Shutter
Timing

renderManGlobals rman__toropt___shutterTiming string
frameOpen
frameCenter
frameClose

Motion Blur
Type

renderManGlobals rman__toropt___motionBlurType string
frame
subframe

Ray Traced
Motion Blur

renderManGlobals rman__riattr__trace_samplemotion int
0
1

Ray Tracing

Ray Tracing renderManGlobals rman__torattr___rayTracing int
0
1

Trace Bias renderManGlobals rman__riattr__trace_bias float

Max Ray
Depth

renderManGlobals rman__riopt__trace_maxdepth int

Max Specular
Depth

renderManGlobals rman__riattr__trace_maxspeculardepth int

Max Diffuse
Depth

renderManGlobals rman__riattr__trace_maxdiffusedepth int

Environment
Light

Environment
Image

RenderManEnvLightShape1 rman__EnvMap string
occlusion
irradiance

Environment
Color

RenderManEnvLightShape1 rman__EnvColor
float
[3]

Intensity RenderManEnvLightShape1 rman__EnvStrength float

Emit Specular RenderManEnvLightShape1 rman__EnvEmitSpecular int
0
1

Emit Diffuse RenderManEnvLightShape1 rman__EnvEmitDiffuse int
0
1

Primary
Visibility

RenderManEnvLightShape1 rman__LightPrimaryVisibility int
0
1

Shadowing RenderManEnvLightShape1 rman__EnvGIScheme string
none
occlusion
colorbleeding

Shadow Bias RenderManEnvLightShape1 rman__EnvShadowBias float

Shadow Gain RenderManEnvLightShape1 rman__EnvShadowGain float

Occlusion
Color

RenderManEnvLightShape1 rman__EnvOcclusionColor
float
[3]

Sampling
Mode

RenderManEnvLightShape1 rman__EnvMapScheme string
filtered
sampled
baked

Samples RenderManEnvLightShape1 rman__EnvSamples float

Max Variation RenderManEnvLightShape1 rman__EnvGIMaxVariation float

Diffuse
Softness

RenderManEnvLightShape1 rman__EnvGIHemisphere float

Max Dist RenderManEnvLightShape1 rman__EnvGIMaxDist float

Subset RenderManEnvLightShape1 rman__EnvGISubset string

Color Correct RenderManEnvLightShape1 rman__EnvColorCorrect int
0
1

Saturation RenderManEnvLightShape1 rman__EnvColorSaturation float

Bias RenderManEnvLightShape1 rman__EnvColorBias
float
[3]

Gain RenderManEnvLightShape1 rman__EnvColorGain
float
[3]

Bake RenderManEnvLightShape1 rman__GDMap string

Passes

Enable
Render Layers

renderManGlobals rman__toropt___enableRenderLayers int
0
1

DeepShadow
Globals

Phase rmanDeepShadowGlobals rman__torattr___phase

Resulotion rmanDeepShadowGlobals rman__riopt__Format_resolution int[2]

Shading Rate rmanDeepShadowGlobals rman__riattr___ShadingRate float

Pixel Samples rmanDeepShadowGlobals rman__riopt___PixelSamples
float
[2]

Motion Blur rmanDeepShadowGlobals rman__torattr___motionBlur int
0
1

Ray Tracing rmanDeepShadowGlobals rman__torattr___rayTracing int
0
1

Expand
Surface
Shaders

rmanDeepShadowGlobals rman__torattr___outputSurfaceShaders int
0
1

Expand
Displacement
Shaders

rmanDeepShadowGlobals rman__torattr___outputDisplacementShaders int
0
1

Expand Light
Shaders

rmanDeepShadowGlobals rman__torattr___outputLightShaders int
0
1

Expand
Volume
Shaders

rmanDeepShadowGlobals rman__torattr___outputVolumeShaders int
0
1

Final Globals

Image Format rmanFinalOutputGlobals0 rman__riopt__Display_type string

Channels rmanFinalOutputGlobals0 rman__riopt__Display_mode string

Filter rmanFinalOutputGlobals0 rman__riopt__Display_filter string

Filter Size rmanFinalOutputGlobals0 rman__riopt__Display_filterwidth
float
[2]

Exposure rmanFinalOutputGlobals0 rman__riopt__Display_exposure
float
[2]

Shadow
Globals

Phase rmanShadowGlobals rman__torattr___phase string

/Job/
Preflight/
Maps/
Shadow
/Job/Frames/
Maps/
Shadow

Resulotion rmanShadowGlobals rman__riopt__Format_resolution int[2]

Shading Rate rmanShadowGlobals rman__riattr___ShadingRate float

Pixel Samples rmanShadowGlobals rman__riopt___PixelSamples
float
[2]

Ray Tracing rmanShadowGlobals rman__torattr___rayTracing int
0
1

Default
Surface
Shaders

rmanShadowGlobals rman__torattr___defaultSurfaceShader string

Depth Filter rmanShadowGlobals rman__riopt__Hider_depthfilter string

Expand
Displacement
Shaders

rmanShadowGlobals rman__torattr___outputDisplacementShaders int
0
1

Expand Light
Shaders

rmanShadowGlobals rman__torattr___outputLightShaders int
0
1

Expand
Volume
Shaders

rmanShadowGlobals rman__torattr___outputVolumeShaders int
0
1

Depth Filter rmanShadowGlobals rman__riopt__Hider_depthfilter string

min
max
average
midpoint

Advanced

Render
Options

Output
Statistics

renderManGlobals rman__torattr___outputStatistics int

Bucket Size renderManGlobals rman__riopt__limits_bucketsize int[2]

Grid Size renderManGlobals rman__riopt__limits_gridsize int

Extreme
Displacement

renderManGlobals rman__riopt__limits_extremedisplacement int

Z Threshold renderManGlobals rman__riopt__limits_zthreshold
float
[3]

O Threshold renderManGlobals rman__riopt__limits_othreshold
float
[3]

Volume
Shading Rate

renderManGlobals rman__riopt__limits_vprelativeshadingrate float

Reference
Frame

renderManGlobals rman__torattr___referenceFrame int

Output
Directories

Final Images renderManGlobals rman__toropt___imageOutputLoc string

Texture Cache renderManGlobals rman__toropt___textureOutputLoc string

Shaders renderManGlobals rman__toropt___shaderOutputLoc string

Render Data renderManGlobals rman__toropt___renderDataOutputLoc string

Cleanup

Job Cleanup renderManGlobals rman__toropt___jobCleanupPattern string
None
Shadows
All

Frame
Cleanup

renderManGlobals rman__toropt___frameCleanupPattern string
None
Shadows
All

Another place to look to figure out attribute names is in the mouse-over tooltip for
each control in the Render Globals window.

Prev | Next

RenderMan for Maya Pro

RenderMan Studio includes a �Pro� version of the RenderMan for Maya plugin. This enhanced plugin introduces
support for advanced rendering features, unleashing the full power of RenderMan Pro Server while maintaining
the ease of use and seamless integration of RenderMan for Maya. Follow the links below or in the navigation at
left to learn more about RenderMan for Maya's �Pro� features.

6.1 RfM and RIB
6.2 RfM and RSL
6.3 Ri for MEL

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

RfM Pro, RIB, and You

These features are supported by the RenderMan for Maya �Pro� plugin in RenderMan Studio and are
not available with the regular RenderMan for Maya plugin.

Introduction
Spooling RIB
Exporting RIB
Command Line RIB Options
More Information

Introduction

Perhaps the biggest difference in RenderMan for Maya �Pro� in RenderMan Studio is the addition of support for
RIB, bringing together the simplicity of the RfM workflow with the flexibility and power of a RIB-based
pipeline. In addition to basic ribgen (fully archived for efficiency, by the way), there is support for RIB boxes
using per-node MEL commands (including Ri commands via MEL), �lazy� ribgen, and dynamic RIB archives,
users can manually export RIB archives, and there is a new RIB option for Maya command line renders,
Render -r rib, which opens still more options for distributed renders. Not to mention, RIB can be generated
for selected geometry, for a given render layer, for an implicit passs of a given camera or light, for an explicit
pass, or for a class of passes. How cool is that?

Spooling RIB
Spooling RIB is just about the easiest thing you can do. When you've selected RenderMan as your renderer in
Maya, the Batch Render options menu offers you a simple interface with Alfred, the work distribution software

included with RenderMan Studio. Once you select �Alfred Spool� you can do immediate, deferred, or remote RIB
generation and select netrender (with immediate ribgen) or prman (with deferred or remote ribgen) via
Alfred and RenderMan Pro Server. You can also choose remote or local Maya Batch renders via RenderMan for
Maya.

Exporting RIB

If spooling RIB is �just about� the easiest thing you can do, exporting RIB pretty much is the easiest thing you
can do. It's all handled simply through Maya's Export function, and you can export RIB archives of your entire
scene or any given selection.

To export your RIB archive:

1. Go to File -> Export All/Selection❭ and click on the Options button.

2. Select �RIB Archive� from the dropdown list. You will be presented with File Type Specific Options to
choose from, as seen in the image below❭

file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/alfred/index.html

Choose your options wisely. Note that you can choose to export (or not) lights and shaders, mutliple or
single frames, and you can apply gzip compression to your RIB archive (quite handy indeed).

3. Click the Export button. Make sure you browse to a convenient location to use to save your exported
RIB archives.

In addition, you also generate RIB via a simple MEL command: rman genrib. Boom! RIB generated.

Command Line RIB Options
Outside of the Maya UI, you still have a world of options for generating RIB from your Maya scene files. Using
Maya's Render command via a command prompt or terminal window. Users familiar with using Render via the
command line will recognize the �-r� option � it is used to select a particular renderer, such as the Maya software
renderer (-r sw), or RenderMan (-r rman). Now you can render directly to RIB using the -r rib option:

 Render -r rib scene.ma

Here is a list of additional options supported with -r rib:

● All purpose flags:

-setAttr string string

This flag can be used to set any of the global attributes listed in RenderMan_for_Maya.ini. It takes
a name value pair. Attribute values which have multiple data elements should be surrounded by
quotes. The flag can be used multiple times. Example:
Render -r rman -setAttr ShadingRate 5 -setAttr PixelSamples "3 3" -setAttr

motionBlur 1 -setAttr Format:resolution "320 240" filename

-setPref string string

This flag can be used to set any of the preferences listed in RenderMan_for_Maya.ini. It takes a
name value pair. Attribute values that have multiple data elements should be surrounded by
quotes. The flag can be used multiple times. For example:

Render -r rman -setPref BatchCompileMode zealous filename

● General purpose flags:

-rd path

Directory in which to store image files

-fnc string

File Name Convention:

name, name.ext, name.#.ext, name.ext.# name.#, name#.ext, name_#.ext

As a shortcut, numbers 1, 2, ❭ can be used.

-im filename

Image file output name
-of string

File format of output images: Alias, Cineon, MayaIFF, OpenEXR, SGI8, SGI16, SoftImage, Targa,
Tiff8, Tiff16, Tiff32, Iceman

● Frame numbering options:

-s float

Starting frame for a sequence

-e float

End frame for a sequence

-b float

By frame/step for a sequence

-pad int

Number of digits in the frame number included in the output image file name

-rfs int

The initial (renumbered) frame number for the first frame when rendering

-rfb int

The step by which frames are renumbered (used in conjunction with -rfs).

● Camera options:

-cam name

The name of the camera from which you are rendering

-rgb boolean

Enable/disable RGB output

-alpha boolean

Enable/disable Alpha output

-depth boolean

Enable/disable Depth output

-iip

Disable all image planes before rendering

-res int int

Specify the resolution (X Y) of the rendered image

-crop float float float float

Specify a crop window for the rendered image

● Render Layers:

-rl boolean|name(s)

Render each listed layer separately

● MEL callbacks:
-pre string

MEL code executed before each frame

-post string

MEL code executed after each frame

�❍ MEL callbacks for Maya 7.0

-preRender string

MEL code executed before rendering

-postRender string

MEL code executed after rendering

-preLayer string

MEL code executed before each render layer

-postLayer string

MEL code executed after each render layer

-preFrame string

MEL code executed before each frame
-postFrame string

MEL code executed after each frame

● Bake Options:

-bake int

■ 0: Don't bake, but do regular rendering

■ 1: Bake texture maps

■ 2: Bake texture maps and do regular rendering

-bakeChannels string

Comma delimited list of one or more channels: _ambient,_diffuse,_diffuse_noshadow,
_incandescence,_indirect,_indirectdiffuse, _irradiance,_occlusion,_reflection,_refraction, _shadow,
_specular,_subsurface,_surfacecolor, _translucence

-bakeResolution int int

Set X Y resolution of baked maps

-bakeCamera string

Camera to use while baking

-bakeFileFormat string

File format of output images: Alias, Cineon, It, MayaIFF, OpenEXR, SGI8, SGI16, SoftImage,
Targa, Tiff8, Tiff16, Tiff32

-bakeFileDepth string

Depth of output images: byte, short, float

● Spool Options:

-spool string

 "mayabatch local"
 "mayabatch remote"
 "immediate rib, local render"
 "deferred rib, remote render"
 "remote rib, remote render"

-alfredui

Launch Alfred with its User Interface

-chunkSize

-chunkSize sets the �Frames Per Server.� This option is only applicable when used in conjunction
with the -spool option.

● Other:

-rep boolean

Do not replace the rendered image if it already exists
-n int

Number of processors to use. 0 indicates use all available.

-compile boolean

Forces compilation of all shaders, even if they already exist.

● Remember to place a space between option flags and their arguments.

● Any boolean flag will take the following values as TRUE: on, yes, true, or 1.

● Any boolean flag will take the following values as FALSE: off, no, false, or 0.

Additionally, a complete list of the options can also be seen by running the Render -r rman -h
command.

More Information
For more information about RIB in general, it's not a bad idea to check out the RenderMan Interface
documentation in the RenderMan Manual.

For more information about spooling renders via Alfred, please consult the Alfred documentation.

For a tutorial on some simple RIB archiving, check out the Dynamic Read Archives tutorial.

file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/rman/prman_technical_rendering/users_guide/index.html
file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/alfred/index.html
file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/Recipes_and_Tutorials/Dynamic_Read_Archives.html

Prev | Next

Advanced Usage of RSL in RfM Pro

These features are supported by the RenderMan for Maya �Pro� plugin in RenderMan Studio and are
not available with the regular RenderMan for Maya plugin.

RenderMan for Maya has always offered support for using the RenderMan Shading Language, to a certain
degree. Hand-written, compiled shaders can be imported as a RenderMan Shader node in Maya. RenderMan
for Maya Pro introduces a new way to access the awesome power of RSL: RSLFunctionNodes.

RSLFunctionNodes appear to the enduser as plugin Maya nodes that can be "wired" into standard Maya
shading networks for use with RfM. They are radically simpler to create than a standard Maya plugin node
because RfM handles all the details associated with registering and populating Maya nodes with attributes.
RSLFunctionNodes are described in a manner patterned after Slim Templates. There is an association between
each RSLFunctIonNode type and RenderMan Shading Language (RSL) functions. End-users can trivially extend
the collection of RSLFunctionNodes and even override those provided by Pixar.

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/slim/Templates_Overview.html
http://www.pixar.com/

Prev | Next

Ri for MEL

These features are supported by the RenderMan for Maya �Pro� plugin in RenderMan Studio and are
not available with the regular RenderMan for Maya plugin.

RenderMan for Maya has superb support for RenderMan Attribute and Option control based on Maya
attributes. This �data-centric� support is fundamental to Maya's operation and offers advantages for file
reference parameter animation and general orthogonality with Maya tools.

There are times where procedural control of RenderMan state is desirable. We offer this capability in RfM 2 Pro
through a MEL binding to RenderMan Interface procedures. Whether rendering directly (internally) or to
produce RIB, these new commands can be used to tailor the Ri stream via mel procedures. New torattrs are
supported to provide hooks for custom mel procedures. These can be assigned to shape, light and transform
nodes and will be executed when RfM is rendering.

defaultRiOptionsScript

Runs during rendering/ribgen and provides a hook to override rendering options via script control.

defaultRiAttributesScript

Runs during rendering/ribgen and provides a hook to override default rendering attributes via script
control

transformBeginScript

Runs during rendering/ribgen at each transform nodeimmediately following RiAttributeBegin.

postTransformScript

Runs during rendering/ribgen at each transform node immediately following the setup of the
transformation state.

transformEndScript

Runs during rendering/ribgen at each transform nodeimmediately preceeding RiAttributeEnd.

preShapeScript

Runs during rendering/ribgen at each shape node immediatelypreceeding geometry output.

postShapeScript

runs during rendering/ribgen at each shape node immediately following geometry output.

Ri Commands

Syntax
Ri commands fall into two broad syntactic classes: commands with and commands without variable length
parameter lists. Those commands without variable length parameter lists generally accept typed, positional
arguments following the RIB binding conventions. For example, a red color is specified this way:

 RiColor 1.0 0.0 0.0

Since Ri parameter lists are comprised of a heterogeneity of types, we follow the Ri-convention that requires
parameter-type declarations be provided. Modern practice combines the type declaration with the parameter
name to produce an inline declaration.

Inline Declaration Syntax

 "type name" ''value''
 "type[arraylen] name" ''value1'' ... ''valueArrayLen''

Parameterlist Examples

 RiAttribute "identifier" "string name" "myname"
 RiAttribute "visibility" "int camera" 1 "int trace" 0
 RiSurface "mySurfaceShader" "string[2] myFiles" "file one" "file two"
 "float Ks" 1.0 "float[5] myweights" 1 2 3 4 5;

Scope

 RiBegin filename_string
 RiEnd

 RiFrameBegin frame_int
 RiFrameEnd
 RiWorldBegin
 RiWorldEnd
 RiAttributeBegin
 RiAttributeEnd
 RiTransformBegin
 RiTransformEnd

 RiSolidBegin operation_string ("primitive", "intersection", "union", "difference")
 RiSolidEnd
 RiResourceBegin
 RiResourceEnd

Options

 RiOption namespace_string ...parameterlist...

 RiHider hidername_string ...parameterlist...
 -

 RiFormat xres_int yres_int pixelaspectratio_float

 RiPixelSamples xsamples_int ysamples_int

 RiScreenWindow left_float right_float bottom_float top_float

 RiCropWindow xmin_float xmax_float ymin_float ymax_float

 RiProjection projtype_string ...parameterlist...

 RiClipping near_float far_float

 RiDepthOfField fstop_float focallength_float focaldistance_float

 RiShutter min_float max_float
 -

 RiDisplayChannel channeldecl_string ...parameterlist...

 RiDisplay name_string type_string mode_string ...parameterlist...
 -

 RiRelativeDetail relativedetail_float

Attributes

 RiAttribute namespace_string ...parameterlist...

 RiColor red_float green_float blue_float

 RiOpacity red_float green_float blue_float
 -

 RiSurface shadername_string ...parameterlist..

 RiDisplacement shadername_string ...parameterlist..

 RiAtmosphere shadername_string ...parameterlist..

 RiInterior shadername_string ...parameterlist..

 RiExterior shadername_string ...parameterlist..
 -

 RiLightSource shadername_string lighthandle_string ...parameterlist...

 RiIlluminate lighthandle_string onoff_bool
 -

 RiShadingRate size_float

 RiGeometricApproximation type_string value_float
 -

 RiShadingInterpolation interp_string (smooth, constant)

 RiMatte onoff_bool
 -

 RiDetail minx maxx miny maxy minz maxy (floats)

 RiDetailRange minvisible lowertransition uppertransition maxvisible (floats)
 -

 RiSides sides_int (1 or 2)

 RiOrientation orientation_string (lh, rh, inside, outside)
 RiReverseOrientation
 -

 RiResource handle_string type_string ...parameterlist...

Transform

 RiIdentity

 RiRotate angle dx dy dz (floats)

 RiScale sx sy sz (floats)

 RiSkew angle dx1 dy1 dz1 dx2 dy2 dz2 (floats)

 RiTranslate x y z (floats)

 RiCoordinateSystem coordsysname_string

 RiScopedCoordinateSystem coordsysname_string

Geometry

 RiSphere radius zmin zmax angle ...parameterlist...
 -

 RiProcedural (work only with RIB out)

 RiProcedural "DelayedReadArchive" filename xmin xmax ymin ymax zmin zmax

 RiProcedural "DynamicLoad" dsoname xmin xmax ymin ymax zmin zmax ...paramlist...

Prev | Next

Prev | Next

RenderMan for Maya Plugins
7.1 Ri Filters
7.2 RiProcedurals

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

Ri Filters (Rifs) in RfM Pro

These features are supported by the RenderMan for Maya �Pro� plugin in RenderMan Studio and are
not available with the regular RenderMan for Maya plugin.

RenderMan for Maya �Pro�, as part of RenderMan Studio, has a new User Interface for accessing Ri Filters (Rifs),
under the Advanced tab. The UI displays a list of Rifs and allows you to add, delete, or rearrange the list. Rifs
are applied globally to all rendering passes, but there's a checkbox for globally enabling or disabling Rifs.

Rifs are represented as RenderMan settings nodes, much like displays and passes. When you add a Rif, a new
node is created and wired into a message array attribute on the renderManGlobals node. The order of
connections to the array indicates the order in which Rifs will be applied, and the connections are taken care
of via the UI.

An example is forthcoming.

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

http://www.pixar.com/

Prev | Next

RiProcedurals in RfM Pro

These features are supported by the RenderMan for Maya �Pro� plugin in RenderMan Studio and are
not available with the regular RenderMan for Maya plugin.

RenderMan for Maya �Pro� supports procedurals simply by creating a MEL script attribute either on a shared
geometric attributes node or directly on a transform or shape node.

You can find simple examples of using procedurals with RenderMan for Maya in the Tutorials section of the
documentation. Please see the tutorials for Dynamic Read Archives and Custom Geometry.

Prev | Next

Pixar Animation Studios
Copyright© 2008 Pixar. All rights reserved.
Pixar® and RenderMan® are registered trademarks of Pixar.
All other trademarks are the properties of their respective
holders.

file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/Recipes_and_Tutorials/Dynamic_Read_Archives.html
file:///K:/DISE�O%20Y%20PROGRAMACI�N/PIXAR%20RENDERMAN/Renderman%20Studio%201.01%20Server%2013.52/pixar_win32/Docs/RMS_1.0/Recipes_and_Tutorials/Custom_Geometry.html
http://www.pixar.com/

Prev | Next

What is Supported

What is Supported?
Known Limitations

What is Supported?

RenderMan for Maya translates the majority of Maya elements including, but hardly limited to:

CAMERAS
 Cameras (No stereographic rendering)
 ImagePlane
GEOMETRY
 NURBS (True curved surfaces. No tessellation issues)
 Polygons
 Hierarchical Subdivision Surfaces (True curved surfaces. No tessellation issues)
PARTICLES
 Streak
 Multistreak
 Point
 Multipoint
 Sphere
 Cloud
 Sprite
 Blobby Surface
 Particle Instancing
LIGHTS
 Ambient
 Directional
 Point
 Spot
 Area
 Volume
MAYA MATERIALS
 SurfaceShader
 VolumeShader
 DisplacementShader
 Material nodes unsupported by RenderMan for Maya are listed here.
MAYA UNLIMITED
 Fur (Support for majority of attributes, including keyframe animation &
dynamics)
 Hair (Requires Maya Unlimited 6.5 or higher)
 Cloth
 Paint Effects (Partial implementation; Requires Maya 6.5 or higher)

Known Limitations

Unsupported Maya Features

GLOW - Maya glow (and other post-process effects) are not supported.
IPR -Maya's interactive renderer is not supported by RenderMan for Maya.
FLUID EFFECTS -Not supported at this time.

Unsupported Maya Materials
Surface Materials
 Ocean Shader
 Shading Map
Volumetric Materials
 Env Fog
 Fluid Shape
 Volume Shader

2D Textures
 Fluid Texture 2D
 Movie
 Ocean
 PSD File
 Water
3D Textures
 Fluid Texture 3D
Env Textures
 Env Cube
 Env Sky
General Utilities
 Stencil
 Distance Between
 (tbd)
Color Utilities
 (tbd)
Switch Utilities
 baseShadingSwitch
 double

Particle Utilities
 particleColorMapper
 IncandMapper
 TranspMapper
 AgeMapper
 (tbd)

Partially Supported Materials
 particleCloud (work-in-progress)
 cloud (Issues with softedges)
 leather (Close match)
 granite (Close match)
 light fog (Close match, extra sampling features)
 particleSampler (Partial Implementation)
 Env Ball (support for HDR environment probes, eyespace and projection geometry
are broken)

	Local Disk
	Features and Effects Index
	Rendering
	Passes
	Outputs
	Special Camera Effects
	Geometry
	Primitives
	Instanced Geometry
	Particles
	Fur and Hair
	CSG
	Understanding Shaders
	Shaders and RenderMan
	Proceduralism
	Textures
	Bump and Displacement Shaders
	Illumination
	Shadows
	Reflections and Refractions
	Global Illumination
	MEL Scripting
	Passes
	RenderMan Attributes
	RfM Pro
	RfM and RIB
	RfM and RSL
	Ri for MEL
	RfM Plugins
	Ri Filters
	RiProcedurals
	What is Supported

