gameBlender Documentation

Last modified 01/04/13 14:53:38 cw

Carsten "Calli" Wartmann
V0.99b ;-) for Blender 2.12 Edition
Copyright © 2000, 2001 by Not a Number BV, Amsterdam






gameBlender Documentation: Last modified 01/04/13 14:53:38 cw
by Carsten "Calli" Wartmann

V0.99b ;-) for Blender 2.12 Edition
Copyright © 2000, 2001 by Not a Number BV, Amsterdam






Table of Contents

I o o 18 ox 1] o U UT PO 9
1.1. Intention Of thiS dOCUMENL..........ciiiiiiieere et bbb 9
1.2. TRANKS & CTOAILS. .veieveieieeeie ettt et sttt e sttt 9
1.3. Why gameBlender, what are the strengths.2........cccccovviie e 10
1.4. Simple gameLogiC TULOMIAL.......cccceiireceeire e 10

2. THE QAMEENGINE. ..ot sttt ekt b e st e be s 17
2.1. Blenders gameENgine "KetS]i'......ccoeirrirrirrerserese et s 17
2.2. Options for the gamMeEENQINE. ... 17
2.3. Command line options for the gameENgINe ... 18
2.4. The REAItIMEBULIOMS .....cecieereririeieeeee ettt st e e stesteseeseeneeneenesanseens 20
P2 T o 0] 1T 1= OSSOSO PRSP SRTRS 22
2.6. Settings in the MaterialBULIONS..........coei e 23

2.6.1. Specularity settings for the gameENging ... 24
2.7. Lamps in the gamMEENGINE. ..o 25
2.8. The blender [aws Of PRYSICS......cocoiiiiiirrree e 26
2.9, EXPIESSIONS......eeeuiieeteriete sttt sttt ettt b et b et b et bt e bt b e st bt bbbt e n e 27
2.10. SOUNABUIONS. .....itiieeeieicete ettt e st b e e s e ee e e e eaesbesbeseeseeneeneenesansaens 29
P20 I I o 10 o LAY/ T [ .Y ARSI 30
2.12. Performance and design StYle ISSUES......ccoc et 31

R C 1o TSI Moo o] =] o & TSRS 33

I T8 I 1= [T £ ST UROR PR PR PPTPRN 33
TNt O AN 1V 1= V£ Y= ] 33
TN 2 (=) Y] o To = L0 IS T =T g Yo 34
3.1.3. MOUSE SENSOL....c.eeiieeiieieeeesieeee sttt st e e sre e sre s e e resreenesne e e seesseenresreenrenneenes 36
.14, TOUCKH SENSOL ...ttt ettt et bbb ene b e e 36
3.1.5. COllISON SENSAL......coiiiiiterieiieieeeierie ettt se b ne b e e 37
3.1.6. NEAI SENSOL....cueitieieetieteeie ettt r e an e e e e e resr e nenne s 38
3.1.7. RATATN SENSOL......cuiiietireetesieteesie ettt et sttt st e et et e et nesreneas 39
3.1.8. PrOPEItY SENSQL......coiiiiiiiiieieeiee sttt ettt ettt sb e e s sesbe s saeesnresnnee e 40
3.1.9. RANAOM SENSQAL......cctiiiitiiiteirieeriee ettt st et s ebenesreneas 42
3.1.10. RAY SENSAL...cceiiieieieiieeesieseeseesteseestesseeeesseeseesaesseessesseessesseeeessessesssessesssenseenes 42
T2 70 1101 1=T & TSSO PSTPSTRTRPN 43
0720 I N V1 2 o o1 o] =T o 44
I © ] @ 11011 44
3.2.3. EXPression CONLrOHEL.........coiiiiiiieereee st 44
3.2.4. PYthon CONLIOHEL.....c.ciiiuiiiieieieeee ettt 45
G TG T o (T (0] PR 46
SCTRC T I |V o o ) o 12X 1 (1= (o] oSSR 46
TSI 00 o 51 = 11 o1 7 ANox (7= Lo ) AR 48
TR TG T 1 = O I Y o U= o ST 50
R I B 0= g 1T = o V=10 ST 51



TGRS Yo 18 [ aTo Y1 (1 T (o T 52

3.3.6. Property ACTUALAL.........ccccreriereeirerie sttt nne e 53
3.3.7. Edit ODJECE ACIUALOL......c.eieivieeteerieeriee ettt s ebe s sne e 54
3.3.8. SCENE ACHUALOL ... eeuieieeeeeie ettt sre et sae et e seeeneestesseensenseenes 57
SCTRC LS I = - g To (0] 1 1A od 11 - o] S 59

T LY =41 o S 63
4.1. Avaible file FOrMALS.......coe e e snn 63
4.2. HANAIING OF FESOUICES. .. .uiiitirictiieteeetee ettt e eb e 63
e T I 1B U AV o 1o ) TP 65
4.3.1. The IMAgEWINUOW......c.crueuirieririetiieteesieesiee et 65
4.3.2. The PaiNt/FACEBUIONS. .....cceiiiiieieriesie ettt s 67
4.3.3. Bitmap text in the game engiNe.........cccooevrereniiineiee e 69

L 12T o USSR 71
5.1. THe TEXIWINAOW....c.eiiieeieieeierie ettt et sb b st eae e sea 71
I Y1 aTo T a1 (o) o T= U 1= S 72
5.2.1. BaSIC gamMEPYINOM.......cceeie e s 73

5.3. Examples for gamePythQn.........cccoov oot 74
5.3.1. Moving objects With pythan...........ccccvrieiiie e 74
5.3.2. Simple VISiDility CRECK.....cc.ccvee et 76
5.3.3. Mouse cursor With PYthOmL.........ccoiiiiiiecces e e 77

5.4. gamePython Documentation per MOALUE........cccovceeeveiereieree e 78
5.4.1. GameLOgiC MOAULE..........ceceeeeciee st e e 78
5.4.2. RASLErNZEr MOUULE........coiiiieiieeieere ettt 79
5.4.3. GAMEKEYS MOUIE.........ccereeeeeerire st e 80

5.5. Standard methods for LOQICBIICKS......cccveiieiriere e s 80
5.5.1. Standard methods fOr SENSQAIS........cvvrerereeieeise e e 80
5.5.2. Standard methods for CONtrolleLS.......ccceveeeeeere e 81
5.5.3. Standard methods for gameODbJeCLS.........ccoveirrirreire s 82



List of Tables

D Y 7= 110 =34 0] €371 o] L= 28
2-2. ArtNMETIC EXPIESSIONS....eciiiteeee st seese st ee et te s e s e et seestesaeesaesreetestesseensesneeneesaeanees 28
G B = TeTo] (== Tl o] 1= = 1o o0 28
2-4, EXPreSSioN EXAMPIES.......civiiiiiieiee ettt te e st st se e e nesaesae st e ae e e e nenrennn 29

List of Figures

L0 OUI PIAYEL. ..ttt ettt bbbttt bbbt bt bbbt bbb e 11
1-2. The |0aded STAIt SCEME.......cceiiiireri ettt st b st e e e e e eaesreeeas 11
T @ o] [=To o i ] o U (=S (o =T = TSRS 12
1-4. LogicBricks to move our player fOrWardl........ ... 13
1-5. Changing the LOGICBICK LY P@......cii i e b 13
1-6. LOQICBIICKS 10 StEEI the PIAYEL.....ccui ittt e 15
N 1 1101 o1 TSROSO PR UPTURRUPRO 15
2-1. THE GAMEMENU.....ceutieeiireete ittt r et r et s b e b et r et r et sr e e s e 17
2-2. Blender command lINE OPLIONS........ccoeiiirieii et sttt re e snesneas 18
2-3. RealtimeBUttoNS [€ft PArL.........coii it 20
2-4. Example Of SOMeE LOGICBIICKS........coiiiicec ettt s 22
T B = a1l o ] (0] 01T [ 22
2-6. Material settings for dynamicC ODJECLS........ccviveii e 24
R Y o L= To W F= U YT 1] o L= 25
2-8. LampButtons, settings for gameBIeNder............ccvvv e 25
2-9. The SOUNUBULIONS. ....ccviveiiirereereieieeses et 29
2-10. 3D SOUNT UEMOD....c.ireirereiiiirireerereeee ettt r st rer bt ren e s 30
2-11. THE SOUNAWINUOW.......vcereireerereeeeres e 31
3-1. ComMON EleMENTS fOr SENSOLS.....covirirerrireree et 33
3-2. PUISE MOOE BULLOMS......ccveiiiieiiiireeieiee ettt aesee e e s st tesse e eneesesseseeseenaenennessessenses 34
3-4. Schematic Of PUISES fOr & NEAN SENSOL......ccoiii i 38
I I TS Ko 0] 71V =T oV 64
4-3. The IMAQgE WINUOW......coueuirieiirieierietereete sttt st st s b et b et be e b et st e sbe e sbeneas 65
4-4. The PaiNt/FACEBULIONS........cciieeeeece ettt eenesre e s 67
4-5. The special menu for the FaceSelectMOde.........coviiriiriinreee e 67
Lo R I 1= T S A4V o [0 PSS 71
5-2. LogicBricks for a first gamePython SCHQL..........oeiiiiiire e 73
G T T 151 S Tod ] ) A SO T U PE TP ORT SRS 73
5-4. BrOWNIAN MOVEIMEINL.......iitiitiiiirieieiee et st sie e see e etesiesteseeseesee e ssesbesbeseeseeseesesseseeseenseneenessssseseas 75
55, IMIOVE SCIIPL. .ttt sttt ettt ettt b et b et bbb e b e bt bbbt b s e b e 75
5-6. LogicBricks for the brownian MOVEMENL............ccoiiiiiiieieee e 76
L 11 o1 12T ] o PSRRI 76
5-8. LogicBricks for the Visibility SCHL........cooiiiierre e 77
5-9. MOUSE CUISOT SCIIL...ecueetertertertireeeeeeiestestes e seesee e sbesbesee e eee e s aesaesbesbesee e eseebesbesaeseenseneeneenesaenas 77



5-10. Logic bricks for the mouse script



Chapter 1. Introduction

1.1. Intention of this document

. This document is in its current state a draft and needs input from the developers, content and

the users. Mail Carsten@blender.nl (mailto:carsten@blender.nl) for suggestions, error reports,
critics, etc.

Please don‘t complain when you print the PDF and next week we update the documentation.
Save some trees and read it on screen until it is (more) finished.

This document is intended to provide reference documentation to the 3D-realtime part of Blender,
known and referred in this document as gameBlender.

It does not contain bigger tutorials, that will be part of coming documentation. It includes small demo
files and examples, to show the functions in a working Blendfile.

This document is avaible IRDF (Portable Document Format, *.pdfprint/gBlenderDoc.pdf.gz) and
as well structured HTML with TOC and index at http://www.blender.nl/gameBlenderDoc/

. Warning 2

Please take care with the Python parts, they are not 100% ready or tested (in terms of documen-
tation!). So if you have problems don't hesitate to mail me! Carsten@blender.nl (mailto:carsten@blender.nl)

1.2. Thanks & credits

Documentation is like sex: when it is good, it is very, very
good; and when itis bad, it is better than nothing.
--Dick Brandon

Ton Roosendaal & NaN

Creators and distributors of Blender

Gino van den Bergen

Collision detection & physics



Chapter 1. Introduction

Erwin Coumans
Ketsji gameEngine, game logic, scripting & graphics
You can read an interview for the Community Journal with Erwin here:

Interview with Erwin (http://www.blender.nl/showitem.php?id=90)

Janco Verduin

3D sound for the gameEngine

Willem "Zycho" Zwarthoed
Technical and language review of this documentation
You can read an interview for the Community Journal with Zycho here:

Interview with Zycho (http://www.blender.nl/showitem.php?id=105)

1.3. Why gameBlender, what are the strengths ?

10

- Integrated environment, with modeling, animation and game player.

+ Build-in Physics (rigid body dynamics) and Collision simulation

- Easy Interactivity with predefined Sensors and other Logic Bricks

- Powerful scripting language Python for more advanced game play control

« True Multiplatform, All flavors of Windows, Linux, FreeBSD, BeOS, Irix and more



Chapter 1. Introduction

1.4. Simple gameLogic Tutorial

Figure 1-1. Our Player

In this small tutorial you will get an overview of:

« To set object attributes
» To add LogicBricks
« To connect LogicBricks

- Basic use of the Keyboard, Always and Touch Sensor

You will not learn here how to use Blender as modelling or animation tool. For this information please
refer to our online help (http://www.blender.nl/help/beginners.php) and our printed documentation
(http://www.blender.nl/shop/).

Preparings

Start Blender and load the prepared start scene B-Manl.blend (blends/simple/B-Manl.blend). You
can use the F1KEY or the filemenu to load a scene. After loading you should see a scene like in
Figure 1-2

11



Chapter 1. Introduction

Figure 1-2. The loaded start scene

The left 3DWindow is a textured view from the camera. The right window is a wire frame side view
of the player character. It has the axis made visible and is selected, indicated by the pink color of the
wire frames.

The broad lower window are the RealtimeButtons, you can call then with F8. Here most of the work
for interactive realtime 3D graphics in Blender will take place.

Now we can start the gameEngine moving the mouse cursor to the textured 3DWindow and press
PKEY. Because we have not defined any interactivity you will only see the helper lines dissappear
and the sky becomming blue instead of grey. Press ESC to stop the gameEngine again.

Make the actor falling

12

Now click with the left mouse button on the "Actor" button in the RealtimeButtons. Also activate the
appearing "Dynamic" button. This defines the selected object as a actor which is handled by the build
in physics of the gameEngine. If you accidentally deselected the player (black wire frame) please
reselect it with the right mouse button or re-load the scene.

Figure 1-3. Object attributes to set




Chapter 1. Introduction

Now we can run the gameEngine again. Press PKEY with the mouse over the textured view and you
will see that the player falls to the floor and bounces a few times until he gets to rest. Press ESC to
stop the gameEngine.

Make it move

The RealtimeButtons (F8) are logically divided into four columns. The leftmost we already used to set
up the object parameters to make it fall. The three right columns are used for building the interactivity
into our game.

Now lets move the player on our request.

Figure 1-4. LogicBricks to move our player forward
Act | Link =] [ Link_| [EER Act | Link

L
2
0
2

The three parts are labeled as "Sensors", "Controllers" and "Actuators”. You can think of Sensors as
the senses of a life form, the Controllers are the brain and the Actuators are the muscles.

Now press the "Add" button for each row one time with the left mouse button to make one LogicBrick
for the Sensors, Controllers and Actuators.

Figure 1-5. Changing the LogicBrick type

13



Chapter 1. Introduction

14

The types of the added LogicBricks are nearly correct, for our first task, only the first one needs a
change. Press and hold the MenuButton now labeled with "Always" and choose "Keyboard from the
pop-up menu (sekigure 1-5.

Now click with the left mouse into the "Key" field. The text "Press any key" appears. Press the key
you want to use to move the player forward (I suggest UPARROW).

Now have a closer look at the Motion Controller. We will now define how the player should move.
The first line of numbers labeled "Force" defines how much force will be applied when the Motion
Controller is active. The three numbers stand for the forces in X, Y, and Z-Axis.

If you look at the wire frame view of the player you see that the X-Axis is pointing forward on the
player. To move forward we need to apply a positive force alon the X-Axis. To do so click and hold
on the first number in the "Force" row with the left mouse. Drag the mouse to the right to increment
the value to 10.00. You can hold the CTRL key to snap the values to decadic values. Another way to
enter an exact value is to hold SHIFT while clicking the field with the left mouse. This allows you to
enter a value using the keyboard.

We have now nearly the configuration showrFigure 1-4 We now need to "wire" or connect the
LogicBricks.

Click and hold the with the left mouse button on the yellow ball attached on the Keyboard Sensor
and drag the appearing line to the yellow ring on the AND Controller. Release the mouse and the
LogicBricks are connected. Now connect the yellow ball on the right side of the AND Controller with
the ring on the Motion Controller.

To delete a connection move the mouse over the connection. The line is how drawn highlighted and
can be deleted with a XKEY or DEL keypress.

Now press PKEY to start the gameEngine and when you press the UPARROW key, the player moves
towards the camera.



Chapter 1. Introduction

More control

Figure 1-6. LogicBricks to steer the player

Act | Link

—

o

Act | Link

L
L
L
L

Now add more LogicBricks like shown figure 1-6 These LogicBricks will allow you to steer your
player with the Cursorkeys. Note that we use the "Torque" row from the Motion Actuator to turn the

player.

Jump!
To add some more degrees of freedom and to show more than one sensor as input for a Controller, we

will now make the player jump.

Figure 1-7. Jump!

Act | Link act | Link

|- thvvv“

i~
L
L
L
L

15



Chapter 1. Introduction

Add the LogicBricks shown ifrigure 1-7to the player. The jump is triggered by a Keyboard Sensor.
But there is also a Touch Sensor connected to the same AND Controller. The Touch Controller only
gives an impulse when the objetciuchessomething. This constellation now reads as: " AKEY is
pressed AND the player touches the ground, THEN give an impulse to the Motion Actuator". This
way we make sure that you can’t jump while you are in the air. Try to delete the link from the Touch
Sensor to the AND Controller and see what happens...

The Controller for the jumping is connected to two Motion Controllers, both have a force of 100.00
for the Z-Axis. Because 100.0 is the maximum for one Motion Actuator we simply use two Actuators
to make the jump high enough.

Get the complete scene here: B-Man6.blend (blends/simple/B-Man1.blend).

16



Chapter 2. The gameEngine

2.1. Blenders gameEngine "Kets;ji"

catch-y (kich'z, kich's)
adf, catch-i-er, catch-i-est.

1. Attractive or appealing: ¢ catchy idea for a new television series,
2. Easily remembered: a song with a catchy fune,

2. Tricky deceptive: @ cafchy question on an exan,

4, Fitful or spasmodic: catchy breathing,

catch'i-ness ».

Ketsji is the name of the gameEngine. Technically the gameEngine is a framework with a collection
of modules for interactive purposes like physics, graphics, logic, sound and networking. Functionally
the gameEngine processes virtual reality, consisting of content (the world, it's buildings) and behav-
iors (like physics, animation and logic). Elements in this world - also called GameObijects - behave
autonomous by having a set of tools called LogicBricks, and Properties. For comparision the Proper-
ties reflect memory, the Sensors are the senses, the Controllers are the brain and the Actuators allow
for actions to the outside world (i.e. muscles).

At the moment the Controllers can be scripted using python, or simple expressions. The idea is that the
creation of logical behavior can be edited in a more visual way in the future, so the set of controllers
expands with Al state machines, etc. Controllers could be split in control centers, like an audio visual
center, motion center, etc.

2.2. Options for the gameEngine

Figure 2-1. The GameMenu

Game Tools |T]SCR:sc:reen.

e
B Start Game F
. Use vertex arrays
Enable all Frames
Digahle Sound
Disahla Mipmaps

Autostart

17



Chapter 2. The gameEngine

With this menu you can change options during editing of your scene. Currently only the "Autostart"
option is saved with the file.

Options from the GameMenu
Start Game (PKEY)

Start the gameEngine
Use vertex arrays

Enable (checked) or disable the use of vertexarrays. Vertexarrays normally speed up the calcula-
tion on complex scenes. If your OpenGL system don’t support vertexarrays you can switch them
off using this option

Enable All Frames

With this option checked the gameEngine runs on 50 hertz without dropping frames. This is
usefull while record to a Targa-Sequence or when you need to make sure that all collisions are
calculated without loss on slower computers

Disable Sound

Disable audio when checked
Disable Mipmaps

Don'‘t use mipmap, this can speedup the game
Autostart

Enable Autostart on load

2.3. Command line options for the gameEngine

18

When Blender is called with the option "-h" on a command line (shell window or DOS window) it
prints out the command line parameters.

Figure 2-2. Blender command line options

bash-2.00$ blender -h
Blender V 2.12
Usage: blender [options ...] [file]

Render options:
-b <file> Render <file> in background
-S <name> Set scene <name>
-f <frame> Render frame <frame> and save it



Chapter 2. The gameEngine

-s <frame> Set start to frame <frame> (use with -a)
-e <frame> Set end to frame (use with -a)<frame>
-a Render animation

Animation options:
-a <file(s)> Playback <file(s)>
-m Read from disk (Don't buffer)

Window options:
-w Force opening with borders
-p <sx> <sy> <w> <h> Open with lower left corner at <sx>, <sy>
and width and height <w>, <h>

Game Engine specific options:

-g fixedtime Run on 50 hertz without dropping frames

-g vertexarrays Use Vertex Arrays for rendering (usually faster)

-g noaudio No audio in Game Engine

-g nomipmap No Texture Mipmapping

-g linearmipmap Linear Texture Mipmapping instead of Nearest (default)

Misc options:

-d Turn debugging on

-noaudio Disable audio on systems that support audio

-h Print this help text

-y Disable OnLoad scene scripts, use -Y to find out why its -y
bash-2.00$

Command line options for gameBlender
-g fixedtime

With this option the gameEngine runs on 50 hertz without dropping frames. This is usefull while
record to a Targa-Sequence or when you need to make sure that all collisions are calculated
without loss on slower computers

-g vertexarrays

Disable the use of vertexarrays. Vertexarrays normally speed up the calculation on complex
scenes. If your OpenGL system don’t support vertexarrays you can switch them off using this
option

-g noaudio
Disable audio
-g nomipmap

Don‘t use mipmap, this can speedup the game

19



Chapter 2. The gameEngine

-g linearmipmap

Linear Texture Mipmapping instead of Nearest (default)

2.4. The RealtimeButtons

20

The RealtimeButtons are meant for making interactive 3D worlds in Blender. Blender acts as a
complete development tool for interactive worlds including a gameEngine to play the worlds. All
is done without compiling the game or interactive world. Just press PKEY and it runs in realtime.
The main view for working with gameBlender is the RealtimeButtoﬂJ ). Here you define your
LogicBricks, which add the behavior to your objects.

Figure 2-3. RealtimeButtons left part

Rigid Eody |
Size: 1.000

Do Fh | Rot Fh hass: 1.
Damp: 0.800 RotDamp: 0.400
» friction: 1.000 friction: 1.000

AD0 propery

Del Float = | Mame:prop 0.00
De String = | Mame:stringprop || am a string!
Del Timer ~ | Name:time 160

L!_," The word "games" is here used for all kinds of interactive 3D-content; Blender is not limited to
make and play games

The RealtimeButtons can be logically separated in two parts. The left part contains global settings for
gameObjects.

This includes settings for general physics, like the damping or mass. Here you can also define if
an object should be calculated with the build-in physics, as an actor or should be handled as object
forming the level (props on a stage).

Settings for gameObjects
Actor

Activating "Actor" for an object causes the gameEngine to evaluate this object. The Actorbutton
will spawn more buttons described below. Objects without "Actor" can form the level (like props
on a stage) and are seen by other actors as well.



Chapter 2. The gameEngine

Ghost
Ghost objects that don't resitute to collisions, but still trigger a collision sensor.
Dynamic
With this option activated, the object follows the laws of physics. This option spawns new
buttons that allow you to define the objects attributes in more detail.
Rigid Body
The "Rigid Body" button enables advanced physics by the gameEngine. This makes it possible
to make spheres roll automatically when they make contact with other objects and the friction

between the materials is non-zero. The rigid body dynamics are a range of future changes to the
gameEngine.

Do Fh

This button activates the Fh mechanism (Seetion 2.8. With this option you can create a
floating or swimming behaivior for actors.

Rot Fh

With this option set the object is rotated in such a way that the z-axis points away from the
ground when using the Fh mechanism.

Mass

The mass of a dynamic actor has an effect on how the actor reacts when forces are applied to
it. You need bigger force to move a heavier object. Note that heavier objects don't fall faster! It
is the air drag that causes a difference in falling speed in our environment (without air, e.g. on
the moon, a feather and a hammer fall at the same speed). Use the "Damp" value to simulate air
drag.

Size
The size of the bounding sphere. The bounding sphere determines the area with which collisions
can occour. In future versions this will not be limited to spheres anymore.

Damp

General (movement) damping for the object. Use this value for simulating the damping an object
recieves from air or water. In a space scene you might want to use very low or zero damping, air
needs a higher damping; use a very high damping to simulate water.

RotDamp
Same as "Damp" but for rotations of the object.
Anisotropic

When an actor moves on a surface you can define a friction between the objects. Friction will
slow down objects, because it is a force that works against any existing forces in the direction
of the surface. It is controlled in the dynamic material settings (MaterialButtons FSesion

2.6). This friction works equally in all directions of movement.

21



Chapter 2. The gameEngine

With the "Anisotropic" option activated you can control the friction independently for the three

axes. This is very helpful for racing games, where for example the car recieves little friction in
driving direction (because of the rolling tires) and high friction sliding to the side (Example file:

blends/AnisotropicFriction.blend).

Below the object settings you define the Properties of a gameObject. These Properties can carry
values, which describe attributes of the object like variables in a programming language. Use "ADD
property" to add properties (s&ction 2.%.

The right part of the RealtimeButtons is the command center for adding gamelogic to your objects
and worlds. The logic consists of the Sensors, Controllers and Actuators.

Figure 2-4. Example of some LogicBricks

( Ac

Plane
X aND stpass )
R AND . ANDtwosensos )

Dist 3.00 Reset 4.00

Sensors are like the senses of a life form; they react on keypresses, collisions, contact with materials
(touch), timer events or values of properties.

The Controllers are collecting events from the sensors and are able to calculate them to a result. These
are much like the mind or brain of a life form. Simple Controllers just do an AND. An example is to
test if a key is pressed AND a certain time has passed. There are also OR Controllers and you also can
use Python scripting and expressions in the Expression Controller to create more complex behavior.

The Actuator actually perform actions on objects. A Motion Actuator for example is like a muscle.
This muscle can apply forces to objects to move or rotate them. There are also Actuators for playing
predefined animations (via IPOs), which can be compared to a reflex.

The logic is connected (wired) with the mouse, Sensors to Controllers and Controllers to Actuators.
After that you are immediately able to play the game! If you discover something in the game you

don't like, just stop the gameEngine, edit your 3D world and restart. This way you can drastically cut

down your dvelopement time!

2.5. Properties

Properties carry information bound to the object, similar to a local variable in programming languages.
No other object can normally access these properties, but it is possible to copy Properties with the
Property Copy ActuatofseeSection 3.3.h

22



Chapter 2. The gameEngine

Figure 2-5. Defining properties

ADD propery

Del Bool — | Name:BoolProp

Tiue | 2T I8

Del Int = | Mame:IntProp

Del Timer 2 | Mame:TimeProp

I

l

l |

[ Del Float = | Mame:FloatProp I

[ Cel String 2 | Mame:StringProp |I am
[ I

l |

Del String = | Mame:Result Water.

The big "ADD property" button adds a new Property. By default a Property of the float type is
added. Delete a Property with its "Del" button. The MenuButton defines the type of the Property.
Click and hold it with the left mouse button and choose from the popup menu. The "Name:" text
field can be edited by clicking it with the left mouse button. SHIFT-BACKSPACE clears the
name.

.I.« Property names are case sensitive. So "Erwin" is not equal to "erwin".

The next field is different for each of the Property types. For the boolean type there are two radio-

buttons; choose between "True" and "False". The string-type accepts a string; enter a string by clicking
in the field with the left mouse. The other types are using a NumberButton to define the default value.

Use SHIFT-LMB for editing it with the keyboard, click and drag to change the value with the mouse.

Property types
Boolean (Bool)

This Property type stores a binary value, meaning it can be "TRUE" or "FALSE". Be sure to
write it all capital when using these values in Property Sensors or Expressions.

Integer (Int)
Stores a number like 1,2,3,4,... in the range from -2147483647 to 2147483647.
Float
Stores a floating point number.
String
Stores a text string. You can also use Expressions or the Property Sensor to compare strings.
Timer

This Property type is updated with the actual game time in seconds, starting from zero. On newly
created object the timer starts when the object is "born".

23



Chapter 2. The gameEngine

2.6. Settings in the MaterialButtons

24

Some physical attributes can be defined with the material settings of Blender. The MaterialButtons

can be accessed via til icon in the header of the ButtonsWindow or by pressing F5. Create a
new material or choose an existing one with the MenuButton in the header.

In the MaterialButtons you need then to activate the "DYN" button to see the dynamic settings (See
Figure 2-§.

Figure 2-6. Material settings for dynamic objects

I Fh Norm IRestitut 0.300 |

I Fh Damp 0.000 IFrictiDn 1.000 |

| Fhoistoon  |Fh Force 0.oppE=—— |

Restitut

This parameter controls the elasticity of collisions. A value of 1.0 will convert all the kinetic
energy of the object to the opposite force. This object then has an ideal elasticity. This means
that if the other object (i.e. the ground) also has a Restitut of 1.0 the object will keep bouncing
forever.

Friction

This value controls the friction of the objects material. If the friction is low, your object will
slide like on ice, with a high friction you get an effect like sticking in glue.

Fh Force

In conjunction with the "Do Fh" and/or "Rot Fh" (s&ection 2.4 you make an object float
above a surface.

"Fh Force" controls the force that keeps the object above the floor.

Fh Dist

"Fh Dist" controls the size of the Fh area. When the object enters this area the Fh mechanism
starts to work.

Fh Damp

Controls the damping inside the Fh area. Values above 0.0 will damp the object movement inside
the Fh area.

Fh Norm

With this button activated the object also gets a force in the direction of the face normal
on slopes. This will cause an object to slide down a slope (see the example: FhDemo.blend
(blends/FhDemo.blend)).



Chapter 2. The gameEngine

2.6.1. Specularity settings for the gameEngine

Figure 2-7. Specularity settings

Specularity settings in the MaterialButtons
Spec
This slider controls the intensity of the specularity.
Hard
This slider controls the size of the specularity (hardness)
Spec color

Activating this button, switches the RGB (or HSV) sliders to define the specularity color

2.7. Lamps in the gameEngine

Figure 2-8. LampButtons, settings for gameBlender

Lamps are created with the Toolbox (SPACE->ADD Lamp). For a selected lamp you can switch to the
LampButtons (F4) to change the properties of that lamp. These properties are the color, the energy,

25



Chapter 2. The gameEngine

etc. Due to the fact that the gameEngine is fully integrated in Blender, there are some buttons which
are only useful for linear animation.

Common settings for all lamp types are the energy, and the color (adjustable with the RGB sliders).

To allow a face to recieve realtime lighting in gameBlender the face has to be set to "Light" in the

Paint/FaceButtonil (SeeChapter 4. With the layer settings for lamps and objects (EditButtons,
F9) you can control the lighting very precise. Lamps only affect faces on the same layer(s) as the
lamp. Per Layer you can use eight lamps (OpenGL limitation) for realtime lighting.

Lamp types for the gameEngine
Lamp

Lamp is a point light source.
Spot

This lamp is restricted to a conical space. In the 3DWindow the form of the spotlight is shown
with broken lines. Use the SpotSi slider to set the angle of the beam.

Sun

The "Sun" lamp type is a directional light. The distance has no effect on the intensity. Change
the direction of the light (shown as a broken line) by rotating the lamp.

Hemi

"Hemi" lamp type is currently not supported in the gameEngine.

The "Lamp" and "Spot" lights can be sensitive to the distance. Use the "Dist:", "Quad1:" and "Quad?2:"
settings for this. The mathematics behind this are explained in the Official Blender 2.0 Guide (http://www.blendk

Load a demo file (blends/LampTypes.zip) showing the lamp types in the gameEngine. Press PKEY
to launch the demo.

Load the MovingLights.blend (blends/MovingLights.blend) demo to see how to animate lamps.

2.8. The blender laws of physics

26

All objects in Blender with the "Dynamic" option set (s€ettings for gameObjedtsre evaluated
with the physics laws as defined by the gameEngine and the user.

The key property for a dynamic object is its mass. Gravity, forces, and impulses (collision bounce)
only work on objects with a mass. Also, only dynamic objects can experience drag, or velocity damp-
ing (a crude way to mimic air/water resistance).

!

Note that for dynamic objects using dLoc and dRot may not have the desired result. Since the
velocity of a dynamic object is controlled by the forces and impulses, any explicit change of



Chapter 2. The gameEngine

position or orientation of an object may not correspond with the velocity. For dynamic objects it's
better to use the linV and angV for explicitly defining the motion.

As soon we have defined a mass for our dynamic object it will be affected by gravity, causing it to fall
until it hits another object with its bounding sphere. The size of the bounding-sphere can be changed
with the "Size:" parameter in the RealtimeButtons. The gravity has a value of 9.81 by default: you
can change this in the WorldButtons with the "Grav" slider. A gravity of zero is very useful for space
games or simulations.

1) usethe "Damp:" and "RotDamp:" settings to suggest the drag of air or other environments. Don’t
use it to simulate friction. Friction can be simulated by using the dynamic material settings.

Dynamic objects can bounce for two reasons. Either you have Do Fh enabled and have too little
damping, or you are using a Restitut value in the dynamic material properties that is too high.

L If you haven't defined a material, the default restitution is 1.0, which is the maximum value and

will cause two objects without materials to bounce forever.

In the first case, increasing the damping can decrease the amount of bounce. In the later case define a
material for at least one of the colliding objects, and set its Restitut value to a smaller value. The Resti-
tut value determines the elasticity of the material. A value of zero denotes that the relative velocity
between the colliding objects will be fully absorbed. A value of one denotes that the total momentum
will be preserved after the collision.

Damping is a decrease of velocity in % per second. Damping is useful to achieve a maximum speed.
The larger the speed the greater the absolute decrease of speed due to drag. The maximum speed
is attained when the acceleration due to forces equals the deceleration due to drag. Damping is also
useful for damping out unwanted oscillations due to springs.

Friction is a force tangent to the contact surface. The friction force has a maximum that is linear to
the normal, i.e., the force that presses the objects against each other, (the weight of the object). The
Friction value denotes the Coulomb friction coefficient, i.e. the ratio of the maximum friction force
and the normal force. A larger Friction value will allow for a larger maximum friction. For a sliding
object the friction force will always be the maximum friction force. For a stationary object the friction
force will cancel out any tangent force that is less than the maximum friction. If the tangent force is
larger than the maximum friction than the object will start sliding.

For some objects you need to have different friction in different directions. For instance a skateboard
will experience relatively little friction when moving it forward and backward, but a lot of friction
when moving it side to side. This is called anisotropic friction. Selecting the "Anisotropic” button in
the RealTimeButtons (F8) will enable anisotropic friction. After selecting this button, three sliders
will appear in which the relative coefficient for each of the local axes can be set. A relative coefficient
of zero denotes that along the corresponding axis no friction is experienced. A relative coefficient of
one denotes that the full friction applies along the corresponding axis.

If you have suggestions or questions concerning the gameBlender physics please contact Gino (gino@blendel
(mailto:gino@blender.nl).

27



Chapter 2. The gameEngine

2.9. Expressions

Expressions can be used in tBepression ControlletheProperty Sensand theProperty Actuatar

Table 2-1. Valid expressions

Expression type Example

Integer numbers 15

Float number 12.23224

Booleans TRUE, FALSE

Strings "l am a string!"

Properties propname

Sensornames sensorname (as named in the LogicBrick)

Table 2-2. Arithmetic expressions

Expression Example

EXPR1 + EXPR2 Addition, 12+3, propname+21
EXPR1 - EXPR2 Subtraction, 12-3, propname-21
EXPR1 * EXPR2 Multiplication, 12*3, propname*21
EXPR1/EXPR2 Division, 12/3, propname/21
EXPR1 > EXPR2 EXPR1 greater EXPR2

EXPR1 >= EXPR2 EXPR1 greater or equal EXPR2
EXPR1 < EXPR2 EXPR1 less EXPR2

Table 2-3. Boolean operations

Operation Example

NOT EXPR Not EXPR

EXPR1 OR EXPR2 logical OR

EXPR1 AND EXPR2 logical AND

EXPR1 == EXPR2 EXPR1 equals EXPR2

Contitional statement: IF( Test, ValueTrue, ValueFalse )

Examples:

28



Chapter 2. The gameEngine

Table 2-4. Expression examples

Expression Result Explanation
12+12 24 Addition

property=="Carsten" TRUE or FALSE String comparison between a
Property and a string

"Erwin">"Carsten" TRUE A string compare is done

2.10. SoundButtons

The SoundButtonw are for loading and managing sounds in gameBlender. Lo&8keetion 2.11
for a possibility to visualize the waveform.

Figure 2-9. The SoundButtons

cDatemsounds\WiniGunFire way 1 ‘

Yol: 1.000 e, || Pitch: 4.10
Altn: 0.700

In the SoundButtons header you can see the name of the SoundObject (here "SO:MiniGunFire.wav").
This name is set to the name of the sound sample by default. With the MenuButton you can browse
existing SoundObijects and create new SoundObjects. The blue color of the sound name indicates that
more than one user uses the sound, the number button indicates the number of users.

In the SoundButtons you can then assign or load samples in the SoundObject. So the SoundOb-
ject name doesn't have to be the name of the sample. For example you can use a SoundObject
"SO:explosion" and then load "explosion_nuke.wav" later. You load samples with the "Load Sam-
ple" button in the SoundButtons. The sample name and the location on disk are shown in the text field
to the right of the "Load Sample" button. With the MenuButton left to the location, you can browse
already loaded samples and assign it to the SoundObiject.

The NumberButton indicates how many SoundObjects share the sample. When the pack/unpack but-
ton (parcel) is pressed, the sample is packed into the *.blend file, which is especially important when
distributing files.

The "Play" button obviously plays the sound, the "Loop" button set the looping for the sample on or
off. Depending on the play-mode in tl®und Actuatothis setting can be overidden.

The "Vol:" slider sets the global volume of the sound.

29



Chapter 2. The gameEngine

30

Pitch: with the pitch you can change the frequency of the sound. Currently there’s support for values
between half the pitch (-12 semitones) and double the pitch (+12 semitones). Or in Hertz: if your
sample has a frequency of 1000 Hz, the bottom value is 500 and the top 2000 Hz.

The next row of buttons lets you define 3D sound. With the Button "3D vol" activated (which deacti-
vates "Fixed") you enable 3D sound. This means the volume of the sound dependends on the distance
between the sound source and the listener. The listener is the active camera.

The "Attn:" slider sets the sound attenuation. In a 3D world you want to scale the relation between
gain and distance. For example, if a sound passes by the camera you want to set the scaling factor that
determines how much the sound will gain if it comes towards you and how much it will diminish if it
goes away from you. Currently, the scaling factor can be set between 0.0 (all positions get multiplied
by 0: no matter where the source is, it will always sound as if it was playing in front of you) and 1.0

(a neutral state, for all positions get multiplied by 1).

The next row of buttons defines the stereo position of the sound. With "3D pan" activated the volume
for the left and right stereo channel of the sound is dependant of the position relative to the listener.
When "Fixed" is activated you can manually pan the sound with the "Pann:" slider.

Figure 2-10. 3D sound demo

Get the 3D sound demo. (blends/MG1.blend)



Chapter 2. The gameEngine

2.11. SoundWindow

Figure 2-11. The SoundWindow

WaAY: 22050 kHz Mono 16 bits

The SoundWindow is used to load and visualize sounds. You can grab and zoom the window and its
content like every other window in Blender.

The green bar indicates the position of the FrameSlider. This can be used to synchronize a sound with
an IPO animation. In the lower part of the window you also have an indicator of the sound length in
seconds.

In the SoundWindow header see the usual window buttons, the user buttons and some information
about the sound.

2.12. Performance and design style issues

Computers get faster every month, nearly every new computer nowadays has a hardware accelerated
graphics card. But still there are some performance issues to think about. This is not only a good style
in design and programming but also essential for the platform compatibility Blender provides. So to
make a well designed game for the various platforms keep these rules in mind:

1. Originals for an AddObject Actuator must be in an invisible layer (very important, maybe we
will even force this in future)

2. Don't use properties in combination with AND/OR/Expr. controller as scripting language. There
is a python controller.

3. Don’t share (Python) variables between scripts

4. As little inter-object LogicBrick connections as possible.

31



Chapter 2. The gameEngine

5. Use ALT-D (instanced mesh for new object) when replicating meshes, this is better then SHIFT-
D (copies the mesh)

6. Alpha mapped polygons are expensive, so use with care

7. Switching off collision flag for polygons is good for performance, also the use of 'ghost’ is
cheaper then a regular physics object

8. Keep the polygon count as low as possible. Its quite easy to add polygons to models, but very
hard to remove them without screwing up the model. The detail should be made with textures.

9. Keep your texture-resolution as low as possible. You can work with hi-res versions and then later
reduce them for publishing the game (see ChagiéiTexturing

10. Polygons set to "Light" are expensive. A hardware acceleration with Transform and Lighting
calculation will help here.

11. Instead of real-time lighting use VertexPaint to lighten, darken or tint faces to suggest light
situations.

32



Chapter 3. Game LogicBricks

The game logic in gameBlender is assembled in the RealtimeButtons. Here you wire the different
LogicBricks together. The following is a brief documentation on all the LogicBricks currently avail-
able.

3.1. Sensors

Sensors act like real senses; they can detect collisions, feel (Touch), smell (Near), view (Ray, Radar).

3.1.1. Always Sensor

The most basic Sensor is the Always Sensor. It is also a good example for the common buttons every
sensor has.

Figure 3-1. Common elements for Sensors

X Alvays = sensorg ﬂ

_ T o

The button labeled "X" deletes the Sensor from the gameLogic. This happens without a confirmation,
so be careful. The MenuButton right to the delete button (here labeled "Always") allows you to choose
the type of Sensor. Click and hold it with the left mouse button to get the popup menu. Next is a
TextButton, which holds the name of the Sensor. Blender assigns the name automatically on creation.
Click the name with the left mouse button to change the name with the keyboard.

7 Name your LogicBricks and Blender objects to keep track of your scenes. A graphical logic

scheme can become very complex.

With the small arrow button you can hide the contents of the LogicBrick, so it only shows the top bar.
This is very handy in complex scenes.

The next row of buttons is used to determine how and at which frequency a Sensor is "firing". This
topic is a bit complex, so we will give examples in more than one part of this documentation.
General things on pulses

Pulses coming form Sensors trigger both Controllers and Actuators. A pulse can have two values,
TRUE or FALSE.

Each Controller is always evaluated when it receives a pulse, whether the pulse is TRUE or FALSE
doesn’t matter. The input 'gate’ of a Controller remembers the last pulse value. This is necessary for
Controllers being linked by multiple Sensors, then it can still do a logical AND or OR operation on

33



Chapter 3. Game LogicBricks

all inputs. When a Controller is triggered, and after evaluation of all inputs, it can either decide to
execute the internal script or to send a pulse to the Actuators.

An Actuator reacts to a pulse in a different way, with a TRUE pulse it switches itself ON (makes itself
active), with a FALSE pulse it turns itself OFF.

Figure 3-2. Pulse Mode Buttons
|

The first button activates the positive pulse mode. Every time the Sensor fires a pulse it is a positive
pulse. This can be used, for example to start a movement with an Motion Actuator. The button next
to it activates the negative pulse mode, which can be used to stop a movement.

“Z. If none of the pulse mode buttons are activated the Always Sensor fires exactly one time. This is

very usefull for initialising stuff on game start.

The button labeled "f:" (set to 41 here), determines the delay between two pulses fired by the Sensor.
The value of "f:" is given as frames.

The "Inv" button inverts the pulse, so a positive (TRUE) pulse will become negative (FALSE) and
vice versa.

Get a example file here:pulses.blend (blends/LogicBricks212/1.sensors/pulses.blend).

3.1.2. Keyboard Sensor

34

The Keyboard Sensor is maybe one of the most often used Sensors because it provides the interface
between Blender and the user (we will cover other methods like the mouse later).

The pulse mode buttons are common for every Sensor so the have the same functionality as described
for the Alwayssensor.

1" Clear Blender with CTRL-X to the default scene. The default plane is active and selected (pink).
Switch to the RealTimeButtons with F8. Use the "Add"-Buttons to add one LogicBrick to the
Sensor, Controller and Actuator blocks.

Change the Always Sensor with the MenuButton to a Keyboard Sensor. Then click on the "Key"
input field and press the key you want to assign.

Now connect the LogicBricks. Click and hold the left mouse on the yellow ball at a LogicBrick and
drag the appearing line to the yellow donut of the next LogicBrick.



Chapter 3. Game LogicBricks

Figure 3-3. LogicBricks for moving the default plane

Change the first dLoc field (they are ordered x, y, z) to 0.10. Move your mousecursor over the big
3DWindow and press PKEY to start the gameEngine. Now press the key you assigned to the Key-
board Sensor and the plane should move to the right. A more complex example can be found in
the LogicBricks examples (blends/LogicBricks212.zip), keyboard.blend (blends/LogicBricks212/1.sensors/keyboard

By activating the "All keys" Button, the Sensor will react on every key. In the "Hold" fields you can
put in modifier keys, which need to be held while pressing the main key.

Python methods:

setkey ( int key );

Sets the Key on which the Sensor reacts

int key getKey ();

Gets the key on which the Sensor reacts

setHold1l ( int key );
Sets the modifier key one

int key getHoldl ( );

Gets the modifier key one

setHold2 ( int key )

Sets the modifier key two

int key getHold2 ( );
Gets the modifier key two

setUseAllKeys ( bool all );
Sets the "All keys" option on all=TRUE

35



Chapter 3. Game LogicBricks

bool all getUseAllKeys ( );
Gets the state of the "All keys" option

list keys getPressedKeys ( );

Gets a list of the pressed keys

list events getkeyEvents ( );

Gets a list of the keys events

3.1.3. Mouse Sensor

The Mouse Sensor includes the usual buttons like every sensor. The main purpose is of course to
react mouse input from on the user. Curently the Sensor is able to watch for mouse clicks or mouse
movement. To get the position of the mouse cursor as well you need to use a Python-script right now.

This will be covered later in this documentation (see ). Get an example from the LogicBricks examples
(blends/LogicBricks212.zip), mouse_button.blend (blends/LogicBricks212/1.sensors/mouse_button.blend).

Plane

house - sensar
f: 0 Iny

Trigger an mayYement

Bl | Middle But | Right But

Python methods:

int xpos getXPosition  ( );

Gets the mouse x-position

int ypos getYPosition ( );

Gets the mouse y-position

3.1.4. Touch Sensor

36

The Touch Sensor fires a pulse when the object it is assigned to, touches a material. If you enter a
material name into the "MA:" text field it only reacts on this material otherwise it reacts on all touches.



Chapter 3. Game LogicBricks

This way you can achieve effects like a lava material causing the player to die when he touches it.

x | Touch - Isensuﬂ
N o 0 I
hA8:Ground

Python methods:

setTouchMaterial ( (char* matname) );

Sets the Material the Touch Sensor should react on

char* matname getTouchMaterial ()

Gets the Material the Touch Sensor reacts on

gameObject obj  getHitObject  ( );
Returns the touched Object

list objs getHitObjectList ()
Returns a list of touched objects

You find an example file in the LogicBricks examples (blends/LogicBricks212.zip), touch.blend (blends/LogicBI

3.1.5. Collison Sensor

The Collision Sensor is a general Sensor to detect contact between objects. Besides reacting on ma-
terials it is also capable of detecting Properties of an object. Therefore you can switch the input field
from Material to Property bit clicking on the "M/P" button.

Caollision - Isensoﬂ

%

Froperty:Bullet

Python methods:

setTouchMaterial (' (char* matname) );

Sets the Material the Collision Sensor should react on

char* matname getTouchMaterial ()

37



Chapter 3. Game LogicBricks

Gets the Material the Collision Sensor reacts on

setProperty  ( (char* propname) );

Sets the Property the Collision Sensor should react on

char* propname getProperty ( );

Gets the Property the Collision Sensor reacts on

gameObject obj  getHitObject  ( );
Returns the colliding Object

list objs getHitObjectList ()
Returns a list of collided objects

For an example look at the LogicBricks examples (blends/LogicBricks212.zip), collision.blend (blends/LogicBr

3.1.6. Near Sensor

The near sensor reacts on actors near the object with the sensor.

Cube
X Near - semsor 1@
T

Property:Player
Dist 7.00 Reset 7.10

1) The near sensor only senses objects of the type "Actor" (a dynamic object is also an actor).

If the "Property:" field is empty, the near sensor reacts on all actors in its range. If filled with a property
name, the sensor only reacts on actors carrying a property with that name.

The range (spherical) of the near sensor you set with the "Dist" NumberButton. The "Reset" value
defines at what distance the near sensor is reset again. This is helpful to avoid multiple pulses when
an actor is just at the "Dist" distance, or to open a door at a certain distance but close it on a different
distance.

38



Chapter 3. Game LogicBricks

Figure 3-4. Schematic of pulses for a near sensor

Actor passing "Near sensor"

AR
\_/

Standard, one TRUE, one FALSE pulse

]
|21 || o |
0
1
Standard, TRUE repeats (3] e |
o
I
| [
0 _._._._._] l_._._._._._

- I EcEa
L T e
e .U EETE

Standard, FALSE repeats

Inverted, one FALSE, one TRUE pulse

Inverted, TRUE repeats

e - o - o -

Inverted, FALSE repeats

Python methods:

setProperty  ( (char* propname) );

Sets the Property the Near Sensor should react on

char* propname getProperty ( );
Gets the Property the Near Sensor reacts on
More to come...

Examples for the use of the Near Sensor are an enemy reaction when the Player gets close, a door
opening, etc.

For an example file look at the LogicBricks examples (blends/LogicBricks212.zip), near_property.blend
(blends/LogicBricks212/1.sensors/near_property.blend).

39



Chapter 3. Game LogicBricks

3.1.7. Radar Sensor

The Radar Sensor acts like a real radar. It looks for an object along the axis indicated with the axis
buttons "X, Y, Z". If a property in entered into the "Prop:" field, it only reacts on objects with this

property.

In the "Ang:" field you can enter an opening angle for the radar. This equals angle of view for a
camera. The "Dist:" setting determines how far the Radar Sensor can see.

Objects can't block the line of sight for the Radar Sensor. This is different for the Ray Sensor (see
Section 3.1.1) You can combine them for making a radar thats’s not able to look through walls.

Examples:

Logic Bricks examples (blends/LogicBricks212.zip).
radar3.blend (blends/LogicBricks212/1.sensors/radar3.blend).

3.1.8. Property Sensor

The Property Sensor logically checks a Property attached to the same object.

Plane.0D1

The property sensor of the type "Equal” checks for equality of the property given in the "Prop:" field
and the value in "Value:". If the condition is true, it fires pulses according to the pulse mode settings.

The "Not Equal” checks for inequality and then fires its pulses.

40



Chapter 3. Game LogicBricks

Plane.001

The "Interval" type property sensor fires its pulse if the value of property is inside the interval defined
by "Min:" and "Max:". This sensor type is especially helpful for checking float values, which you
can’'t depend on to reach a value exactly. This is most common with the "Timer" Property.

The "Changed" Property Sensor gives pulses every time a Property is changed. This can for example
happen through a Property Actuator, a Python script or an Expression.

Python methods:

setProperty  ( (char* propname) );

Sets the Property to check

char* propname  getProperty ( );

Gets the Property to check

setType ( (int type) );
Sets the type of the Property Sensor.
1.Equal
2. Not Equal
3. Interval
4. Changed

char* propname  getProperty ( );

Gets the type of the Property Sensor

41



Chapter 3. Game LogicBricks

setValue ( (char* expression) );

Sets the value to check (as expression)

char* expression getvalue ( );

Gets the value to check (as expression)

Examples:

Logic Bricks examples (blends/LogicBricks212.zip).
property.blend (blends/LogicBricks212/1.sensors/property.blend).

3.1.9. Random Sensor

42

The Random Sensor fires a pulse randomly according to the pulse settings (50/50 pick).
X

Randaom 4|sensor

Seed: 962

1 With a seed of zero the Random Sensor works like an Always Sensor, which means it fires a
pulse every time.

Python methods:

setSeed ( (int seed) );

Set the seed for the random generation

int seed getSeed ( );

Gets the seed for the Random Sensor

int seed getLastDraw ( );

Gets the last draw from the Random Sensor

Examples:
LogicBricks examples (blends/LogicBricks212.zip).

random.blend (blends/LogicBricks212/1.sensors/random.blend ).



Chapter 3. Game LogicBricks

3.1.10. Ray Sensor

The Ray Sensor casts a ray for the distance set into the NumberButton "Range". If the ray hits
an object with the right Property or the right Material the Sensor fires its Pulse.

2 Other objects block the ray, so it can’t see through walls.

- |sensnr2

Without a material or property name filled in, the Ray Sensor reacts on all objects.

Python methods:

list [x,y,z] getHitPosition ()

Returns the position where the ray hits the object.

list [x,y,z] getHitNormal  ( );

Returns the normal vector how the ray hits the object.

list [X,y,z] getRayDirection ()

Returns the vector of the Ray direction

gameObject obj  getHitObject  ( );
Returns the hit Object

Examples:
Logic Bricks examples (blends/LogicBricks212.zip).
ray.blend (blends/LogicBricks212/1.sensors/ray.blend).

Known issues:

Only Y-Axis works for now, as workaround use an Empty to carry the Ray Sensor and rotate it in such
a way that the Y-Axis points along the desired direction.

If the Ray Sensor refuses to work with a Material as trigger check if the latest object created has the
desired material, if not assign it to it (perhaps you need to make a helper object).

43



Chapter 3. Game LogicBricks

3.2. Controllers

Controllers act as the brain for your game logic. This reaches from very simple decisions like con-
necting two inputs, over slightly complex expressions, to complex Python scripts which can carry
artificial intelligence.

3.2.1. AND Controller

x arD - cont

The AND Controller combines one, two or more inputs from Sensors. That means that all inputs must
be active to pass the AND Controller.

Examples:

LogicBricks examples (blends/LogicBricks212.zip).

and.blend (blends/LogicBricks212/2.controllers/and.blend).

3.2.2. OR Controller

x OR - cont

The OR Controller combines one, two or more inputs from Sensors. OR means that either one or more
inputs can be active to let the OR Controller pass the pulse through.

Examples:

LogicBricks examples (blends/LogicBricks212.zip).

or.blend (blends/LogicBricks212/2.controllers/or.blend).

3.2.3. Expression Controller

44

With the Expression Controller you can create slightly complex game logic with a single line of
'code’. You can access the output of sensors attached to the controller and access the properties of the

object.

XI Expression —'Icunt

Exp:sensor AND (proppower=20)

“ The expression mechanism prints out errors to the console or in the DOS window, so have a
look there if anything fails.



Chapter 3. Game LogicBricks

Examples:
LogicBricks examples (blends/LogicBricks212.zip).
expression.blend (blends/LogicBricks212/2.controllers/expression.blend).

More on using Expressions can be foundiection 2.9

3.2.4. Python Controller

: :

The Python controller is the most powerful controller in gameBlender. You can attach a Python script
to it, which allows you to control your gameObjects ranging from simple movement up to complex
gameplay and artificial intelligence.

Enter the name of the script you want to atach to the Python Controller into the "Script:" field. The
script needs to be existant in the scene or Blender will ignore the name you type.

. Remember that Blender treads names case sensitive! So a script "player” is not the same as
"Player".

Python for the gameEngine is covered in Chafection 5.2

Python methods:

Actuator* getActuator ( char* name );

Returns the actuator with "name".

list  getActuators ( );

Returns a python list of all connected Actuators.

Sensor* getSensor ( char* name );

Returns the Sensor with "name".

list getSensors ( );

Returns a python list of all connected Sensors.

Examples:

45



Chapter 3. Game LogicBricks

LogicBricks examples (blends/LogicBricks212.zip).
Python examples (blends/LogicBricks212/2.controllers/).

3.3. Actuators

Actuators are the executing LogicBricks. They can be compared with muscles or glands in a life form.

3.3.1. Motion Actuator

46

The Motion Actuator is surely the most important Actuator. It moves, rotates or applies a velocity to
objects.

The simplest case of using a Motion Actuator is to move the object. This is done with the "dLoc"

values in the third row. Every time the actuator is triggered by an impulse it moves the object the
amount given in the "dLoc" row. The three values here stand for X-, Y- and Z-axis. So when you

enter a 1.0 in the first field the object is moved one unit per time unit of the game (the clock in the
gameEngine ticks in frames, roughly 1/25 of a second, for exact timings use the Time Property). A
simple example is given in th€eyboard Sensaection.

The buttons labeled "L" behind each row in the motion actuator, determine if the motion applied
should be treated as global or local. If the button is pushed (dark green) the motion is applied based
on the local axis of the object. If the button is not pressed the motion is applied based on the global
(world) axis.

Force
Values in this row act as forces that apply to the object. This works only for dynamic objects.
Torque

Values in this row act as rotational forces (Torque) that apply to the object. This works only for
dynamic objects. Positive values rotate counter-clock-wise.

dLoc

Offset the object as indicated in the value fields



Chapter 3. Game LogicBricks

dRot

Rotate the object for the given angle (36 is a full rotation). Positive values rotate clock-wise.
linv

Sets the velocity of the object to the given values.
angV

Sets the angular velocity to the given values. Positive values rotate counter-clock-wise

The Motion Actuator starts to move objects on a pulse (TRUE) and stops it on a FALSE pulse. To get
a movement over a certain distance, you need to send a FALSE pulse to the motion actuator always.
See the demo file"blends/MoveCertainDist.blend" (blends/MoveCertainDist.blend) for an example.

Python methods:

setForce ( list [x,y,z] ,  bool local );

Set the "Force" parameter for the Motion Actuator... ???

list [x,y,z] getForce ( );

Gets the "Force" parameter for the Motion Actuator.

setTorque ( list [x,y,z] );

Set the "Torque" parameter for the Motion Actuator

list [x,y,z] getTorque ( );

Gets the "Torque" parameter for the Motion Actuator

setdLoc ( list [x,y,z] );

Sets the dLoc parameters from the Motion Actuator

list [x,y,z] getdLoc ( );

Get the dLoc parameters from the Motion Actuator

setdRot ( list [x,y,z] );

Sets the dRot parameters for the Motion Actuator

list [X,y,z] getdLoc ( );

47



Chapter 3. Game LogicBricks

Gets the dRot parameters from the Motion Actuator

setLinearVelocity ( list [xy,2] );

Sets the linV parameters for the Motion Actuator

list [X,y,z] getLinearVelocity ()

Gets the linV parameters from the Motion Actuator

setAngularVelocity ( list [x,y,Z] );

Sets the angV parameters for the Motion Actuator

list [x,y,z] getAngularVelocity ()

Gets the angV parameters from the Motion Actuator

Examples:

LogicBricks examples (blends/LogicBricks212.zip).

motion.blend (blends/LogicBricks212/3.actuators/motion.blend).

motion_LinV.blend (blends/LogicBricks212/3.actuators/motion_LinV.blend).

3.3.2. Constraint Actuator

48

With the Constraint Actuator you can limit an objects freedom to a certain degree.

x Constraint —  actl u]
Damp: 0 kin Il 2=,
E‘-’) Loc % — -§.00 §.00

With the MenuButton you specify the channel of which freedom should be constrained. With the
NumberButtons "Min" and "Max" you define the minimum and maximum values for the constraint
selected. To constrain an object on more than one channel simply use more than one Constraint

actuator.

Examples:

LogicBricks examples (blends/LogicBricks212.zip).

Python methods:

setDamp ( int damp  );



int damp getDamp( );

setMin (

int min

setMax (

int max

setMin (

int min

setMin (

int min

setLimit

int limit

int min );

getMin ( );

int max );

getMax ( );

int min );

getMin ( );

int min );

getMin ( );

( 2 limit )

getLimit  ( );

Chapter 3. Game LogicBricks

49



Chapter 3. Game LogicBricks

Known issues:
Damping is not working in Blender 2.12

Constraint for rotation not implemented in 2.12

3.3.3. IPO Actuator

50

[po

Ping Pong -
Sta 1 End 31

The IPO Actuator can play the IPO-curves for the object that owns the Actuator. If the object has a
child with an IPO (in a parenting chain) and you activate "Child" in the Actuator, the IPO for the child
is also played.

IPO play modes
Play

Plays the IPO from "Sta" to "End" at every positive pulse the Actuator gets. Another pulse while
playing is discarded.

Ping Pong

Plays the IPO from "Sta" to "End" on the first positive pulse, then backwards from "End" to
"Sta" when the second positive pulse is received.

Flipper

Plays the IPO as long as the pulse is positive. When the pulse changes to negative the IPO is
played from the current frame to "Sta".

Loop Stop

Plays the IPO in a loop as long as the pulse is positive. It stops at the current position when the
pulse turns negative.

Loop End

This plays the IPO repeatedly as long as there is a positive pulse. When the pulse stops it
continiues to play the IPO to the end and then stops.

Property
Plays the IPO for exactly the frame indicated in the property entered in the field "Prop:".



Chapter 3. Game LogicBricks

Currently following IPOs are supported by the gameEngine:
Mesh Objects
Loc, Rot, Size and Col
Lamps
Loc, Rot, RGB, Energy
Cameras
Loc, Rot, Lens, ClipSta, ClipEnd

Python methods:

SetType ( ??? , );

int type  GetType ( ??? , );
SetStart ( int frame , );
SetEnd ( int frame , );

int frame GetStart ( );

int frame GetEnd ( );

Examples:
LogicBricks examples (blends/LogicBricks212.zip).
mouse_button.blend (blends/LogicBricks212/1.sensors/mouse_button.blend).

Studio3.blend.gz (blends/Studio.blend.gz) Complete example to move, switch and zoom two cameras
in a studio environment. The zoom uses the IPO Actuator together with a Lens-Ipo for the cameras.

51



Chapter 3. Game LogicBricks

3.3.4. Camera Actuator

Camera. - act

OB:Cube Height: 2.00
Min: 300 ¥ 00 Max: 5.00

The Camera Actuator tries to mimic a real cameraman. It keeps the actor in the field of view and tries
to stay at a certain distance from the object. Also the motions is soft and there is some delay in the
reaction on the motion of the object.

Fill in the object that should be followed by the camera (you can also use the Camera Actuator for
non-camera objects) into the "OB:" field. The field "Height:" determines the height the camera stays
above the object. "Min:" and "Max:" are the bounds of the distance from the object in which the
camera is allowed to move. The "X" and "Y" buttons specify behind which axis of the object the
camera tries to stay.

Examples:

Logic Bricks examples (blends/LogicBricks212.zip).

camera.blend (blends/LogicBricks212/3.actuators/camera.blend).

Known issues:
2.12: Visibility check not implemented, so an obstacle can cover the object.

camera.blend (blends/LogicBricks212/3.actuators/camera.blend).

3.3.5. Sound Actuator

52

Flay Stop -

@ S:Airstrike way

The Sound Actuator plays a SoundObject loaded with the SoundButtonS€sten 2.1

Sound play modes
Play Stop

Plays the sound as long as there is a positive pulse.
Play End

Plays the sound to the end, when a positive pulse is given.



Chapter 3. Game LogicBricks

Loop Stop
Plays and repeats the sound, when a positive pulse is given.
Loop End

Plays the sound repeatedly, when a positive pulse is given. When the pulse stops the sound is
played to its end.

Examples:
LogicBricks examples (blends/LogicBricks212.zip).
sound_property.blend (blends/LogicBricks212/3.actuators/sound_property.blend).

Known issues:

2.12: Sound only on Windows and Linux implemented

3.3.6. Property Actuator

As5igh

Frop: Proppy
Yalue: 42

Property modes
Assign

Assigns a value oExpression(given in the "Value" field) to a Property. For example with an
Expression like "Proppy + 1" the "Assign™ works like an "Add". To assign strings you need to
add quotes to the string ("...").

Add

Adds the value or result of an expression to a property. To subtract simply give a negative number
in the "Value:" field.

Copy

Froperty - |act
Copy

Frop: Proppy

Prop: SProp

This copies a Property (here "Prop: SProp") from the Object with the name given in "OB: Sphere"

into the Property "Prop: Proppy". This is an easy and safe way to pass information between
objects.

53



Chapter 3. Game LogicBricks

Python methods:

SetProperty ( char* name );

*char name GetProperty ( );

SetValue ( char* value );

char* value GetValue ( );

Examples:
LogicBricks examples (blends/LogicBricks212.zip).

More on using Expressions can be foundiection 2.9

3.3.7. Edit Object Actuator

54

This actuator performs actions on Objects itself, like adding new objects, deleting objects, etc.

Edit Object Actuator types

Add Object
%X Edit Object - | actt a
&dd Object -
@ OB:&rrow Time: 200
liny 4.00 0.00 noo |

The Add Object actuator adds an object to the scene. The new object is oriented along the x-axis
of the creating object.

i Keep the object you like to add on a seperate and hidden layer or it will not work as expected.
Enter the name of the Object to add in the "OB:" field. The "Time:" field determines how long
(in frames) the object should exist. The value "0" denotes it will exist forever. Be careful not to
slow down gameBlender by generating too many objects! If the time an object should exist is not



Chapter 3. Game LogicBricks

predictable, you can also use other events (collisions, properties, etc.) to trigger an "End Object"
for the added object by using LogicBricks.

With the "linV" buttons it is possible to assign an initial velocity to the added object. This velocity
is given in x, y and z components. The "L" button stands for local. When it is pressed the velocity
is interpreted as local to the added object.

Python methods:

setObject ( char* name );

Sets the Object to be added

char* name getObject ( char* name );

Gets the Object name

setTime ( int time );

Time in frames the added Object should exist. Zero means unlimited

int time  getTime ( );

Gets the time the added object should exist

setLinearVelocity ( list [vx,vy,vz] );

Sets the linear velocity [Blenderunits/sec] components for added Objects.

list [vx,vy,vz] getLinearVelocity ()

Sets the linear velocity [Blenderunits/sec] components from the Actuator

End Object

X Edit Object -  actt a
=) End Chject -

The "End Object" type simply ends the life of the object with the actuator when it gets a pulse.
This is very usefull for ending a bullets life after a collision or something similar.

55



Chapter 3. Game LogicBricks

56

Replace Mesh

The "Replace Mesh" type, replaces the mesh of the object by a new one, given in the "ME:" field.
Remember that the mesh name is not implicitly equal to the objectname.

Python methods:

setMesh ( char* name );

Sets the Mesh for the ReplaceMesh Actuator to "name”

char* name getMesh ( );

Gets the Mesh-name from the ReplaceMesh actuator

The "Track to" type, rotates the object in a way that the y-axis points to the target specified in
the "OB:" field. Normally this happens only in the x/y plane of the object (indicated by the "3D"
button not pressed). With "3D" pressed the tracking is done in 3D. The "Time:" parameter sets
how fast the tracking is done. Zero means immedeately, values above zero give a delay (slower)
in tracking.

Python methods:

setObject ( char* name );

char* name getObject ( );

setTime ( int time );



Chapter 3. Game LogicBricks

int time  getTime ( );

setUse3D ( );

bool 3d setUse3D ( );

Examples:

LogicBricks examples (blends/LogicBricks212.zip).

end_object2.blend (blends/LogicBricks212/3.actuators/end_object2.blend).
add_object2.blend (blends/LogicBricks212/3.actuators/add_object2.blend).

Studio3.blend.gz (blends/Studio.blend.gz) Example of a studio environment, uses Replace Mesh to
switch a TV screen.

3.3.8. Scene Actuator

The Scene Actuator is meant for switching Scenes and Cameras in the gameEngine.

Choose the desired action with the MenuButton and enter an existing camera or scene name into the
text field. If the name does not exist, the button will be blanked!

Reset

Simply restarts and resets the scene. It has the same effect like stopping the game with ESC and
restart with PKEY.

57



Chapter 3. Game LogicBricks

Set Scene

Switch to the scene indicated into the text field. During the switch all properties are reset!

Python methods:

setScene ( char* scene );

Sets the Scene to switch to

char* scene getScene ( );

Gets the Scenename from the Actuator

Set Camera

Racer

Switch to the Camera indicated into the text field.

Python methods:

setCamera ( char* camera );

Sets the Camera to switch to

char* camera getCamera ( );

Gets the Camera name from the Actuator

Examples:
SetScene.blend (blends/SetScene.blend).

58



Chapter 3. Game LogicBricks

SetCamera.blend (blends/SetCamera.blend).

Studio3.blend.gz (blends/Studio.blend.gz) Complete example to move, switch and zoom two cameras
in a studio environment.

3.3.9. Random Actuator

An often-needed function for games is a random value to get more variation in movements or enemy
behavior.

The Seed parameter is the value fed into the random generator as a start value for the random number
generation. Because computer generated random numbers are only "pseudo” random (they will repeat
after a (long) while) you can get the same random numbers again if you choose the same Seed.

Fill the name of the property you want to be filled with the random number into the "Property:" field.

Random Actuators types

Boolean Constant

Seed: 0 Bool Constant -~

Froperty:Ran
Alway s true

This is not a random function at all, use this type to test your game logic with a TRUE or FALSE
value.

Boolean Uniform

Random -2 actZ

Seed: 0 Bool Unifarm =
B Property:Ran

This is the classical random 50-50 pick. It results in TRUE or FALSE with the same chance. This
is like a (ideal) coin-pick.

Boolean Bernoulli

Random < acté

Seed: 1 BEool Bernoulli =

Propery:Ran
Chance 0.300

This random function results also in a boolean value of TRUE or FALSE, but instead of having
the same chance for both values you can control the chance of having a TRUE pick with the

59



Chapter 3. Game LogicBricks

60

"Chance" parameter. A chance of 0.5 will be the same as "Bool Uniform". A chance of 0.1 will
result in 1 out of 10 cases in a TRUE (on average).

Integer Constant

For testing your logic with a value given in the "Value:" field

Integer Uniform

This random type randomly produces an integer value between (and including) "Min:" and
"Max:". The classical use for it is to simulate a dice pick with "Min: 1" and "Max: 6".

Integer Poisson

The random numbers are distributed in such a way that an average of "Mean:" is reached with
an infinite number of picks.

Float Constant

For debugging your game logic with a given value.

Float Uniform

This returns a random floating point value between "Min:" and "Max:".



Chapter 3. Game LogicBricks

Float Normal

Random - acte

Seed: 1 Float Hormal =

Froperty:Ran
hean: 3.00 S0 6.00

Returns a weighted random number around "Mean:" and with a standard deviation of "SD:".

Float Negative Exponential

Random - act?

Seed: 1 Float Meg. Exp. ~

Froperty:Ran
Half- life time: 3.00

Returns a random number which is well suited to describe natural processes like radioactive
decay or lifetimes of bacteria. The "Half-life time:" sets the average value of this distribution.

Python methods:

setSeed ( int seed );

Sets the random seed (the init value of the random generation)

int seed getSeed ( );

Gets the random seed (the init value of the random generation) from the Actuator

float paral getParal ( );

Gets the first parameter for the selected random distribution

float para2 getPara2 ( );

Gets the second parameter for the selected random distribution

setProperty ( char* propname );

Sets the to which Property the random value should go

char* propname  getProperty ( );

Gets the Property name from the Actuator

setDistribution ( int dist );

61



Chapter 3. Game LogicBricks

??

int dist getDistribution ()

Gets the random distribution method from the Actuator

62



Chapter 4. UV Texturing

Textures have a big impact on the look and feel of your game or interactive environment. With textures
you are able to create a very detailed look even with a low poly model. With alpha channel textures
you are also able to create things like windows or fences without actually modeling them.

4.1. Avaible file formats

Blender uses OpenGL (http://www.opengl.org/) to draw its interface and the gameEngine. This way
we can provide the great multi platform compatibility. In terms of using textures we have to pay
attention to several things before we're able to run the game on every Blender platform.

- the height and width of textures need to be of a power of 64 pixels (e.g. 64x64, 64x128, 128x64
etc.)

- it is not recommended to use textures with a reolution above 256x256, because not all graphic
cards support higher resolutions.

Blender can use the following file formats as (real-time) textures:
Targa

The Targa or TGA (*.tga extension) file format is a lossless compressed format, which can in-
clude an alpha channel

Iris

Iris (*.rgb) is the native IRIX image format. It is a lossless compressed file format, which can
include an alpha channel.

Jpeg
A lossy compressed (it uses a compression which leaves out parts in the image which the human
eye can hardly see) file format (*.jpg, *.jpeg) designed for photos with very small file sizes. Be-
cause of its small footprint it is a very good format for distribution over the net. It has no support
for alpha channels and is because of the quality loss due to compression not a recommended as
format to work with during the design phase of a game.

4.2. Handling of resources

For publishing and easier handling of Blenders files, you can include all resources into the scene.
Normally textures, samples and fonts are not included in a file while saving. This keeps them on your

63



Chapter 4. UV Texturing

disk and makes it possible to change them and share between scenes. But if you want to distribute
a file it is possible to pack these resources into the Blendfile, so you only need to distribute one file,
preventing missing resources.

Figure 4-1. The ToolsMenu

Tools ¥ [ - |sCR:screer
Fack Data
Unpack Data to current dir
Advanced Unpack

The functions for packing and unpacking are summarized in the ToolsMenu. You can see if a file is
packed if there is a little "parcel" icon right to the ToolsMenu. After you packed a file, all new added
resources are automatically packed (AutoPack).

The Tools Menu entries
Pack Data

This packs all resources into the Blendfile. The next save will write the packed file to disk.
Unpack Data to current dir

This unpacks all resources to the current directory. For textures a directory "textures" is created,
for sounds a "samples" directory and fonts are unpacked to "fonts".

Advanced Unpack

This option calls the Advanced Unpack Menu.

Figure 4-2. Advanced Unpack Menu

Unpack1file

Use files in current directory (create when nec Y

Write files to current directory (overwtite existing files)

Use files in original location (create when necessary)
Write files to original location (overwtite existing files)

Disahle AutoPack, keep all packed files
Ask for each file

64



Chapter 4. UV Texturing

Advanced Unpack Menu entries
Use files in current directory

This unpacks only files which are not present in the current directory. It creates files when
necessary.

Write files to current directory

This unpacks the files to the current directory. It overwrites existing files!
Use files in original location

This uses files from their original location (path on disk). It creates files when necessary.
Write files to original location

This writes the files to their original location (path on disk). It overwrites existing files!
Disable AutoPack, keep all packed files

This disables AutoPack, so new inserted resources are not packed into the Blendfile.
Ask for each file

This asks the user for each file for the unpack options.

4.3. The UV Editor

The UV editor is fully integrated into Blender and allows you to map textures onto the faces of your
modells. Each face can have individual texture coordinates and an individual image assigned. This
can be combined with vertexcolors to darken or lighten the texture or to tint it.

To start UV editing, enter FaceSelect mode with the FKEY or the FaceSelect icon in the 3DWindow
header. The mesh is now drawn z-Buffered. In textured mode (ALT-Z) untextured faces are drawn
purple to indicate the lack of a texture. Selected faces are drawn with a dotted outline.

To select faces use the right mouse button, with the BKEY you can use BorderSelect and the AKEY
selects/deselects all faces. While in FaceSelect mode you can enter EditMode (TAB) and select ver-
tices. After leaving EditMode the faces defined by the selected vertices are selected in FaceSelect
mode. The active face is the last selected face: this is the reference face for copy options.

4.3.1. The ImageWindow

To assign images to faces you need to open an ImageWindow with SHIFT-F5.

65



Chapter 4. UV Texturing

Figure 4-3. The Image Window

The first Icon keeps UV polygons square while editing: this is a big help while texturing. Just
drag one or two vertices around and the others are following to keep the polygon square. The
second one keeps the vertices inside the area of the image.

| = | imimetaiog tim x| [Load ]| [replace] |

With the UserBrowse (MenuButton) you can browse, assign and delete loaded images on the
selected faces.

"Load" loads a new image and assigns it to the selected faces. "Replace" replaces (scene global)
an image on all faces assigned to the old image. The small buttons right to the "Load" and
"Replace" buttons opens a FileWindow without the thumbnail images.

66



Chapter 4. UV Texturing

The grid icon enables the use of more (rectangular) images in one map. This is used for texturing
from textures containing more than one image in a grid and for animated textures. The following
two number buttons define how many parts the texture has in x and y direction. Use SHIFT-LMB
to select the desired part of the image in GridMode.

The "Anim" button enables a simple texture animation. This works in conjunction with the grid
settings, in a way that the parts of the texture are displayed in a row in game mode. With the
number buttons right of the "Anim" button you define the start and end part to be played. "Cycle"
switches between one-time and cyclic play.

With the lock icon activated, any changes on the UV polygons in the ImageWindow are shown
in realtime in the 3DWindows (in textured mode).

Vertices in the ImageWindow are selected and edited (rotate, grab) like vertices in EditMode in the
3DWindows. Drag the view with the middle mouse, zoom with PAD+ and PAD-.

4.3.2. The Paint/FaceButtons

When in FaceSelect mode, you can access the Paint/FaceButtons with ttﬂdxm the Button-
sWindow header. In the Paint/FaceButtons you’ll find all functions to set the attributes for faces and
access the VertexPaint options.

Figure 4-4. The Paint/FaceButtons

Caollision

The following modes always work on faces and display the setting of the active face. Two colored lines
in the 3D and the ImageWindow indicate the active face. The green line indicates the U coordinate, the
red line the V coordinate. To copy the mode from the active to the selected faces use the copy buttons
("Copy DrawMode", "Copy UV+tex" and "Copy VertCol") in the Paint/FaceButtons. In FaceSelect
mode the special menu has some points to quickly set and clear modes on all selected faipsesee

4-5.

67



Chapter 4. UV Texturing

68

Figure 4-5. The special menu for the FaceSelectMode

Specials
Set Tex
Shared
Light
Inwisible
Clr Tex
Shared
Light
Inwisitile

Face modes

Tex
This enables the use of textures. To use objects without textures disable "Tex" and paint the faces
with VertexPaint.

Tiles
This indicates and sets the use of the tile mode for the textur&essen 4.3.1

Light
Enables realtime lighting on faces. Lamps only affect faces of objects in the same layer as the
lamp. Lamps can also be on more than one layer, which makes it possible to create complex
real-time lighting situations. See alSection 2.7

Invisible
Makes faces invisible. These faces are still calculated for collisions, so this gives you an option
to build invisible barriers, etc.

Collision
The faces with this option are evaluated by the gameEngine. If that is not needed, switch off this
option to save on resources.

Shared
With this option vertex colors are blended across faces if they share vertices (currently not im-
plemented in Blender 2.12).

Twoside
Faces with this attribute are rendered twosided in the gameEngine

ObColor

Faces can have an animatable color using the ColR, ColG and ColB IPOs. This option replaces
the vertexcolors



Chapter 4. UV Texturing

Halo

Faces with this attribute are rendered with the X-axis always pointing to the active view or
camera.

Billboard

Faces with this attribute are pointing in the direction of the active view with the X-axis. The
difference with "Halo" is the faces are only rotated around the Z-axis

Shadow
(currently not implemented in Blender 2.12).
Text
Faces with this attribute are used for displaying bitmap-text in the gameEngirgxsiten 4.3.3
Opaque
Normal opaque rendered faces. The color of the texture is rendered as color.
Add

Faces are rendered transparent. The color of the face is added to what has already been drawn.
Black areas in the texture are transparent, white are fully bright. Use this option to achieve light
beam effects, glows or halos around lights. For real transparency use the next option.

Alpha

Depending on the alpha channel, the face is rendered transparent.

4.3.3. Bitmap text in the game engine

Since Blender version 2.04 we've got the ability to draw text in the gameEngine using bitmap fonts.

These bitmap fonts can be created from a TrueType or Postscript outline font. For an explanation how

to create a bitmap font look for the Tutorial How to create your own bitmap fonts (http://www.blender.nl/showiter
on the Blender site.

To get bitmap text or numbers displayed on a single face you need a special bitmap with the font
rendered onto it. Then create a property named "Text" for your object and map the first charac-
ter of the text-bitmap on it. Check the "Text" face attribute for the face, which should display the
text in the Paint/FaceButtons. The type of the property can be every type, so also a boolean will be
rendered as "True" or "False". For a complete tutorial look at: Using bitmap fonts in blender 2.04
(http://www.blender.nl/showitem.php?id=42)

69



Chapter 4. UV Texturing

70



Chapter 5. Python

. Work in progress! Especially | will add here more Python script examples in future.
Python (www.python.org) is an interpreted, interactive, object-oriented programming language.

Python combines remarkable power with very clear syntax. It has modules, classes, exceptions, very
high level dynamic data types, and dynamic typing. Python is also usable as an extension language
for applications that need a programmable interface.

Beside this use as extension language, the Python implementation is portable to (at least) all platforms
that Blender runs on.

Python is copyrighted but freely usable and distributable, even for commercial use.

5.1. The TextWindow

The TextWindow is a simple but useful text editor, fully integrated into Blender. It's main purpose
of it is to write Python scripts, but it is also very useful for writing comments in the Blendfile or to
explain other users the purpose of the scene.

Figure 5-1. The TextWindow

The TextWindow can be displayed with SHIFT-F11 or by adjusting the lconMenu in the Window-
header. As usual there is an IconBut to make the TextWindow fullscreen, the next MenuButton can be

71



Chapter 5. Python

used to switch between text files, open new ones or add new text buffers. The x-shaped Button deletes
a textbuffer after a confirmation.

With the right MenuButton you can change the font for displaying the text.

With LeftMouse-Hold and dragging the mouse you can mark ranges of text for the usual cut, copy &
paste functions. The keycommands are:

Keycommands for the TextWindow
ALT-C

Copy the marked text into a buffer
ALT-X

Cut out the marked text into a buffer
ALT-V

Paste the text from buffer to the cursor in the TextWindow

ALT-O

Loads a text, a FileWindow appears
CTRL-R

Reloads the current text, very useful for editing with an external editor
SHIFT-ALT-F

Pops up the Filemenu for the TextWindow
ALT-J

Pops up a NumButton where you can specify a linenumber the cursor will jump to
ALT-U

Unlimited Undo for the TextWindow
ALT-R

Redo function, recovers the last Undo
ALT-A

Mark the whole text

5.2. Python for games

With Python integrated into the gameEngine you can influence LogicBricks, change their parameters
and react on events triggered by the LogicBricks.

72



Chapter 5. Python

Beside that you can influence the gameObiject that carries the Python Controller directly. This means
moving it, applying forces or geting information from this object.

@ Beside the Python in the gameEngine, Blender also includes Python for modeling and animation

tasks.

5.2.1. Basic gamePython

The first step for using gamePython is to add at least a Sensor and a Python Controller to an object.
Then add a new text file in the TextWindow. Fill in the name of that text file into the "Script:" field of
the Python Controller. You should now have a gameLogic setup likéguare 5-2

Figure 5-2. LogicBricks for a first gamePython script.
Controllers

Plane | Plane

__ Always o |AtwaysSens T __Python - FythonController
] o] : Seript: Python p K

Now enter the following script (./blends/Python_getPosition.blend) into the TextWindow you just
created (you don'’t need to type the lines starting with "#", these are comments).

Figure 5-3. First Script

# first gamePython script
# gets the position of the owning object
# and prints it on the console

import GamelLogic

controller = GamelLogic.getCurrentController()
owner = controller.getOwner()

© 0 N O O~ WDN PP

=
o

print owner.getPosition()

The "print" command and errors from the Python interpreter will appear on the console where you
started Blender from, or in the DOS window, when running Blender under Windows. So it is helpful
to size the Blender window in such a way that you can see the console window while programming
Python.

This basic script only prints the position of the object that owns the Python Controller. Move your
object and then restart gameBlender with the PKEY to see the results changing.

Now to explain the function of the script line by line. Line five is maybe the most important line here.
We import the GameLogic module which is the basis for all gamePython in Blender.

73



Chapter 5. Python

In line seven we get the Controller, which executes the script and assigns it to the variable "controller".

In line eight we use the controller we got in line seven to get the owner, the GameObject carrying the
LogicBrick. You can see we use the method "getOwner()" to get the owner of our controller.

We now have the owner and we can use its methods to do things with it. Here in line 10 we use the
"getPosition()" method to print the position of the gameObject as a matrix of the X, Y and Z values.

You may now wonder what other methods the PythonObjects have. Of course this is part of this doc-
umentation, but Python is "self' documenting, so we have more possibilities to get that information.

Add the following line to the end of the script froRigure 5-3

1 print dir(owner)

Start the gameEngine again, stop it and look at the console window. You see the following output:

[0.0,0.0, 0.0]

['applylmpulse’, 'disableRigidBody’, enableRigidBody’, 'getLinearVelocity’, 'getMass’,
‘getOrientation’, 'getPosition’, 'getReactionForce’,’'getVelocity’, restoreDynamics’, 'setOrientation’,
'setPosition’, 'setVisible’, 'suspendDynamics’]

The first line shows the position of the object, the next lines show the methods, which the "owner
is providing. For example you see a 'getMass’ method, which will return the mass of a dynamic
object. With the knowledge of the "dir()" function you can ask Python objects for information, without
consulting external documentation.

5.3. Examples for gamePython

74

Here you will find some small samples for the use of Python in the gameEngine. Please explore the
provided Blend-files and re-use them in your own scenes.



Chapter 5. Python

5.3.1. Moving objects with python

Figure 5-4. Brownian movement

You can use the setPosition() or applylmpulse() functions for moving an object from a python script.
Another (and a bit easier to understand) way is to change the fields of an Motion Actuator.

The script fromFigure 5-5shows the use of this method to move an object in a random way, this is
similar to the (brownian) movement of molecules or bacterias.

Figure 5-5. Move script

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

# Use of python to set actuators and move an object
# 29/03/2001 carsten@blender.nl

# CTRL-LEFTARROW for fullscreen

# Usual import of the GamelLogic module
import GamelLogic

# Get the controller (which carries the script)
contr = GameLogic.getCurrentController()

# and the actuator (by name!)
move=contr.getActuator("move")

# Get a random float (0.0 ... 1.0), this random generates
# different sequences every gameEngine start!
random = Gamelogic.getRandomFloat()

# Set the dRot and dLoc in the attached activator (note the last
# "1", for local movement!

move.setDRot(0,(random-0.5)/5,0,1)

move.setDLoc(random/5,0,0,1)

# Activate the Actuator

75



Chapter 5. Python

27 Gamelogic.addActiveActuator(move,1)

Note the use of the getRandomFloat() function to get the random numbers without unsing a Random
Actuator. These random numbers are different on every gameEngine start. The last lines actually set
the values in the Actuator and activate it with addActiveActuator().

Figure 5-6. LogicBricks for the brownian movement

Figure 5-6shows the used logic bricks. Be sure to name the actuator correct because the script is
refering to this name to get the actuator! The Add Object Actuator is adding the trail to the moving
object.

Get a example file here:brown.blend (blends/brown.blend).

5.3.2. Simple visibility check

76

Figure 5-7. Visibility Script

1 # Simple visibility check

2

3 import Rasterizer

4

5

6 # experimental visibility flag

7 # it will hide all objects

8 # so objects must be set visible
9 # using this script

10

11 Rasterizer.enableVisibility(1)

12

13

14 # get controller and sensor

15 cont = Gamelogic.getCurrentController()



Chapter 5. Python

16 sensor = cont.getSensor("viznear")

17

18 # Set the player visible ;-)

19 sensor.getOwner().setVisible(1)

20

21

22 # now set all objects in the range of the near
23 # visible. Try to change "Dist" and "Reset"
24 objects = sensor.getHitObjectList()

25 if objects:

26 for obj in objects:

27 obj.setVisible(1)

For a simple visibility check you assign a Near Sensor to your player as sholigure 5-8 The
Near Sensor will provide the visibility script with an object list that is inside the Near Sensor range
defined by "Dist" and "Reset". Make sure you check the positive pulse mode and set "f:0".

Figure 5-8. LogicBricks for the visibility script

Get a example file here:Visibility.blend (blends/Visibility.blend).

5.3.3. Mouse cursor with python

Figure 5-9. Mouse cursor script

1 # Mouse cursor control

2

3 import GamelLogic

4 import Rasterizer

5

6 # Get the dimensions of the game window

7 ww = Rasterizer.getWindowWidth()

8 wh = Rasterizer.getWindowHeight()

9

10 # calculate the aspect (in full screen the aspect of the CRT)

77



Chapter 5. Python

11 aspect = float(wh)/ww

12

13 # With this value you can calibrate the mouse to the 3D Window
14 actionx=28.0

15 actiony=actionx*aspect

16

17 #Get controller, sensor and owner

18 ¢ = GameLogic.getCurrentController()

19 sensor = c.getSensor("mouse")

20 owner = c.getOwner()

21

22 # | use properties for debugging purpose (use wireframe to see)
23 owner.x = float(sensor.getXPosition()-ww/2)/ww*actionx

24 owner.y = float(sensor.getYPosition()-wh/2)/wh*actiony

25

26 # Set the position of the crosshair directly

27 # (see SCA, there is no Actuator)

28 owner.setPosition(fowner.x,0,-owner.y])

The script is triggered by a Mouse Sensor, set to "Trigger on movement". Note the use of the two
Properties, x and y, they are used for debugging but needed for the script to work. If you don’t need
the Properties replace the occurence of "owner.x" with "x" and "owner.y" with "y".

Figure 5-10. Logic bricks for the mouse script

Crosshair | Crosshair

Get a example file here:MG1.blend (blends/MG1.blend).

5.4. gamePython Documentation per module

5.4.1. GameLogic Module

78

SCA_PythonController getCurrentController )

Returns the Controller object which carries the script.



Chapter 5. Python

void addActiveActuator ( actuator ,  bool active );

This method makes the Actuator "actuator" active (“active=TRUE") or inactive ("active=FALSE").
float getRandomFloat ( );
This function returns a random float in the range of 0.0...1.0. The seed is taken from the system time,

so you get a different sequence of random numbers at every game start.

setGravity  ( [gravityX,gravityY,gravityZ] );
Sets the world gravity.

5.4.2. Rasterizer Module

int getWindowWidth ( );

This function returns the width of the Blenderwindow the game is running in.

int getWindowHeight ( );

This function returns the height of the Blenderwindow the game is running in.

void makeScreenshot ( char* filename );

This function writes a screenshot of the game as TGA file to disk.
enableVisibility ( bool usevisibility );
This sets all objects to invisible when "usevisibility" is TRUE. The game can then set the visibility

back to on for only the needed objects.

showMouse( bool show );
Shows the mouse cursor when "show" is TRUE while the gameEngine runs.

setBackgroundColor  ( [float R,float G,float B] );

setMistColor  ( [float R,float G,float B] );

79



Chapter 5. Python

setMistStart ( float start );

setMistend ( float end );

5.4.3. GameKeys Module

This is a module that only defines all keyboard keynames (AKEY = 65 etc).

"AKEY", ..., "ZKEY", "ZERO_KEY", ..., "NINEKEY", "CAPSLOCKKEY", "LEFTCTRLKEY",
"LEFTALTKEY", "RIGHTALTKEY", "RIGHTCTRLKEY", "RIGHTSHIFTKEY", "LEFTSHIFTKEY",
"ESCKEY", "TABKEY", "RETKEY", "SPACEKEY", "LINEFEEDKEY", "BACKSPACEKEY", "DELKEY",
"SEMICOLONKEY", "PERIODKEY", "COMMAKEY", "QUOTEKEY", "ACCENTGRAVEKEY",

"MINUSKEY", "VIRGULEKEY", "SLASHKEY", "BACKSLASHKEY", "EQUALKEY", "LEFT-
BRACKETKEY", "RIGHTBRACKETKEY", "LEFTARROWKEY", "DOWNARROWKEY", "RIGHTAR-
ROWKEY", "UPARROWKEY", "PADQ", ..., "PAD9", "PADPERIOD", "PADVIRGULEKEY", "PADASTERKEY",
"PADMINUS", "PADENTER", "PADPLUSKEY", "F1KEY", ..., "F12KEY", "PAUSEKEY", "IN-

SERTKEY", "HOMEKEY", "PAGEUPKEY", "PAGEDOWNKEY", and "ENDKEY".

5.5. Standard methods for LogicBricks

All LogicBricks inherit the following methods:

getOwner ( );

This returns the owner, the gameObject has the LogicBrick assigned.

setExecutePriority (' int pri );

?

int pri getExecutePriority ()
?

5.5.1. Standard methods for Sensors

All sensors inherit the following methods:

int isPositive ()

80



Chapter 5. Python

1 if the sensor fires a positive pulse.

bool getUsePosPulseMode ( );

Returns TRUE if positive pulse mode is active, FALSE if positive pulse mode is not active.

setUsePosPulseMode ( bool flag );

Set flag to TRUE to switch on positive pulse mode, FALSE to switch off positive pulse mode.

int getPosFrequency ( );

Return the frequency of the updates in positive pulse mode.

setPosFrequency ( int freq );

Set the frequency of the updates in positive pulse mode. If the frequency is negative, it is set to 0.

bool getUseNegPulseMode ( );

Returns TRUE if negative pulse mode is active, FALSE if negative pulse mode is not active.

setUseNegPulseMode ( bool flag );

Set flag to TRUE to switch on negative pulse mode, FALSE to switch off negative pulse mode.

int getNegFrequency ( );

Return the frequency of the updates in negative pulse mode.

setNegFrequency ( int freq );

Set the frequency of the updates in negative pulse mode. If the frequency is negative, it is set to 0.

bool getinvert ( );

Returns whether or not pulses from this sensor are inverted.

setinvert ( bool flag );

Set to TRUE to invert the responses of this sensor, set to FALSE to keep the normal response.

5.5.2. Standard methods for Controllers

Controllers have the following methods:

81



Chapter 5. Python

Actuator* getActuator ( char* name );

Returns the actuator with "name".

list getActuators ( );

Returns a python list of all connected Actuators.

Sensor* getSensor ( char* name |, );

Returns the Sensor with "name".

list getSensors ( );

Returns a python list of all connected Sensors.

5.5.3. Standard methods for gameObjects

82

GameObijects you got with getOwner() have the following methods.

applylmpulse  ( list [x,y,z] D
Apply impulse to the gameObject (N*s).

disableRigidBody ()
Disables the rigid body dynamics for the gameObject.

enableRigidBody ( );
Enables the rigid body dynamics for the gameObject.

setVisible  ( int visible );

Sets the gameObject to visible.

setPosition  ( [x,y,Z] )

Sets the position of the gameObject according to the list of the X, Y and Z coordinate.

pylist [x,y,z] getPosition  ( );

Gets the position of the gameObiject as list of the X, Y and Z coordinate.

pylist [x,y,z] getLinearVelocity ()



Chapter 5. Python

Returns a list of the X, Y and Z component of the speed. The speed is in Blenderunits/second.

pylist [x,y,z] getVelocity  ();

float mass getMass ( );

Returns the mass of the gameObiject.

pylist [x,y,z] getReactionForce  ( );

Returns a Python list of three elements.

suspendDynamics ( );

Suspends the dynamic calculation in the gameEngine.

restoreDynamics  ( );

Suspends the dynamic calculation in the gameEngine.

83



Chapter 5. Python

84



Index

Actuator
Camerap?2
Constraint48
Edit Object,54
IPO, 50
Motion, 46
Property,53
Random59
Scenep7
Sound 52
Actuators 46
Add Object,54
Always, 33
Anim, 67
animated texture§7
AutoPack,64
Bugs
,52,53
Constraint50
Ray Senso#43
Collision Sensor37
Command line optiong,8
Controllers 44
AND, 44
Expression44
OR,44
Standard Method$§1
Design style31
Examples40, 43, 45, 48, 48, 51, 52, 53, 54,
57
AND Controller,44
Expressions28
OR Controller44
Phyton Controllerd5
Property Sensod?2
Random Senso#2
Scene Actuato58
Expressions28
Face mode%8
file formats,63
gameBlender10
GameKeys ModuleB0

GameLogic Module78
GameMenul7
gameObijects
Standard Method$§2
gravity, 27
grid icon,67
ImageWindow65
Ketsji, 17
Keyboard,34
Lamps,25
Lights, 25
lock icon,67
LogicBricks,33
Standard Methods0
Material, 25
Materials,24
Mouse Sensof36
Near Sensoi38
OpenGL,26
Pack Datap3
Paint/FaceButton§7
Performance31
Physics26
Properties22
property
Collision Sensor37
Property Senso40
Pulse,33
mode,34
Python,71, 72
mouse,’7
set Actuators75
visibility, 76
Python methods
Property Actuatorb4
Python Controller45
Python exampleg/4
Python methods
AddObject Actuators5
Collision Sensor37
Constraint Actuato®8
IPO Actuator51
Motion Actuator,47
Mouse SensoB6

85



Near Sensof39
Property Senso41
Python Controller45
Random Actuator61
Random Senso#2
Ray Sensoi43

ReplaceMesh Actuatos6

Sensor35
SetCamera Actuatos8
SetScene Actuatos8
Touch Senso37
TrackTo Actuator56
Python modules/8
Radar Senso#0
Random Senso#2

Rasterizer Module79
Ray Sensor3
RealtimeButtons20
Resources$3
Sensors33
Standard Method80
SoundButtons29
SoundWindow31
Special menu
FaceSelectMod&7
Specularity25
Touch Sensoi36
UV Editor, 65
UV Texturing,63
WorldButtons,27






