
YAF(A)RAY
user's guide

Image by StoneAge

About this document:
Document revision 3.
Written by Alvaro Luna Bautista.

INDEX
1. What Yaf(a)Ray is.
2. Yaf(a)Ray Installation notes (Windows).
3. Yaf(a)Ray UI and General workflow.
4. Render Output Window.
5. Objects, Lights and Camera settings.

5.1 Object.
5.2 Lights.

5.2.1 Point and Sphere.
5.2.2 Directional and Sun.
5.2.3 Area.
5.2.4 Spot

5.3 Camera.
5.3.1 Architect
5.3.2 Angular
5.3.3 Orthogonal
5.3.4 Perspective /DOF

6. Material settings.
6.1 Mapping notes.
6.2 Glass
6.3 Glossy
6.4 Coated Glossy
6.5 ShinyDiffuse

7. Render settings.
7.1 Lighting Methods

7.1.1 Bidirectional
7.1.2 Pathtracing
7.1.3 Photon Mapping and Final Gather
7.1.4 Direct Lighting and Ambient Occlusion.

7.2 General Settings.
7.3 Anti Aliasing settings.
7.4 Background Settings.

1 . What Yaf(a)Ray is
Yaf(a)Ray is Yet Another Free Raytracer; nobody knows for sure what the (a) stands for. It is a
raytracing render engine based on a new source code, different than the used for the YafRay 0.0.x
series. Rewriting the source code from scratch was necessary because the old design was exhausted
and did not allow for more changes or additions. There are several conceptual differences to
YafRay 009. As a consequence of these depth changes, renders will completely differ from YafRay
009 ones. You will find additional information about Yaf(a)ray in the link below:

http://wiki.yafray.org/bin/view.pl/UserDoc/YafaRay

YafRay has been an open source project closely related to Blender from the start. For many years it
was the only choice Blender users had apart from Blender Internal. In fact, YafRay 009 and
previous releases of YafRay used an exporter plug-in that was 'hacked' into the official Blender
source code. This plug-in provided a good integration of YafRay in Blender, but on the hand it
shaped a lot its development. There were some YafRay features that did never make the Blender
panels because it meant more contamination of the Blender source code. On the other hand, many
times YafRay development efforts were focused on supporting Blender new features instead of
exploring independent raytracing routes.

Integrating Yaf(a)Ray into Blender like the old YafRay 009 would mean a complete redesign of the
exporter plug-in and adding more 'alien' code to Blender. Besides, at the end of the day YafRay and
Blender are separated F.O.S.S. projects. Taking into account that there exist now other external
render engines for Blender users apart from Yaf(a)Ray, that kind of integration does not make
sense anymore. Ideally, a render API should exist in Blender for equal and seamless integration of
any external engine.

Until that render API arrives, Yaf(a)Ray uses:

1. A python-coded User Interface (UI) to use in a Blender window to configure materials,
lights and render settings and to launch the scene rendering.

2. A separate graphical Render Output Window where Yaf(a)Ray renders are shown and
saved.

Overview of Yaf(a)Ray most important features

http://wiki.yafray.org/bin/view.pl/UserDoc/YafaRay
http://wiki.yafray.org/bin/view.pl/UserDoc/YafaRay
http://wiki.yafray.org/bin/view.pl/UserDoc/YafaRay

2. Yaf(a)Ray installation notes (Windows)
Yaf(a)Ray does not need any Blender special compilation to work, any official release from
blender.org will work for instance. There are two components needed to run Yaf(a)Ray, which are:

1. Yaf(a)Ray binaries. Default installation proposed for Yaf(a)Ray binaries is C:\Program
Files\YafaRay or the equivalent in your respective OS language.

In the same installation process, some Yaf(a)Ray python scripts should be installed in the
Blender scripts folder. The installer will look for it and tell you where it is found.
Alternatively you can point the installer to the Blender executable folder, usually in
C:\Program Files\Blender Foundation\Blender or the equivalent in your respective
language.

2. A separate installer for the Render Output Window libraries. They must be installed in the
Blender executable folder, usually in C:\Program Files\Blender Foundation\Blender or
the equivalent in your respective OS language.

 Note: It is necessary to have Python 2.5 installed to run
Yaf(a)Ray scripts. You can find it here: http://www.python.org/download/

3. Yaf(a)ray UI and general workflow
Once everything is installed, a special entry is added in the Blender Render menu, called YafaRay
Export 0.0.3, which automatically executes the Yaf(a)Ray User Interface (UI) inside a Blender
3DWindows. Split your 3DWindows and click in YafaRay Export 0.0.3

 Note: Here you can learn how to split the Blender 3DWindows:

http://wiki.blender.org/index.php/Manual/PartI/Interface/Window_system

http://wiki.blender.org/index.php/Manual/PartI/Interface/Window_system
http://www.python.org/download/
http://www.python.org/download/
http://www.python.org/download/

The Yaf(a)Ray User Interface (UI) will be shown, which is divided into:

1. Three main sections of settings which are Object/Light/Camera, Material, and Settings.
2. A Help text.

3. Two function buttons which are Refresh view and Render.

• Settings: This section is used to choose a lighting method and to configure render general
parameters, render anti-aliasing and background settings.

• Material: The script takes Blender defined materials and applies them custom Yaf(a)Ray
material properties.

• Object/Light/Camera: The script takes the current Blender selected and active object and
applies it custom Yaf(a)Ray properties, depending on the object selected (camera, light or
object). Lights and camera settings in Yaf(a)Ray UI script replace almost all Blender and
YafRay 0.0.9 settings, except from texturing mapping settings.

• Help: displays a brief help text.

• Refresh View: The User Interface must automatically refresh to show specific settings for
the kind of object selected in the Blender 3DWindows. Use the Refresh button if the UI is
not self refreshed when a new object is selected. A right mouse button click on a empty area
of the User Interface will refresh it too.

• RENDER: Launches the scene rendering and a separate Render Output Window in which
the render progress can be seen. Use the Render Output Window settings to save your
image. Once the render is finished or stopped, the Render Output Window must be closed
before coming back to Blender. Don't forget to save your render.

4. Render Output Window
(to complete as the development of this part progresses, at the moment a few simple buttons)

5. Object, Lights, and Camera settings

5.1 Object
With this feature, objects in the scene can act as area light sources. Arealight is a light type that can
produce soft shadows and its shape can be seen in reflective surfaces. The soft shadows need to be
sampled several times and later interpolated to reduce noise. This type of light takes more time to
render in contrast with point light types such as spot and point.
 First of all, you must select the mesh you want it to act as a light source. Next you must click on
the Object/Light/Camera button. Finally you must activate the Enable Meshlight button. To
change the light color, just click on the rectangle next to 'Meshlight color:' to open a Color Picker.

• Meshlight color rectangle: opens a Color Picker.
• Power: intensity multiplier for meshlight color.
• Double Sided: considers both sides of the mesh as arealight sources.
• Samples: defines the amount of samples taken to simulate the soft shadows. The more

samples, the less noisy the shadows but the longer it will take to render.

5.2 Lights
Lights settings are mostly controlled by the Yaf(a)Ray UI. In Blender, the only actions required are
placing lights and choosing a Blender light type. Arealight size and spot beam parameters are
controlled in Blender panels though. In Yaf(a)Ray , lighting power is controlled by a couple of
buttons (Power and Color) available in the python UI for every light type, therefore Blender
Distance and Energy buttons haven't any effect in Yaf(a)Ray.

Once a light is placed and its type defined in Blender, select it and press Object/Light/Camera
main button. The python UI will automatically change to show specific settings for the type of light
selected.

5.2.1 Point and Sphere

When you create o select a Lamp light in the Blender 3DWindows, the python UI will let you
choose between two options to configure this kind of light, Point and Sphere.

A Point light is a typical omni directional point light source as in Blender Internal with hard
shadows, while a Sphere light is a spherical area light source which can produce soft shadows.

• Light color rectangle: opens a Color Picker.
• Power: intensity multiplier for light color.
• Radius: sets the radius of the Sphere light in Blender units.
• Make light visible: area light gets rendered visibly.
• Samples: defines the amount of samples taken to simulate soft shadows. The more samples,

the less noisy the shadows but the longer it will take to render.

5.2.2 Directional and Sun

When you create o select a Sun light in the Blender 3DWindows, the Yaf(a)Ray UI will let you
choose between two kind of lights to do this kind of job, Directional and Sun.

Directional light is a traditional sun light model which produces parallel rays and hard shadows.

The new Yaf(a)Ray Sun light is a more advanced concept and will help us to get blurred edges in
shadows when the shadow itself gets further from the casting object, as in the real life. The angle
button sets the visible area of the sun. Real Sun is visible in a cone angle of about 0,5º. A bigger
angle mean a bigger sun, as well as softer shadows, which could be interesting for dawn or sunset
scenes and for a sunlight filtered by an overcast sky.

• Light color rectangle: opens a Color Picker.
• Power: intensity multiplier for light color.

• Infinite: if enabled, area covered by the directional light is infinite. If disabled, light fills a
semi-infinite cylinder.

• Radius: if infinite is disabled, radius of the semi-infinite cylinder for directional light.

• Angle: visible size of the sun light. Affects shadows.
• Samples: it defines the amount of samples taken to simulate the soft shadows, when Direct

Lighting or Pathtracing is used. The more samples, the less noisy the shadows but the
longer it will take to render.

5.2.3 Area

Arealight is a area light type that can produce soft shadows and its shape can be seen in surfaces
with reflective properties. The soft shadows need to be sampled several times and later interpolated
to reduce noise. This type of light takes more time to be computed in contrast with point light types
such as spot and point.

In regard to Arealight, the most important change is the Make light visible button and the general
workflow to get 'visible' arealights in reflective surfaces. In the old workflow, when photons were
enabled, we needed to place 'emit' planes just behind every area light to make arealights 'visible' and
to add lighting power to the scene.

Now, when Make light visible is enabled, a rectangle in the size of the area light is generated, so
that the area light gets rendered visibly. Therefore, the 'emit' plane is no longer needed. More
lighting power is added when Make light visible is on.

When photons is enabled, arealights cast direct light and photons. The Make visible option really
only affects reflections in surfaces.

When Pathtracing is used, the Make light visible option also creates caustics, although there exist
an option to not trace caustics with path tracing as they tend to be extremely noisy ('none' option in
Pathtracing settings, see 5.1.1).

• Light color: opens a Color Picker.
• Power: intensity multiplier for arealight color.

• Make light visible: area light gets rendered visibly.
• Samples: defines the amount of samples taken to simulate the soft shadows, when Direct

Lighting or Pathtracing is used. The more samples, the less noisy the shadows but the
longer it will take to render.

5.2.4 Spot

Spot is a common point light with directional properties. Beam properties are defined in Blender
panels (SpotSi and SpotBl sliders).

5.3 Camera settings
First a camera should be created or exist in your scene. Lens angle must be configured in the
Blender camera panels. Then select the camera and press Object/Light/Camera main button. The
python UI will automatically change to show specific camera settings. There are four camera types
in Yaf(a)Ray: Architect, Angular, Orthogonal and Perspective.

5.3.1 Architect

This camera type works like a Perspective camera type, the only difference is that the vertical
component of the perspective effect is neglected, so scene vertical lines are not convergent. DOF
settings are available for this camera type; they are explained in the 5.3.4 paragraph.

5.3.2 Angular

A camera type useful to produce light probe images. (to complete)

5.3.3 Orthogonal

A camera type that renders a orthographic (perpendicular) projection of the scene, without
perspective effects.

• Scale: Specify the scale of the ortho camera, to control camera zoom.

5.3.4 Perspective

Perspective is the standard camera mode that simulates a lenses photographic camera, with
perspective effects. All settings available for this camera type are used to enable and configure the
depth of field (DOF) effect. DOF is the distance in front of and behind the subject which appears to
be out of focus.

• Bokeh type: controls the shape of out of focus points when rendering with depth of field
enabled (blur disk). This is mostly visible on very out of focus highlights in the image. There

are currently seven types to choose from.
• Bokeh rotation: rotation of the blur disk.
• Aperture: The size of the aperture determines how blurred the out-of-focus objects will be.

A rule of thumb is to keep it between 0.100 and 0.500 (0 disables DOF).
• Bokeh bias: controls the accentuation of the blur disk. Three types available, uniform,

center or edge, with uniform the default.
• DOF distance: set the focal point in which objects will be in focus.

• Obj: Enter the name of the Blender object that should be the focal point.

• Calculate distance: it calculates the distance between the object entered in Obj: and the
camera, and writes this value in the DOF distance button.

The DOF effect depends also on the render anti aliasing settings to get a nice blurred effect. First of
all it is recommended to lower 'AA threshold' a bit, but not set it to totally zero. Setting a high
number of 'AA passes' is also not really going to make all that much difference, the main
smoothness factor that makes the most difference is really the amount of 'AA samples'. A single
pass with a high number of samples may be sufficient.

6. Material settings.
In contrast with the light settings, the UI script just takes Blender list of existing materials and
applies them Yaf(a)Ray custom properties. For instance, in the scene below there is a list of three
materials configured in Blender:

(insert paragraph here about mat preview)
Settings in the Blender/YafRay 'Material' panel are replaced by Yaf(a)Ray UI settings. Ramps
are not supported. Blender Multimaterial (more than one material in an object) is supported.

 There are four material types in Yaf(a)Ray, with many possibilities for each of them to achieve
advanced properties. They are glass, coated_glossy, glossy and shynnydiffusemat. This is a brief
list of what Yaf(a)Ray materials can be useful for:

Glass: glass, water, fake glass.

Glossy: all kind of plastics, clean and polished metal, clean rough metal, car paint, finished wood,
lacquered surfaces, painted surfaces, varnished wood, glaze and organic surfaces, materials with
anisotropic reflections.

Coated_glossy: car paint, lacquered surfaces.

Shnydiffusemat: stone, rusted metal, concrete, fabric, paper, rough wood, curtains, emit surfaces,
perfect mirror, materials with a basic transparency and alpha mapping with shadows, etc.

6.1 Mapping notes.
(this section needs a big overhaul and needs to be much more complete. I have prepared a lot of
stuff to do it)
All the properties configured in the Shaders and Mirror Transp Blender/YafRay 009 panels are
replaced with the Yaf(a)ray UI settings. Only Blender mapping settings from Texture, Map input
and Map to panels (F9) are taken into account.

(insert pic about Blender panels and buttons supported)
Map to texture modulation modes are partially supported. In the image below for instance, the
shinydiffuse material will process only five Blender Map to modulation modes, which are Nor,
Col, Raymir, Alpha, and Translu. In the first case for instance, the Blender Nor mode will affect
bump mapping in Yaf(a)Ray. (to complete)

6.2 Glass
This kind of material can be useful to render realistic glass, water and any kind of transparent
medium with index of refraction. Use this material to get refractive caustics and light reflection
(mirror) depending on the incident angle.

 This material can be also useful to get glass with fake transparent shadows, when caustic rays are
not powerful or uniform enough to lit the scene behind a transparent object.

Absorption is the process by which light is absorbed by a medium, although not all light get
absorbed, some is reflected or refracted instead. The more distance light had to get thought a
medium, the more it gets absorbed. In a glass with different sections, the glass color will get darker
if the section is bigger. By using Absorption we also get tinted caustics, depending on Absorp.
Color.

Filter settings not only defines the color of the refracted light, but it also affects color of the
transparent medium, like Absorption color does.

Use Absorption if you want to get the “absorption” effect (as the object section gets bigger, the
object color gets darker). Use Filter if the absorption effect is not important to you and you want
more control over the refracted color. Filter color also defines color of the transparent shadows
when the Fake Shadows button is enabled.

Not all light tracing methods are optimized to render lighting effects after a refraction event. Path
tracing (without post-caching) is not well suited for such a case. Pathtracing caustics tend to be
very noisy and a very big amount of samples is needed to get a smooth result. To get transparent
shadows in such a material you have got two options: working out a caustic photon map with
enough visual consistency, or activate both the Fake Shadows button in the Material section and
the Transparent Shadows button in the Render section to get fake glass shadows.

• Absorp. color: opens a Color Picker. It defines the color of of the non-absorbed light,
therefore it sets the color of the glass. White disables absorption.

• Absorp. Distance: transmission of light through the material.

• Filter color: opens a Color Picker. It defines the color of the refracted light.
• Mirror color: opens a Color Picker. It defines the color of the reflected light.

• IOR: Light index of refraction, it produces either refraction or reflection, depending on the

Example of the absorption effect with tinted refractive
caustics.

incident angle.

• Transmit Filter: strength of the refracted light when a Filter color is used.
• Dispersion power: strength of the dispersion effect, disabled when it is 0. When Path

tracing is used, noise depends on path tracing samples, the more the samples the lesser the
noise.

• Fake Shadows: When enabled, light rays that get through this object are traced without
refraction index. Use Filter color and Transmit Filter to tint these rays. The Transparent
Shadows button in the Render section must be enabled too for this feature to work.

6.3 Glossy
A glossy reflection means that tiny random bumps on the surface of the material cause the reflection
to be blurry. In fact there is a wide range of materials with such a reflection. Yaf(a)ray glossy
material can be useful for all kind finished surfaces such as plastics, polished metal, car paint,
finished wood, lacquered surfaces, painted surfaces, varnished wood, glaze and organic materials,
etc. Yaf(a)ray glossy reflections have got by default Fresnel effect. Below there is an example of a
glossy reflection.

This material will be useful to get anisotropic reflections too. An anisotropic reflection means that
reflection is not equal in all directions. This kind of reflection happens when a defect in a reflective
surface repeats quite regularly and in the same direction. When Anisotropic is enabled, the
exponent value is divided into a vertical and an horizontal component. If you want to get an
anisotropic reflection, use a different value for each one. As a result the reflection will take an oval
shape. The anisotropic effect can be reinforced by using a suitable bump map. When Anisotropic is
enabled, two new buttons will show up, and the exponent will have no effect. Horizontal and
Vertical components of the exponent depend on UV mapping coordinates.

Example of Glossy reflection

• Diff. color: opens a Color Picker. It defines the color of the diffuse reflection.
• Glossy color: opens a Color Picker. It defines the color of the glossy reflection.

• Diffuse reflection: amount of diffuse reflection (Diffuse color brightness multiplier).
• Glossy reflection: amount of glossy reflection.

• Exponent: Blur of the glossy reflection; the higher the exponent the sharper the reflection.
Use values between 0.5 and 200 for plastics and higher values for metallic surfaces.

• As diffuse: Treat glossy component as diffuse, faster when using photon mapping.
• Anisotropic: Enables anisotropic reflection (disables isotropic Exponent)
• Exponent Horizontal: exponent blur in the U direction (UV mapping coordinates)

• Exponent Vertical: exponent blur in the V direction (UV mapping coordinates)

6.4 Coated Glossy
Coated Glossy is basically a glossy material (see the previous paragraph) with some kind of
reflective coating layer on top. IOR is the setting that controls reflectivity of the coating top layer.

6.5 Shinydiffuse
Shinnydiffuse is a model of diffuse shader without 'viewer' properties (apart from Fresnel). It can
be useful to get:

• Diffuse materials without any specular (glossy) component.
• Perfect mirror reflection without or with Fresnel effect (for reflective caustics).
• Translucency with color filtering and alpha mapping with shadows calculation.
• Transparency with color filtering and alpha mapping with shadows calculation.
• Diffuse Emit surfaces.

For instance, this material can be used for rough stone, rusted metal, concrete, fabric, paper, rough
wood, chrome balls, car paint, curtains, billboards, etc. Shadows calculation from alpha mapping is
supported.

When Mirror strength is higher than 0, a new option appears to enable Fresnel reflection. If
Fresnel is enabled, a new button appears to set an index of refraction (IOR) for the Fresnel
reflection: the higher the index, the higher the reflection. Use this option to get reflective caustics.

• Diffuse color: opens a Color Picker. It defines the color of the diffuse reflection.
• Mirror color: opens a Color Picker. It defines the color of the mirror reflection.
• Diffuse reflection: amount of diffuse reflection (Diffuse color brightness multiplier).
• Mirror strength: amount of mirror reflection (enables Fresnel)
• Transparency: Basic transparency effect without refraction.
• Translucency: Diffuse transmission of light in the shadowed part of the object.
• Transmit filter: amount of tinting of light for Transparency and Translucency.
• Emit: Amount of diffuse light the material emits. If Direct Lighting is used, only surface

properties can be seen. To use it as a lighting source you will have to use path tracing. It
does not emit photons.

• Fresnel: Enables Fresnel Reflection.
• IOR: Index of Refraction for the Fresnel effect, produces reflective caustics.

Example of a mapped transparency with color filtering and
shadows calculation from alpha mapping.

Example of a mapped translucency with color filtering and
shadows calculation from alpha mapping.

Example of reflective caustics using shinydiffuse Fresnel
reflection.

7. Render settings
Render Set can be used to configure as many as five different set of render settings. You can use
this feature to compare rendering performance between different sets. Render sets can be renamed
by using the Name: text button.

7.1 Lighting Methods
There are currently four lighting methods available in Yaf(a)Ray. Bidirectional, Pathtracing and
Photon Mapping perform global illumination (direct light + indirect light), while Direct lighting
only takes into account direct light from emitting sources without indirect light contribution.
Caustic photon mapping and Ambient Occlusion can be rendered when Direct lighting is used.

7.1.1 Bidirectional
 (to complete. In beta stage. Use a high number of AA passes and AA inc. samples and AA
thresold=0 to reduce noises in every pass)

7.1.2 Path Tracing
Path tracing is a relatively old GI biased method in which each ray is recursively traced from the
camera along a path until it reaches a light source. When a light source is found, the light
contribution along the path is calculated back to the camera taking into account surface properties.
Many samples are need to be taken and interpolated for each camera pixel to get a smooth result. A
light source can be either a light, the scene background or both. Scenes with relatively small light
sources and with a high contrast between light sources and its surrounding areas will need more
samples to remove noise. Therefore pathtracing is a GI solution more suited for outdoor scenes
and for daylight indoor scenes with big windows and a regular distribution of light.

Path tracing (without post-caching) is not well suited for caustic effects. Pathtracing caustics tend to
be very noisy and a very big amount of samples is needed to get a smooth result. In Yaf(a)Ray we
have alternative methods to render the caustics component caustics when pathtracing is used:

• Path+Photon: a mix of a caustic photon map and path tracing caustic rays are used to get
caustics.

• Photon: a fast photon map is used to render caustics. Path tracing caustics rays are not
rendered.

• Path: Path tracing caustics rays are rendered.
• None: the caustic component is not rendered.

This is an example about how methods for the caustics component work in pathtracing. In the first
image (upper left), Path is used to get caustics, which are very noisy when a low number of
samples is used (16). In the second render, 512 pathtracing samples are used to improve caustics but
it takes much more time to render (38 minutes). In the third example, photons are used to produce
the caustics component and the render time is the lowest of them all (Cm stands for Caustic
method):

The other components of the global illumination model are rendered as usual. Area light types
(sphere and area) with the Make Light visible option enabled are needed to produce caustics in
pathtracing. More information about the caustic photon map settings can be found in the 5.1.3
Direct Lighting paragraph (they are the same). The other pathtracing settings are:

Comparison between methods used for the
caustic component in pathtracing

• Depth: defines the number of rays bounces in order to find the light sources, the more
bounces the better quality and the less noise but the longer it will take to render.

• Samples: This setting is the equivalent to GI Quality in YafRay 0.0.9, and it defines the
number of samples to take per camera pixel, the more samples the better render quality and
the less noise, but the longer it will take to render as well. A Depth of 3 to 5 and 32-256
samples should do okay for almost every scene. For this and for other 'Samples' settings, it
is a good practice to increase & decrease your samples in base 2 steps (2-4-8-16-32-64... etc)

• Use background: Makes use of the background color or texture as a light source.

• No recursion: only lighting is calculated without reflective or refractive events.

7.1.3 Photon Mapping and Final Gather
Yaf(a)ray settings on photons are more or less the same than in other raytracers. Photon mapping is
a Global Illumination algorithm that calculates the flow of light energy throughout a scene. With
photon mapping, light packets called photons are sent out into the scene from the light sources.
Whenever a photon intersects with a surface, the intersection point, incoming direction, and energy
of the photon are stored in a cache called the photon map.

Once the actual rendering has started, the correct appearance of a surface in a given point is
estimated by examining and interpolating photons in the neighborhood. This is in fact the slowest
part of the algorithm. Diff. Radius defines the radius of this search, while Search defines the
maximum number of photons to mix. Photon mapping is a technique meant to be used in closed or
almost closed environments. HDRI backgrounds can't emit photons.

• Depth: maximum number for reflections (bounces) and refractions.
• Photons: Number of photons to trace. the more photons, the more information to generate

the photon map from.
• Diff. Radius: Radius to search for non-caustic photons.
• Caustic Mix: maximum number of caustic photons to mix (blur).

• Search: maximum number of non-caustic photons to mix.

• Use background: (to complete)

Final gather is a caching technique to improve and 'complete' photon mapping by gathering, after
photon tracing, an approximation of the local irradiance using several illumination bounces. This
information is used at render time for further interpolation with the obvious advantage of requiring
a less accurate, therefore faster, GI simulation and still have a physically correct simulation.

To reduce noise in renders when using FG it is recommended to increase FG samples and to use
relatively high anti aliasing settings.

• FG bounces: in a precomputed phase, determines the number of bounces for Final Gather
rays.

• FG samples: Final Gathering samples for interpolation, the more the better, but the longer it
will take to render.

• Show map: (to complete)

7.1.4 Direct Lighting and Ambient Occlusion.
When Direct Lighting is used, only lighting provided from light sources is considered, without
indirect contribution from other surfaces (light bounce). Since caustics photon mapping does not
need post caching techniques like Final Gathering for blurring/interpolating photons, an option is
provided to produce caustic photon maps when Direct lighting is used. Lights will be the caustic
photons sources.

• Photons: Number of caustic photons to shoot.
• Caustic Depth: Number of refraction events for caustic photons
• Caustic Mix: number of photons to mix (blur)
• Caustic Radius: amount of caustic blurring. The result also depends on Caustic Mix.

Ambient Occlusion is a shading method that takes into account attenuation of light due to
occlusion. Ambient occlusion is most often calculated by casting rays in every direction from the
surface. Rays which reach the background or “sky” increase the brightness of the surface, whereas a
ray which hits any other object contributes no illumination. As a result, points surrounded by a large
amount of geometry are rendered dark, whereas points with little geometry on the visible
hemisphere appear light.

• AO Samples: The number of rays used to detect if an object is occluded. Higher numbers of

samples give smoother and more accurate results, at the expense of slower render times
• AO Distance: The length of the occlusion rays. The longer this distance, the greater impact

that far away geometry will have on the occlusion effect. A high Dist value also means that
the renderer has to search a greater area for geometry that occludes, so render time can be

optimized by making this distance as short as possible, for the visual effect that you want.
• AO Color: Color for ambient occlusion rays, also useful to test lighting AO power.

7.2 General Settings.
Under this section are grouped several general raytracing settings:

• Raydepth: Maximum depth (bounces) for recursive raytracing. Increase this setting to get

deeper into successive reflective and refractive events in the scene.
• Shadow depth: Number of bounces for shadow rays when glass fake shadows is enabled. A

sort of 'fake' raydepth.
• Gamma: Gamma correction in renders, to use in the linear work flow. It changes the

response to light of the render engine. Inverse correction of textures and colors is performed
using the G. in setting. Gamma should be used accordingly with your monitor gamma. To
take full advantage of this feature, a basic monitor calibration is recommended. A display
gamma of 2.2 is the standard for the Windows OS. The standard for Macintosh and Linux is
1.8. Use Gamma=1 to deactivate render gamma correction. More info about this technique:
http://www.gijsdezwart.nl/tutorials.php

• G. In: Inverse Gamma correction applied to textures and color input. It should be the same
value as Gamma.

• Transparent Shadows: Enable to get fake shadows in a glass material.
• Clamp RGB: Reduces the colors' brightness to a low dynamic range, for better anti aliasing

on areas with fast hight contrast changes. The examples below were made by sevontheweb.
The upper image has got aliasing issues in areas with strong contrast variations, but colors
are crisp. In the lower image Clamp RGB has been enabled. There is better anti aliasing but
colors are duller. Another way of solving this issue is increasing the render resolution and
then scaling back to the desired resolution using a good interpolation algorithm.

http://www.gijsdezwart.nl/tutorials.php
http://www.gijsdezwart.nl/tutorials.php
http://www.gijsdezwart.nl/tutorials.php

• Threads: to fork the rendering calculation into two or more simultaneously running tasks,
for multiprocessing purposes.

• Clay Render: produces a clay render overriding all materials.
• Output to XML: The scene is written in a yaf(a)ray XML file. The file is located in the

YFexport directory as per Blender settings.
• Draw Render Params: The render most important parameters are written in a badge in the

render image. Use this feature to compare renders and to ask for advice in the YafRay
forums.

• Custom String: Adds text to the previous render parameters.

Comparison between Clamp RBG enabled (top) and
disabled (bottom)

7.3 Anti Aliasing settings.

Yaf(a)ray now uses two more anti aliasing filters apart from default Box, which are Gauss and
Mitchell. The only really good property of Box is that it has no danger of amplifying sampling
noise. If a slight softness of edges is no problem for your work, try Gauss; if you want maximum
detail try Mitchell.

Pixelwidth (which gets translated to real filter size) has some influence too, the larger the softer the
image. Use lower values than default to make your renders sharper. The way AA samples are
configured has got changed too. AA samples defines the number of samples for only the first AA
pass, while the AA inc. samples value is used for subsequent AA passes.

7.4 Background Settings.
There are four options for backgrounds, which are:

• Sunsky: This kind of background tries to reproduce a realistic sky with its color variations.
There is a tutorial about how to set up this kind of background, made by sandstorm:
http://www.yafray.org/forum/viewtopic.php?t=1349

• Texture: A texture is used as a background. You can also use it as a light source (Use IBL
on/off button). The main purpose of this option is using HDRI images to lit the scene.
Besides, there is an option to rotate the background (Rotation: button), a multiplier for
background color (Power: button) and a sampling parameter for the background when used
as a light source (IBL samples: button)

The textures need to be loaded using Blender Texture buttons (F6). Yaf(a)ray uses the
Blender Word mapping settings as well. In the texture and input panel, only the AngMap,
Sphere and Tube modes work. In the adjacent Map to panel, Hori must be enabled for light
probes to work.

http://www.yafray.org/forum/viewtopic.php?t=1349
http://www.yafray.org/forum/viewtopic.php?t=1349
http://www.yafray.org/forum/viewtopic.php?t=1349

• Gradient: A two-parts gradient (Sky and Ground) is used as a background, with the division
between them in the camera horizon line. Power: button is a multiplier for background
color.

• Single color: A single color is used as a background. Power: button is a multiplier for
background color.

Settings used in Blender Panels for HDRI backgrounds in Yaf(a)ray

	1. What Yaf(a)Ray is
	2. Yaf(a)Ray installation notes (Windows)
	3. Yaf(a)ray UI and general workflow
	4. Render Output Window
	5. Object, Lights, and Camera settings
	5.1 Object
	5.2 Lights
	5.2.1 Point and Sphere
	5.2.2 Directional and Sun
	5.2.3 Area
	5.2.4 Spot

	5.3 Camera settings
	5.3.1 Architect
	5.3.2 Angular
	5.3.3 Orthogonal
	5.3.4 Perspective

	6. Material settings.
	6.1 Mapping notes.
	6.2 Glass
	6.3 Glossy
	6.4 Coated Glossy
	6.5 Shinydiffuse

	7. Render settings
	7.1 Lighting Methods
	7.1.1 Bidirectional
	7.1.2 Path Tracing
	7.1.3 Photon Mapping and Final Gather
	7.1.4 Direct Lighting and Ambient Occlusion.

	7.2 General Settings.
	7.3 Anti Aliasing settings.
	7.4 Background Settings.

