
C++ language tutorial

The cplusplus.com tutorial
Complete C++ language tutorial

1.4 (August 2003)

● Introduction
❍ Instructions for use.

● 1. Basics of C++.
❍ Structure of a C++ program.
❍ Variables. Data types. Constants.
❍ Operators.
❍ Communication through console.

● 2. Control structures and Functions.
❍ Control Structures.
❍ Functions (I).
❍ Functions (II).

● 3. Advanced Data.
❍ Arrays.
❍ Strings of Characters.
❍ Pointers.
❍ Dynamic Memory.
❍ Structures.
❍ User defined data types. (typedef, union, enum)

● 4. Object-oriented Programming.
❍ Classes. Constructors and Destructors. Pointers to classes.
❍ Overloading Operators. this. Static members.
❍ Relationships between classes: friend. Inheritance.
❍ Virtual Members. Abstraction. Polymorphism.

● 5. Advanced concepts.
❍ Templates.
❍ Namespaces.
❍ Exception handling.

http://www.cplusplus.com/doc/tutorial/ (1 of 2)14-04-2004 18:34:44

C++ language tutorial

❍ Advanced classes type-casting. (new cast and typeid operators)
❍ Preprocessor directives.

● 6. C++ Standard Library.
❍ Input/Output with files.

● Epilogue.
❍ The Author.

NOTE: The examples included in this tutorial are complete applications that can be compiled with almost any C++
compiler. If you want more info on how to compile these programs check the document Compilation of Console
Programs.

Written by Juan Soulié for the C++ Resources Network (www.cplusplus.com). English revision: Mitchell Markin.
© The C++ Resources Network, 2000-2001 - All rights reserved

Go back:
documents section

Begin Tutorial:
Introduction - Instructions for use

http://www.cplusplus.com/doc/tutorial/ (2 of 2)14-04-2004 18:34:44

http://www.cplusplus.com/doc/compiler/console.html
http://www.cplusplus.com/doc/compiler/console.html
http://www.cplusplus.com/
http://www.cplusplus.com/doc/
http://www.cplusplus.com/doc/
http://www.cplusplus.com/doc/

C++ Tutorial: Introduction, Instructions for use.

Introduction
Instructions for use

To whom is this tutorial directed?

This tutorial is for those people who want to learn programming in C++ and do not
necessarily have any previous knowledge of other programming languages. Of course any
knowledge of other programming languages or any general computer skill can be useful to
better understand this tutorial, although it is not essential.

If you are familiar with C language you can take the first 3 parts of this tutorial (from 1.1 to
3.4) as a review, since they mainly explain the C part of C++.

Part 4 describes object-oriented programming.

Part 5 mostly describes the new features introduced by ANSI-C++ standard.

Structure of this tutorial

The tutorial is divided in 6 parts and each part is in several different sections. You can access
any section directly from the main index or begin the tutorial from any point and follow the
links at the bottom of each section.

Many sections include an additional page with specific examples that describe the use of the
newly acquired knowledge in that chapter. It is recommended to read these examples and be
able to understand each of the code lines that constitute it before passing to the next chapter.

A good way to gain experience with a programming language is by modifying and adding
new functionalities on your own to the example programs that you fully understand. Don't be
scared to modify the examples provided with this tutorial. There are no reports of people
whose computer has been destroyed due to that.

Compatibility Notes

The ANSI-C++ standard accepted as an international standard is relatively recent. It was

http://www.cplusplus.com/doc/tutorial/tut0-1.html (1 of 2)14-04-2004 18:35:06

http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: Introduction, Instructions for use.

published in November 1997, nevertheless the C++ language exists from long ago (1980s).
Therefore there are many compilers which do not support all the new capabilities included in
ANSI-C++, specially those released prior to the publication of the standard.

During this tutorial, the concepts that have been added by ANSI-C++ standard which are not
included in most older C++ compilers are indicated by the following icon:

<- new in ANSI C++

Also, given the enormous extension that the C language enjoys (the language from which C+
+ was derived), an icon will also be included when the topic explained is a concept whose
implementation is clearly different between C and C++ or that is exclusive of C++:

<- different implementation in C and
C++

Compilers

The examples included in this tutorial are all console programs. That means they use text to
communicate with the user and to show results.

All C++ compilers support the compilation of console programs. If you want to get more
information on how to compile the examples that appear in this tutorial, check the document
Compilation of Console Programs, where you will find specific information about this
subject for several C++ compilers existing in the market.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
Main Menu index

Next:
1.1 - Structure of a C++

program

http://www.cplusplus.com/doc/tutorial/tut0-1.html (2 of 2)14-04-2004 18:35:06

http://www.cplusplus.com/doc/compiler/console.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 1.1, Structure of a program

Section 1.1
Structure of a C++ program

Probably the best way to start learning a programming language is with a program. So here is our
first program:

// my first program in C++

#include <iostream.h>

int main ()
{
 cout << "Hello World!";
 return 0;
}

Hello World!

The left side shows the source code for our first program, which we can name, for example,
hiworld.cpp. The right side shows the result of the program once compiled and executed. The
way to edit and compile a program depends on the compiler you are using. Depending on whether it
has a Development Interface or not and on its version. Consult section compilers and the manual or
help included with your compiler if you have doubts on how to compile a C++ console program.

The previous program is the first program that most programming apprentices write, and its result is
the printing on screen of the "Hello World!" sentence. It is one of the simpler programs that can be
written in C++, but it already includes the basic components that every C++ program has. We are
going to take a look at them one by one:

// my first program in C++
This is a comment line. All the lines beginning with two slash signs (//) are considered
comments and do not have any effect on the behavior of the program. They can be used by
the programmer to include short explanations or observations within the source itself. In this
case, the line is a brief description of what our program does.

#include <iostream.h>
Sentences that begin with a pound sign (#) are directives for the preprocessor. They are not
executable code lines but indications for the compiler. In this case the sentence #include
<iostream.h> tells the compiler's preprocessor to include the iostream standard header
file. This specific file includes the declarations of the basic standard input-output library in C

http://www.cplusplus.com/doc/tutorial/tut1-1.html (1 of 5)14-04-2004 18:35:18

http://www.cplusplus.com/doc/compiler/console.html

C++ Tutorial: 1.1, Structure of a program

++, and it is included because its functionality is used later in the program.

int main ()
This line corresponds to the beginning of the main function declaration. The main function
is the point by where all C++ programs begin their execution. It is independent of whether it
is at the beginning, at the end or in the middle of the code - its content is always the first to
be executed when a program starts. In addition, for that same reason, it is essential that all C+
+ programs have a main function.

main is followed by a pair of parenthesis () because it is a function. In C++ all functions
are followed by a pair of parenthesis () that, optionally, can include arguments within them.
The content of the main function immediately follows its formal declaration and it is
enclosed between curly brackets ({}), as in our example.

cout << "Hello World";
This instruction does the most important thing in this program. cout is the standard output
stream in C++ (usually the screen), and the full sentence inserts a sequence of characters (in
this case "Hello World") into this output stream (the screen). cout is declared in the
iostream.h header file, so in order to be able to use it that file must be included.

Notice that the sentence ends with a semicolon character (;). This character signifies the end
of the instruction and must be included after every instruction in any C++ program (one of
the most common errors of C++ programmers is indeed to forget to include a semicolon ; at
the end of each instruction).

return 0;
The return instruction causes the main() function finish and return the code that the
instruction is followed by, in this case 0. This it is most usual way to terminate a program
that has not found any errors during its execution. As you will see in coming examples, all C+
+ programs end with a sentence similar to this.

Therefore, you may have noticed that not all the lines of this program did an action. There were
lines containing only comments (those beginning by //), lines with instructions for the compiler's
preprocessor (those beginning by #), then there were lines that initiated the declaration of a function
(in this case, the main function) and, finally lines with instructions (like the call to cout <<),
these last ones were all included within the block delimited by the curly brackets ({}) of the main
function.

The program has been structured in different lines in order to be more readable, but it is not
compulsory to do so. For example, instead of

int main ()

http://www.cplusplus.com/doc/tutorial/tut1-1.html (2 of 5)14-04-2004 18:35:18

C++ Tutorial: 1.1, Structure of a program

{
 cout << " Hello World ";
 return 0;
}

we could have written:

int main () { cout << " Hello World "; return 0; }

in just one line and this would have had exactly the same meaning.

In C++ the separation between instructions is specified with an ending semicolon (;) after each one.
The division of code in different lines serves only to make it more legible and schematic for humans
that may read it.

Here is a program with some more instructions:

// my second program in C++

#include <iostream.h>

int main ()
{
 cout << "Hello World! ";
 cout << "I'm a C++ program";
 return 0;
}

Hello World! I'm a C++ program

In this case we used the cout << method twice in two different instructions. Once again, the
separation in different lines of the code has just been done to give greater readability to the program,
since main could have been perfectly defined thus:

int main () { cout << " Hello World! "; cout << " I'm to C
++ program "; return 0; }

We were also free to divide the code into more lines if we considered it convenient:

int main ()
{

http://www.cplusplus.com/doc/tutorial/tut1-1.html (3 of 5)14-04-2004 18:35:18

C++ Tutorial: 1.1, Structure of a program

 cout <<
 "Hello World!";
 cout
 << "I'm a C++ program";
 return 0;
}

And the result would have been exactly the same than in the previous examples.

Preprocessor directives (those that begin by #) are out of this rule since they are not true
instructions. They are lines read and discarded by the preprocessor and do not produce any code.
These must be specified in their own line and do not require the include a semicolon (;) at the end.

Comments.

Comments are pieces of source code discarded from the code by the compiler. They do nothing.
Their purpose is only to allow the programmer to insert notes or descriptions embedded within the
source code.

C++ supports two ways to insert comments:

// line comment
/* block comment */

The first of them, the line comment, discards everything from where the pair of slash signs (//) is
found up to the end of that same line. The second one, the block comment, discards everything
between the /* characters and the next appearance of the */ characters, with the possibility of
including several lines.

We are going to add comments to our second program:

http://www.cplusplus.com/doc/tutorial/tut1-1.html (4 of 5)14-04-2004 18:35:18

C++ Tutorial: 1.1, Structure of a program

/* my second program in C++
 with more comments */

#include <iostream.h>

int main ()
{
 cout << "Hello World! "; // says Hello World!
 cout << "I'm a C++ program"; // says I'm a C++ program
 return 0;
}

Hello
World!
I'm a C
++
program

If you include comments within the sourcecode of your programs without using the comment
characters combinations //, /* or */, the compiler will take them as if they were C++ instructions
and, most likely causing one or several error messages.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
Main Menu index

Next:
1-2. Variables. Data types.

Constants.

Additional readings:
ANSI-C++: Standard Header Files.

http://www.cplusplus.com/doc/tutorial/tut1-1.html (5 of 5)14-04-2004 18:35:18

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/ansi/hfiles.html

C++ Tutorial: 1.2, Variables. Data types. Constants.

Section 1.2
Variables. Data types. Constants.

The usefulness of the "Hello World" programs shown in the previous section are something
more than questionable. We had to write several lines of code, compile them, and then
execute the resulting program just to obtain a sentence on the screen as result. It is true that it
would have been much faster to simply write the output sentence by ourselves, but
programming is not limited only to printing texts on screen. In order to go a little further on
and to become able to write programs that perform useful tasks that really save us work we
need to introduce the concept of the variable.

Let's think that I ask you to retain the number 5 in your mental memory, and then I ask you
to also memorize the number 2. You have just stored two values in your memory. Now, if I
ask you to add 1 to the first number I said, you should be retaining the numbers 6 (that is 5
+1) and 2 in your memory. Values that we could now subtract and obtain 4 as the result.

All this process that you have made is a simile of what a computer can do with two
variables. This same process can be expressed in C++ with the following instruction set:

a = 5;
b = 2;
a = a + 1;
result = a - b;

Obviously this is a very simple example since we have only used two small integer values,
but consider that your computer can store millions of numbers like these at the same time
and conduct sophisticated mathematical operations with them.

Therefore, we can define a variable as a portion of memory to store a determined value.

Each variable needs an identifier that distinguishes it from the others, for example, in the
previous code the variable identifiers were a, b and result, but we could have called the
variables any names we wanted to invent, as long as they were valid identifiers.

Identifiers

A valid identifier is a sequence of one or more letters, digits or underline symbols (_). The

http://www.cplusplus.com/doc/tutorial/tut1-2.html (1 of 13)14-04-2004 18:35:26

C++ Tutorial: 1.2, Variables. Data types. Constants.

length of an identifier is not limited, although for some compilers only the 32 first characters
of an identifier are significant (the rest are not considered).

Neither spaces nor marked letters can be part of an identifier. Only letters, digits and
underline characters are valid. In addition, variable identifiers should always begin with a
letter. They can also begin with an underline character (_), but this is usually reserved for
external links. In no case they can begin with a digit.

Another rule that you have to consider when inventing your own identifiers is that they
cannot match any key word of the C++ language nor your compiler's specific ones since
they could be confused with these. For example, the following expressions are always
considered key words according to the ANSI-C++ standard and therefore they must not be
used as identifiers:

asm, auto, bool, break, case, catch, char, class,
const, const_cast, continue, default, delete, do,
double, dynamic_cast, else, enum, explicit, extern,
false, float, for, friend, goto, if, inline, int,
long, mutable, namespace, new, operator, private,
protected, public, register, reinterpret_cast,
return, short, signed, sizeof, static, static_cast,
struct, switch, template, this, throw, true, try,
typedef, typeid, typename, union, unsigned, using,
virtual, void, volatile, wchar_t

Additionally, alternative representations for some operators do not have to be used as
identifiers since they are reserved words under some circumstances:

and, and_eq, bitand, bitor, compl, not, not_eq, or,
or_eq, xor, xor_eq

Your compiler may also include some more specific reserved keywords. For example, many
compilers which generate 16 bit code (like some compilers for DOS) also include far,
huge and near as key words.

Very important: The C++ language is "case sensitive", that means that an identifier written
in capital letters is not equivalent to another one with the same name but written in small
letters. Thus, for example the variable RESULT is not the same as the variable result nor
the variable Result.

http://www.cplusplus.com/doc/tutorial/tut1-2.html (2 of 13)14-04-2004 18:35:26

C++ Tutorial: 1.2, Variables. Data types. Constants.

Data types

When programming, we store the variables in our computer's memory, but the computer
must know what we want to store in them since storing a simple number, a letter or a large
number is not going to occupy the same space in memory.

Our computer's memory is organized in bytes. A byte is the minimum amount of memory
that we can manage. A byte can store a relatively small amount of data, usually an integer
between 0 and 255 or one single character. But in addition, the computer can manipulate
more complex data types that come from grouping several bytes, such as long numbers or
numbers with decimals. Next you have a list of the existing fundamental data types in C++,
as well as the range of values that can be represented with each one of them:

DATA TYPES

Name Bytes* Description Range*

char 1
character or integer 8
bits length.

signed: -128 to 127
unsigned: 0 to 255

short 2 integer 16 bits length.
signed: -32768 to 32767
unsigned: 0 to 65535

long 4 integer 32 bits length.
signed:-2147483648 to
2147483647
unsigned: 0 to 4294967295

int *

Integer. Its length
traditionally depends on
the length of the
system's Word type,
thus in MSDOS it is 16
bits long, whereas in 32
bit systems (like
Windows 9x/2000/NT
and systems that work
under protected mode in
x86 systems) it is 32
bits long (4 bytes).

See short, long

float 4 floating point number. 3.4e + / - 38 (7 digits)

http://www.cplusplus.com/doc/tutorial/tut1-2.html (3 of 13)14-04-2004 18:35:26

C++ Tutorial: 1.2, Variables. Data types. Constants.

double 8
double precision
floating point number.

1.7e + / - 308 (15 digits)

long double 10
long double precision
floating point number.

1.2e + / - 4932 (19 digits)

bool 1

Boolean value. It can
take one of two values:
true or false
NOTE: this is a type
recently added by the
ANSI-C++ standard.
Not all compilers
support it. Consult
section bool type for
compatibility
information.

true or false

wchar_t 2

Wide character. It is
designed as a type to
store international
characters of a two-byte
character set. NOTE:
this is a type recently
added by the ANSI-C++
standard. Not all
compilers support it.

wide characters

* Values of columns Bytes and Range may vary depending on your system. The values
included here are the most commonly accepted and used by almost all compilers.

In addition to these fundamental data types there also exist the pointers and the void
parameter type specification, that we will see later.

Declaration of variables

In order to use a variable in C++, we must first declare it specifying which of the data types
above we want it to be. The syntax to declare a new variable is to write the data type
specifier that we want (like int, short, float...) followed by a valid variable identifier.
For example:

http://www.cplusplus.com/doc/tutorial/tut1-2.html (4 of 13)14-04-2004 18:35:26

http://www.cplusplus.com/doc/ansi/bool.html

C++ Tutorial: 1.2, Variables. Data types. Constants.

int a;
float mynumber;

Are valid declarations of variables. The first one declares a variable of type int with the
identifier a. The second one declares a variable of type float with the identifier
mynumber. Once declared, variables a and mynumber can be used within the rest of their
scope in the program.

If you need to declare several variables of the same type and you want to save some writing
work you can declare all of them in the same line separating the identifiers with commas.
For example:

int a, b, c;

declares three variables (a, b and c) of type int , and has exactly the same meaning as if
we had written:

int a;
int b;
int c;

Integer data types (char, short, long and int) can be signed or unsigned according to
the range of numbers that we need to represent. Thus to specify an integer data type we do it
by putting the keyword signed or unsigned before the data type itself. For example:

unsigned short NumberOfSons;
signed int MyAccountBalance;

By default, if we do not specify signed or unsigned it will be assumed that the type is
signed, therefore in the second declaration we could have written:

int MyAccountBalance;

with exactly the same meaning and since this is the most usual way, few source codes
include the keyword signed as part of a compound type name.

The only exception to this rule is the char type that exists by itself and it is considered a
diferent type than signed char and unsigned char.

http://www.cplusplus.com/doc/tutorial/tut1-2.html (5 of 13)14-04-2004 18:35:26

C++ Tutorial: 1.2, Variables. Data types. Constants.

Finally, signed and unsigned may also be used as a simple types, meaning the same as
signed int and unsigned int respectivelly. The following two declarations are
equivalent:

unsigned MyBirthYear;
unsigned int MyBirthYear;

To see what variable declaration looks like in action in a program, we are going to show the
C++ code of the example about your mental memory proposed at the beginning of this
section:

// operating with variables

#include <iostream.h>

int main ()
{
 // declaring variables:
 int a, b;
 int result;

 // process:
 a = 5;
 b = 2;
 a = a + 1;
 result = a - b;

 // print out the result:
 cout << result;

 // terminate the program:
 return 0;
}

4

Do not worry if something about the variable declarations looks a bit strange to you. You
will see the rest in detail in coming sections.

http://www.cplusplus.com/doc/tutorial/tut1-2.html (6 of 13)14-04-2004 18:35:26

C++ Tutorial: 1.2, Variables. Data types. Constants.

Initialization of variables

When declaring a local variable, its value is undetermined by default. But you may want a
variable to store a concrete value the moment that it is declared. In order to do that, you have
to append an equal sign followed by the value wanted to the variable declaration:

type identifier = initial_value ;

For example, if we want to declare an int variable called a that contains the value 0 at the
moment in which it is declared, we could write:

int a = 0;

Additionally to this way of initializating variables (known as c-like), C++ has added a new
way to initialize a variable: by enclosing the initial value between parenthesis ():

type identifier (initial_value) ;

For example:

int a (0);

Both ways are valid and equivalent in C++.

Scope of variables

All the variables that we are going to use must have been previously declared.
An important difference between the C and C++ languages, is that in C++ we
can declare variables anywhere in the source code, even between two

executable sentences, and not only at the beginning of a block of instructions, like happens
in C.

Anyway, it is recommended under some circumstances to follow the indications of the C
language when declaring variables, since it can be useful when debugging a program to have
all the declarations grouped together. Therefore, the traditional C-like way to declare
variables is to include their declaration at the beginning of each function (for local variables)
or directly in the body of the program outside any function (for global variables).

http://www.cplusplus.com/doc/tutorial/tut1-2.html (7 of 13)14-04-2004 18:35:26

C++ Tutorial: 1.2, Variables. Data types. Constants.

Global
variables can
be referred to
anywhere in the
code, within any
function,
whenever it is
after its
declaration.

The scope of the
local variables
is limited to the
code level in
which they are
declared. If they
are declared at
the beginning of

a function (like in main) their scope is the whole main function. In the example above,
this means that if another function existed in addition to main(), the local variables
declared in main could not be used in the other function and vice versa.

In C++, the scope of a local variable is given by the block in which it is declared (a block is
a group of instructions grouped together within curly brackets {} signs). If it is declared
within a function it will be a variable with function scope, if it is declared in a loop its scope
will be only the loop, etc...

In addition to local and global scopes there exists external scope, that causes a variable to
be visible not only in the same source file but in all other files that will be linked together.

Constants: Literals.

A constant is any expression that has a fixed value. They can be divided in Integer Numbers,
Floating-Point Numbers, Characters and Strings.

Integer Numbers

1776

http://www.cplusplus.com/doc/tutorial/tut1-2.html (8 of 13)14-04-2004 18:35:26

C++ Tutorial: 1.2, Variables. Data types. Constants.

707
-273

they are numerical constants that identify integer decimal numbers. Notice that to express a
numerical constant we do not need to write quotes (") nor any special character. There is no
doubt that it is a constant: whenever we write 1776 in a program we will be referring to the
value 1776.

In addition to decimal numbers (those that all of us already know) C++ allows the use as
literal constants of octal numbers (base 8) and hexadecimal numbers (base 16). If we want to
express an octal number we must precede it with a 0 character (zero character). And to
express a hexadecimal number we have to precede it with the characters 0x (zero, x). For
example, the following literal constants are all equivalent to each other:

75 // decimal
0113 // octal
0x4b // hexadecimal

All of them represent the same number: 75 (seventy five) expressed as a radix-10 number,
octal and hexdecimal, respectively.

[Note: You can find more information on hexadecimal and octal representations in the
document Numerical radixes]

Floating Point Numbers
They express numbers with decimals and/or exponents. They can include a decimal point, an
e character (that expresses "by ten at the Xth height", where X is the following integer
value) or both.

3.14159 // 3.14159

6.02e23 // 6.02 x 1023

1.6e-19 // 1.6 x 10-19

3.0 // 3.0

these are four valid numbers with decimals expressed in C++. The first number is PI, the
second one is the number of Avogadro, the third is the electric charge of an electron (an
extremely small number) -all of them approximated- and the last one is the number 3
expressed as a floating point numeric literal.

http://www.cplusplus.com/doc/tutorial/tut1-2.html (9 of 13)14-04-2004 18:35:26

http://www.cplusplus.com/doc/papers/hex.html

C++ Tutorial: 1.2, Variables. Data types. Constants.

Characters and strings
There also exist non-numerical constants, like:

'z'
'p'
"Hello world"
"How do you do?"

The first two expressions represent single characters, and the following two represent strings
of several characters. Notice that to represent a single character we enclose it between single
quotes (') and to express a string of more than one character we enclose them between
double quotes (").

When writing both single characters and strings of characters in a constant way, it is
necessary to put the quotation marks to distinguish them from possible variable identifiers or
reserved words. Notice this:

x
'x'

x refers to variable x, whereas 'x' refers to the character constant 'x'.

Character constants and string constants have certain peculiarities, like the escape codes.
These are special characters that cannot be expressed otherwise in the sourcecode of a
program, like newline (\n) or tab (\t). All of them are preceded by an inverted slash (\).
Here you have a list of such escape codes:

\n newline

\r carriage return

\t tabulation

\v vertical tabulation

\b backspace

\f page feed

\a alert (beep)

\' single quotes (')

http://www.cplusplus.com/doc/tutorial/tut1-2.html (10 of 13)14-04-2004 18:35:26

C++ Tutorial: 1.2, Variables. Data types. Constants.

\" double quotes (")

\? question (?)

\\ inverted slash (\)

For example:

'\n'
'\t'
"Left \t Right"
"one\ntwo\nthree"

Additionally, you can express any character by its numerical ASCII code by writing an
inverted slash bar character (\) followed by the ASCII code expressed as an octal (radix-8)
or hexadecimal (radix-16) number. In the first case (octal) the number must immediately
follow the inverted slash (for example \23 or \40), in the second case (hexacedimal), you
must put an x character before the number (for example \x20 or \x4A).
[Consult the document ASCII Code for more information about this type of escape code].

coonstants of string of characters can be extended by more than a single code line if each
code line ends with an inverted slash (\):

"string expressed in \
two lines"

You can also concatenate several string constants separating them by one or several
blankspaces, tabulators, newline or any other valid blank character:

"we form" "a single" "string" "of characters"

Defined constants (#define)

You can define your own names for constants that you use quite often without having to
resort to variables, simply by using the #define preprocessor directive. This is its format:

#define identifier value

For example:

http://www.cplusplus.com/doc/tutorial/tut1-2.html (11 of 13)14-04-2004 18:35:26

http://www.cplusplus.com/doc/papers/ascii.html

C++ Tutorial: 1.2, Variables. Data types. Constants.

#define PI 3.14159265
#define NEWLINE '\n'
#define WIDTH 100

they define three new constants. Once they are declared, you are able to use them in the rest
of the code as any if they were any other constant, for example:

circle = 2 * PI * r;
cout << NEWLINE;

In fact the only thing that the compiler does when it finds #define directives is to replace
literally any occurrence of the them (in the previous example, PI, NEWLINE or WIDTH) by
the code to which they have been defined (3.14159265, '\n' and 100, respectively).
For this reason, #define constants are considered macro constants.

The #define directive is not a code instruction, it is a directive for the preprocessor,
therefore it assumes the whole line as the directive and does not require a semicolon (;) at
the end of it. If you include a semicolon character (;) at the end, it will also be added when
the preprocessor will substitute any occurence of the defined constant within the body of the
program.

declared constants (const)

With the const prefix you can declare constants with a specific type exactly as you would
do with a variable:

const int width = 100;
const char tab = '\t';
const zip = 12440;

In case that the type was not specified (as in the last example) the compiler assumes that it is
type int.

© The C++ Resources Network, 2000-2001 - All rights reserved

http://www.cplusplus.com/doc/tutorial/tut1-2.html (12 of 13)14-04-2004 18:35:26

C++ Tutorial: 1.2, Variables. Data types. Constants.

Previous:
1-1. Structure of a C++ program. index

Next:
1-3. Operators.

http://www.cplusplus.com/doc/tutorial/tut1-2.html (13 of 13)14-04-2004 18:35:26

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ tutorial: 1.3, Operators.

Section 1.3
Operators.

Once we know of the existence of variables and constants we can begin to operate with
them. For that purpose, C++ provides the operators, which in this language are a set of
keywords and signs that are not part of the alphabet but are available in all keyboards. It is
important to know them since they are the basis of the C++ language.

You do not have to memorize all the content of this page, the details are only provided to
serve as a later reference in case you need it.

Assignation (=).
The assignation operator serves to assign a value to a variable.

a = 5;

assigns the integer value 5to variable a. The part at the left of the =operator is known as
lvalue(left value) and the right one as rvalue(right value). lvaluemust always be a variable
whereas the right side can be either a constant, a variable, the result of an operation or any
combination of them.

It is necessary to emphasize that the assignation operation always takes place from right to
left and never at the inverse.

a = b;

assigns to variable a(lvalue) the value that contains variable b(rvalue) independently of the
value that was stored in aat that moment. Consider also that we are only assigning the
valueof bto aand that a later change of bwould not affect the new value of a.

For example, if we take this code (with the evolution of the variables' content in green
color):

int a, b; // a:? b:?
a = 10; // a:10 b:?
b = 4; // a:10 b:4
a = b; // a:4 b:4

http://www.cplusplus.com/doc/tutorial/tut1-3.html (1 of 10)14-04-2004 18:35:39

C++ tutorial: 1.3, Operators.

b = 7; // a:4 b:7

will give us the result that the value contained in ais 4and the one contained in bis 7. The
final modification of bhas not affected a, although before we have declared a = b;(right-
to-left rule).

A property that C++ has over other programming languages is that the assignation operation
can be used as the rvalue (or part of an rvalue) for another assignation. For example:

a = 2 + (b = 5);

is equivalent to:

b = 5;
a = 2 + b;

that means: first assign 5to variable band then assign to athe value 2plus the result of the
previous assignation of b(that is 5), leaving awith a final value of 7. Thus, the following
expression is also valid in C++:

a = b = c = 5;

assigns 5 to the three variables a, band c.

Arithmetic operators (+, -, *, /, %)
The five arithmetical operations supported by the language are:

+ addition

- subtraction

* multiplication

/ division

% module

Operations of addition, subtraction, multiplication and division should not suppose an
understanding challenge for you since they literally correspond with their respective
mathematical operators.

http://www.cplusplus.com/doc/tutorial/tut1-3.html (2 of 10)14-04-2004 18:35:39

C++ tutorial: 1.3, Operators.

The only one that may not be known by you is the module, specified with the percentage
sign (%). Module is the operation that gives the remainder of a division of two integer
values. For example, if we write a = 11 % 3;, the variable a will contain 2 as the result
since 2 is the remainder from dividing 11 between 3.

Compound assignation operators (+=, -=, *=, /=, %=, >>=, <<=, &=, ^=,
|=)

A feature of assignation in C++ that contributes to its fame of sparing language when
writing are the compound assignation operators (+=, -=, *= and /= among others),
which allow to modify the value of a variable with one of the basic operators:

value += increase; is equivalent to value = value +
increase;
a -= 5; is equivalent to a = a - 5;
a /= b; is equivalent to a = a / b;
price *= units + 1; is equivalent to price = price * (units
+ 1);

and the same for all other operations.

Increase and decrease.
Another example of saving language when writing code are the increase operator (+
+) and the decrease operator (--). They increase or reduce by 1 the value stored in a
variable. They are equivalent to +=1 and to -=1, respectively. Thus:

a++;
a+=1;
a=a+1;

are all equivalent in its functionality: the three increase by 1 the value of a.

Its existence is because in the first C compilers the three previous expressions produced
different executable code according to which one was used. Nowadays this type of code
optimization is generally done automatically by the compiler.

A characteristic of this operator is that it can be used both as a prefix or as a suffix. That
means it can be written before the variable identifier (++a) or after (a++). Although in
simple expressions like a++ or ++a they have exactly the same meaning, in other operations
in which the result of the increase or decrease operation is evaluated as another expression

http://www.cplusplus.com/doc/tutorial/tut1-3.html (3 of 10)14-04-2004 18:35:39

C++ tutorial: 1.3, Operators.

they may have an important difference in their meaning: In case that the increase operator is
used as a prefix (++a) the value is increased before the expression is evaluated and therefore
the increased value is considered in the expression; in case that it is used as a suffix (a++)
the value stored in a is increased after being evaluated and therefore the value stored before
the increase operation is evaluated in the expression. Notice the difference:

Example 1 Example 2

B=3;
A=++B;
// A is 4,
B is 4

B=3;
A=B++;
// A is 3,
B is 4

In Example 1, Bis increased before its value is copied to A. While in Example 2, the value of
Bis copied to Aand Bis later increased.

Relational operators (==, !=, >, <, >=, <=)
In order to evaluate a comparison between two expressions we can use the Relational
operators. As specified by the ANSI-C++ standard, the result of a relational operation
is a bool value that can only be true or false, according to the result of the
comparison.

We may want to compare two expressions, for example, to know if they are equal or
if one is greater than the other. Here is a list of the relational operators that can be
performed in C++:

== Equal

!= Different

> Greater than

< Less than

>= Greater or equal than

<= Less or equal than

Here you have some examples:

(7 == 5) would return false.

(5 > 4) would return true.

http://www.cplusplus.com/doc/tutorial/tut1-3.html (4 of 10)14-04-2004 18:35:39

C++ tutorial: 1.3, Operators.

(3 != 2) would return true.

(6 >= 6) would return true.

(5 < 5) would return false.

of course, instead of using only numberic constants, we can use any valid expression,
including variables. Suppose that a=2, b=3and c=6,

(a == 5) would return false.

(a*b >= c) would return true since (2*3 >= 6) is it.

(b+4 > a*c) would return false since (3+4 > 2*6) is it.

((b=2) == a) would return true.

Be aware. Operator =(one equal sign) is not the same as operator ==(two equal signs), the
first is an assignation operator (assigns the right side of the expression to the variable in the
left) and the other (==) is a relational operator of equality that compares whether both
expressions in the two sides of the operator are equal to each other. Thus, in the last
expression ((b=2) == a), we first assigned the value 2to band then we compared it to a,
that also stores value 2, so the result of the operation is true.

In many compilers previous to the publication of the ANSI-C++ standard, as
well as in the C language, the relational operations did not return a bool value
true or false, rather they returned an int as result with a value of 0 in

order to represent "false" and a value different from 0 (generally 1) to represent
"true". For more information, or if your compiler does not support the bool type,
consult the section bool type.

Logic operators (!, &&, ||).
Operator ! is equivalent to boolean operation NOT, it has only one operand, located at
its right, and the only thing that it does is to invert the value of it, producing false if
its operand is true and true if its operand is false. It is like saying that it returns
the opposite result of evaluating its operand. For example:

!(5 == 5)
returns false because the expression at its right (5 == 5)
would be true.

!(6 <= 4) returns true because (6 <= 4) would be false.

!true returns false.

http://www.cplusplus.com/doc/tutorial/tut1-3.html (5 of 10)14-04-2004 18:35:39

http://www.cplusplus.com/doc/ansi/bool.html

C++ tutorial: 1.3, Operators.

!false returns true.

Logic operators &&and ||are used when evaluating two expressions to obtain a single result.
They correspond with boolean logic operations ANDand ORrespectively. The result of them
depends on the relation between its two operands:

First
Operand

a

Second
Operand

b

result
a && b

result
a || b

true true true true

true false false true

false true false true

false false false false

For example:

((5 == 5) && (3 > 6)) returns false (true && false).
((5 == 5) || (3 > 6)) returns true (true || false).

Conditional operator (?).
The conditional operator evaluates an expression and returns a different value
according to the evaluated expression, depending on whether it is true or false. Its
format is:

condition ? result1 : result2

if conditionis truethe expression will return result1, if not it will return result2.

7==5 ? 4 : 3 returns 3 since 7 is not equal to 5.

7==5+2 ? 4 : 3 returns 4 since 7 is equal to 5+2.

5>3 ? a : b returns a, since 5 is greater than 3.

a>b ? a : b returns the greater one, a or b.

Bitwise Operators (&, |, ^, ~, <<, >>).
Bitwise operators modify variables considering the bits that represent the values that

http://www.cplusplus.com/doc/tutorial/tut1-3.html (6 of 10)14-04-2004 18:35:39

C++ tutorial: 1.3, Operators.

they store, that means, their binary representation.

op asm Description

& AND Logical AND

| OR Logical OR

^ XOR Logical exclusive OR

~ NOT Complement to one (bit inversion)

<< SHL Shift Left

>> SHR Shift Right

For more information about binary numbers and bitwise operations, consult Boolean logic.

Explicit type casting operators
Type casting operators allows you to convert a datum of a given type to another.
There are several ways to do this in C++, the most popular one, compatible with the
C language is to precede the expression to be converted by the new type enclosed
between parenthesis ():

int i;
float f = 3.14;
i = (int) f;

The previous code converts the float number 3.14to an integer value (3). Here, the type
casting operator was (int). Another way to do the same thing in C++ is using the
constructor form: preceding the expression to be converted by the type and enclosing the
expressionbetween parenthesis:

i = int (f);

Both ways of type casting are valid in C++. And additionally ANSI-C++ added new type
casting operators more specific for object oriented programming (Section 5.4, Advanced
class type-casting).

sizeof()
This operator accepts one parameter, that can be either a variable type or a variable
itself and returns the size in bytes of that type or object:

http://www.cplusplus.com/doc/tutorial/tut1-3.html (7 of 10)14-04-2004 18:35:39

http://www.cplusplus.com/doc/papers/boolean.html

C++ tutorial: 1.3, Operators.

a = sizeof (char);

This will return 1to abecause charis a one byte long type.
The value returned by sizeofis a constant, so it is always determined before program
execution.

Other operators
Later in the tutorial we will see a few more operators, like the ones referring to
pointers or the specifics for object-oriented programming. Each one is treated in its
respective section.

Priority of operators

When making complex expressions with several operands, we may have some doubts about
which operand is evaluated first and which later. For example, in this expression:

a = 5 + 7 % 2

we may doubt if it really means:

a = 5 + (7 % 2) with result 6, or
a = (5 + 7) % 2 with result 0

The correct answer is the first of the two expressions, with a result of 6. There is an
established order with the priority of each operator, and not only the arithmetic ones (those
whose preference we may already know from mathematics) but for all the operators which
can appear in C++. From greatest to lowest priority, the priority order is as follows:

Priority Operator Description Associativity

1 :: scope Left

2
() [] -> .
sizeof

 Left

++ -- increment/decrement

~ Complement to one (bitwise)

! unary NOT

http://www.cplusplus.com/doc/tutorial/tut1-3.html (8 of 10)14-04-2004 18:35:39

C++ tutorial: 1.3, Operators.

3 Right
& *

Reference and Dereference
(pointers)

(type) Type casting

+ - Unary less sign

4 * / % arithmetical operations Left

5 + - arithmetical operations Left

6 << >> bit shifting (bitwise) Left

7 < <= > >= Relational operators Left

8 == != Relational operators Left

9 & ^ | Bitwise operators Left

10 && || Logic operators Left

11 ?: Conditional Right

12

= += -= *= /=
%=
>>= <<= &= ^=
|=

Assignation Right

13 , Comma, Separator Left

Associativity defines -in the case that there are several operators of the same priority level-
which one must be evaluated first, the rightmost one or the leftmost one.

All these precedence levels for operators can be manipulated or become more legible using
parenthesis signs (and), as in this example:

a = 5 + 7 % 2;

might be written as:

a = 5 + (7 % 2); or
a = (5 + 7) % 2;

according to the operation that we wanted to perform.

So if you want to write a complicated expression and you are not sure of the precedence

http://www.cplusplus.com/doc/tutorial/tut1-3.html (9 of 10)14-04-2004 18:35:39

C++ tutorial: 1.3, Operators.

levels, always include parenthesis. It will probably also be more legible code.

© The C++ Resources Network, 2001 - All rights reserved

Previous:
1-2. Variables. Data types.

Constants. index

Next:
1-4. Communication through

console.

http://www.cplusplus.com/doc/tutorial/tut1-3.html (10 of 10)14-04-2004 18:35:39

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 1.4, Communication through console.

Section 1.4
Communication through console.

The console is the basic interface of computers, normally it is the set composed of the
keyboard and the screen. The keyboard is generally the standard input device and the screen
the standard output device.

In the iostream C++ library, standard input and output operations for a program are
supported by two data streams: cin for input and cout for output. Additionally, cerr and
clog have also been implemented - these are two output streams specially designed to show
error messages. They can be redirected to the standard output or to a log file.

Therefore cout (the standard output stream) is normally directed to the screen and cin (the
standard input stream) is normally assigned to the keyboard.

By handling these two streams you will be able to interact with the user in your programs
since you will be able to show messages on the screen and receive his/her input from the
keyboard.

Output (cout)

The cout stream is used in conjunction with the overloaded operator << (a pair of "less
than" signs).

cout << "Output sentence"; // prints Output sentence
on screen
cout << 120; // prints number 120 on
screen
cout << x; // prints the content of
variable x on screen

The << operator is known as insertion operator since it inserts the data that follows it into
the stream that precedes it. In the examples above it inserted the constant string Output
sentence, the numerical constant 120 and the variable x into the output stream cout.
Notice that the first of the two sentences is enclosed between double quotes (") because it is
a string of characters. Whenever we want to use constant strings of characters we must
enclose them between double quotes (") so that they can be clearly distinguished from

http://www.cplusplus.com/doc/tutorial/tut1-4.html (1 of 5)14-04-2004 18:35:48

C++ Tutorial: 1.4, Communication through console.

variables. For example, these two sentences are very different:

cout << "Hello"; // prints Hello on screen
cout << Hello; // prints the content of Hello
variable on screen

The insertion operator (<<) may be used more than once in a same sentence:

cout << "Hello, " << "I am " << "a C++ sentence";

this last sentence would print the message Hello, I am a C++ sentence on the
screen. The utility of repeating the insertion operator (<<) is demonstrated when we want to
print out a combination of variables and constants or more than one variable:

cout << "Hello, I am " << age << " years old and my
zipcode is " << zipcode;

If we supose that variable age contains the number 24 and the variable zipcode contains
90064 the output of the previous sentence would be:

Hello, I am 24 years old and my zipcode is 90064

It is important to notice that cout does not add a line break after its output unless we
explicitly indicate it, therefore, the following sentences:

cout << "This is a sentence.";
cout << "This is another sentence.";

will be shown followed in screen:

This is a sentence.This is another sentence.

even if we have written them in two different calls to cout. So, in order to perform a line
break on output we must explicitly order it by inserting a new-line character, that in C++ can
be written as \n:

cout << "First sentence.\n ";
cout << "Second sentence.\nThird sentence.";

http://www.cplusplus.com/doc/tutorial/tut1-4.html (2 of 5)14-04-2004 18:35:48

C++ Tutorial: 1.4, Communication through console.

produces the following output:

First sentence.
Second sentence.
Third sentence.

Additionally, to add a new-line, you may also use the endl manipulator. For example:

cout << "First sentence." << endl;
cout << "Second sentence." << endl;

would print out:

First sentence.
Second sentence.

The endl manipulator has a special behavior when it is used with buffered streams: they are
flushed. But anyway cout is unbuffered by default.

You may use either the \n escape character or the endl manipulator in order to specify a
line jump to cout. Notice the differences of use shown earlier.

Input (cin).

Handling the standard input in C++ is done by applying the overloaded operator of
extraction (>>) on the cin stream. This must be followed by the variable that will store the
data that is going to be read. For example:

int age;
cin >> age;

declares the variable age as an int and then waits for an input from cin (keyborad) in
order to store it in this integer variable.

cin can only process the input from the keyboard once the RETURN key has been pressed.
Therefore, even if you request a single character cin will not process the input until the user
presses RETURN once the character has been introduced.

http://www.cplusplus.com/doc/tutorial/tut1-4.html (3 of 5)14-04-2004 18:35:48

C++ Tutorial: 1.4, Communication through console.

You must always consider the type of the variable that you are using as a container with cin
extraction. If you request an integer you will get an integer, if you request a character you
will get a character and if you request a string of characters you will get a string of
characters.

// i/o example
#include <iostream.h>

int main ()
{
 int i;
 cout << "Please enter an integer value: ";
 cin >> i;
 cout << "The value you entered is " << i;
 cout << " and its double is " << i*2 << ".\n";
 return 0;
}

Please
enter an
integer
value: 702
The value
you
entered
is 702
and its
double is
1404.

The user of a program may be one of the reasons that provoke errors even in the simplest
programs that use cin (like the one we have just seen). Since if you request an integer value
and the user introduces a name (which is a string of characters), the result may cause your
program to misoperate since it is not what we were expecting from the user. So when you
use the data input provided by cin you will have to trust that the user of your program will
be totally cooperative and that he will not introduce his name when an interger value is
requested. Farther ahead, when we will see how to use strings of characters we will see
possible solutions for the errors that can be caused by this type of user input.

You can also use cin to request more than one datum input from the user:

cin >> a >> b;

is equivalent to:

cin >> a;
cin >> b;

http://www.cplusplus.com/doc/tutorial/tut1-4.html (4 of 5)14-04-2004 18:35:48

C++ Tutorial: 1.4, Communication through console.

In both cases the user must give two data, one for variable a and another for variable b that
may be separated by any valid blank separator: a space, a tab character or a newline.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
1-3. Operators. index

Next:
2-1. Control structures.

http://www.cplusplus.com/doc/tutorial/tut1-4.html (5 of 5)14-04-2004 18:35:48

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 2.1, Control Structures.

Section 2.1
Control Structures.

A program is usually not limited to a linear sequence of instructions. During its process it may
bifurcate, repeat code or take decisions. For that purpose, C++ provides control structures that serve
to specify what has to be done to perform our program.

With the introduction of control sequences we are going to have to introduce a new concept: the
block of instructions. A block of instructions is a group of instructions separated by semicolons (;)
but grouped in a block delimited by curly bracket signs: { and }.

Most of the control structures that we will see in this section allow a generic statement as a
parameter, this refers to either a single instruction or a block of instructions, as we want. If we want
the statement to be a single instruction we do not need to enclose it between curly-brackets ({}). If
we want the statement to be more than a single instruction we must enclose them between curly
brackets ({}) forming a block of instructions.

Conditional structure: if and else

It is used to execute an instruction or block of instructions only if a condition is fulfilled. Its form is:

if (condition) statement

where condition is the expression that is being evaluated. If this condition is true, statement
is executed. If it is false, statement is ignored (not executed) and the program continues on the
next instruction after the conditional structure.

For example, the following code fragment prints out x is 100 only if the value stored in variable
x is indeed 100:

if (x == 100)
 cout << "x is 100";

If we want more than a single instruction to be executed in case that condition is true we can
specify a block of instructions using curly brackets { }:

if (x == 100)
 {
 cout << "x is ";
 cout << x;

http://www.cplusplus.com/doc/tutorial/tut2-1.html (1 of 10)14-04-2004 18:36:00

C++ Tutorial: 2.1, Control Structures.

 }

We can additionally specify what we want that happens if the condition is not fulfilled by using the
keyword else. Its form used in conjunction with if is:

if (condition) statement1 else statement2

For example:

if (x == 100)
 cout << "x is 100";
else
 cout << "x is not 100";

prints out on the screen x is 100 if indeed x is worth 100, but if it is not -and only if not- it prints
out x is not 100.

The if + else structures can be concatenated with the intention of verifying a range of values. The
following example shows its use telling if the present value stored in x is positive, negative or none
of the previous, that is to say, equal to zero.

if (x > 0)
 cout << "x is positive";
else if (x < 0)
 cout << "x is negative";
else
 cout << "x is 0";

Remember that in case we want more than a single instruction to be executed, we must group them in
a block of instructions by using curly brackets { }.

Repetitive structures or loops

Loops have as objective to repeat a statement a certain number of times or while a condition is
fulfilled.

The while loop.
Its format is:

while (expression) statement

http://www.cplusplus.com/doc/tutorial/tut2-1.html (2 of 10)14-04-2004 18:36:00

C++ Tutorial: 2.1, Control Structures.

and its function is simply to repeat statementwhile expressionis true.

For example, we are going to make a program to count down using a while loop:

// custom countdown using while
#include <iostream.h>
int main ()
{
 int n;
 cout << "Enter the starting number > ";
 cin >> n;
 while (n>0) {
 cout << n << ", ";
 --n;
 }
 cout << "FIRE!";
 return 0;
}

Enter the
starting number
> 8
8, 7, 6, 5, 4,
3, 2, 1, FIRE!

When the program starts the user is prompted to insert a starting number for the countdown. Then the
while loop begins, if the value entered by the user fulfills the condition n>0 (that n be greater than
0), the block of instructions that follows will execute an indefinite number of times while the
condition (n>0) remains true.

All the process in the program above can be interpreted according to the following script: beginning
in main:

❍ 1. User assigns a value to n.
❍ 2. The while instruction checks if (n>0). At this point there are two possibilities:

■ true: execute statement (step 3,)
■ false: jump statement. The program follows in step 5..

❍ 3. Execute statement:
cout << n << ", ";
--n;
(prints out n on screen and decreases n by 1).

❍ 4. End of block. Return Automatically to step 2.
❍ 5. Continue the program after the block: print out FIRE! and end of program.

We must consider that the loop has to end at some point, therefore, within the block of instructions
(loop's statement) we must provide some method that forces condition to become false at

http://www.cplusplus.com/doc/tutorial/tut2-1.html (3 of 10)14-04-2004 18:36:00

C++ Tutorial: 2.1, Control Structures.

some moment, otherwise the loop will continue looping forever. In this case we have included --n;
that causes the condition to become false after some loop repetitions: when n becomes 0, that
is where our countdown ends.

Of course this is such a simple action for our computer that the whole countdown is performed
instantly without practical delay between numbers.

The do-while loop.
Format:

do statement while (condition);

Its functionality is exactly the same as the whileloop except that conditionin the do-whileis
evaluated afterthe execution of statementinstead of before, granting at least one execution of
statementeven if conditionis never fulfilled. For example, the following program echoes any
number you enter until you enter 0.

// number echoer
#include <iostream.h>
int main ()
{
 unsigned long n;
 do {
 cout << "Enter number (0 to end): ";
 cin >> n;
 cout << "You entered: " << n << "\n";
 } while (n != 0);
 return 0;
}

Enter number (0
to end): 12345
You entered:
12345
Enter number (0
to end): 160277
You entered:
160277
Enter number (0
to end): 0
You entered: 0

The do-while loop is usually used when the condition that has to determine its end is determined
within the loop statement, like in the previous case, where the user input within the block of
intructions is what determines the end of the loop. If you never enter the 0 value in the previous
example the loop will never end.

The for loop.
Its format is:

for (initialization; condition; increase) statement;

http://www.cplusplus.com/doc/tutorial/tut2-1.html (4 of 10)14-04-2004 18:36:00

C++ Tutorial: 2.1, Control Structures.

and its main function is to repeat statementwhile conditionremains true, like the whileloop.
But in addition, forprovides places to specify an initializationinstruction and an
increaseinstruction. So this loop is specially designed to perform a repetitive action with a
counter.

It works the following way:

1, initialization is executed. Generally it is an initial value setting for a counter
varible. This is executed only once.
2, condition is checked, if it is true the loop continues, otherwise the loop
finishes and statement is skipped.
3, statement is executed. As usual, it can be either a single instruction or a block of
instructions enclosed within curly brackets { }.
4, finally, whatever is specified in the increase field is executed and the loop gets
back to step 2.

Here is an example of countdown using a forloop.

// countdown using a for loop
#include <iostream.h>
int main ()
{
 for (int n=10; n>0; n--) {
 cout << n << ", ";
 }
 cout << "FIRE!";
 return 0;
}

10, 9, 8, 7, 6, 5, 4, 3, 2,
1, FIRE!

The initialization and increase fields are optional. They can be avoided but not the
semicolon signs among them. For example we could write: for (;n<10;) if we want to specify
no initialization and no increase; or for (;n<10;n++) if we want to include an
increase field but not an initialization.

Optionally, using the comma operator (,) we can specify more than one instruction in any of the
fields included in a for loop, like in initialization, for example. The comma operator (,) is
an instruction separator, it serves to separate more than one instruction where only one instruction is
generally expected. For example, suppose that we wanted to intialize more than one variable in our
loop:

http://www.cplusplus.com/doc/tutorial/tut2-1.html (5 of 10)14-04-2004 18:36:00

C++ Tutorial: 2.1, Control Structures.

for (n=0, i=100 ; n!=i ; n++, i--)
{
 // whatever here...
}

This loop will execute 50 times if neither nnor iare modified within the loop:

nstarts with 0and iwith 100, the condition is (n!=i)(that nbe not equal to i). Beacuse nis
increased by one and idecreased by one, the loop's condition will become falseafter the 50th loop,
when both nand iwill be equal to 50.

Bifurcation of control and jumps.

The break instruction.
Using break we can leave a loop even if the condition for its end is not fulfilled. It can be
used to end an infinite loop, or to force it to end before its natural end. For example, we are
going to stop the count down before it naturally finishes (an engine failure maybe):

// break loop example
#include <iostream.h>
int main ()
{
 int n;
 for (n=10; n>0; n--) {
 cout << n << ", ";
 if (n==3)
 {
 cout << "countdown aborted!";
 break;
 }
 }
 return 0;
}

10, 9, 8, 7, 6,
5, 4, 3,
countdown
aborted!

The continue instruction.

http://www.cplusplus.com/doc/tutorial/tut2-1.html (6 of 10)14-04-2004 18:36:00

C++ Tutorial: 2.1, Control Structures.

The continue instruction causes the program to skip the rest of the loop in the present iteration
as if the end of the statement block would have been reached, causing it to jump to the
following iteration. For example, we are going to skip the number 5 in our countdown:

// break loop example
#include <iostream.h>
int main ()
{
 for (int n=10; n>0; n--) {
 if (n==5) continue;
 cout << n << ", ";
 }
 cout << "FIRE!";
 return 0;
}

10, 9, 8, 7, 6, 4, 3,
2, 1, FIRE!

The goto instruction.
It allows making an absolute jump to another point in the program. You should use this
feature carefully since its execution ignores any type of nesting limitation.

The destination point is identified by a label, which is then used as an argument for the goto
instruction. A label is made of a valid identifier followed by a colon (:).

This instruction does not have a concrete utility in structured or object oriented programming
aside from those that low-level programming fans may find for it. For example, here is our
countdown loop using goto:

// goto loop example
#include <iostream.h>
int main ()
{
 int n=10;
 loop:
 cout << n << ", ";
 n--;
 if (n>0) goto loop;
 cout << "FIRE!";
 return 0;
}

10, 9, 8, 7, 6, 5, 4, 3,
2, 1, FIRE!

http://www.cplusplus.com/doc/tutorial/tut2-1.html (7 of 10)14-04-2004 18:36:00

C++ Tutorial: 2.1, Control Structures.

The exit function.
exit is a function defined in cstdlib (stdlib.h) library.

The purpose of exit is to terminate the running program with an specific exit code. Its
prototype is:

void exit (int exit code);

The exit code is used by some operating systems and may be used by calling programs.
By convention, an exit code of 0 means that the program finished normally and any other
value means an error happened.

The selective Structure: switch.

The syntax of the switch instruction is a bit peculiar. Its objective is to check several possible
constant values for an expression, something similar to what we did at the beginning of this section
with the linking of several if and else if sentences. Its form is the following:

switch (expression) {
 case constant1:
 block of instructions 1
 break;
 case constant2:
 block of instructions 2
 break;
 .
 .
 .
 default:
 default block of instructions
 }

It works in the following way: switch evaluates expression and checks if it is equivalent to
constant1, if it is, it executes block of instructions 1 until it finds the break keyword,
then the program will jump to the end of the switch selective structure.
If expression was not equal to constant1 it will check if expression is equivalent to
constant2. If it is, it will execute block of instructions 2 until it finds the break
keyword.
Finally, if the value of expression has not matched any of the previously specified constants (you
may specify as many case sentences as values you want to check), the program will execute the

http://www.cplusplus.com/doc/tutorial/tut2-1.html (8 of 10)14-04-2004 18:36:00

http://www.cplusplus.com/ref/cstdlib

C++ Tutorial: 2.1, Control Structures.

instructions included in the default: section, if this one exists, since it is optional.

Both of the following code fragments are equivalent:

switch example if-else equivalent

switch (x) {
 case 1:
 cout << "x is 1";
 break;
 case 2:
 cout << "x is 2";
 break;
 default:
 cout << "value of x unknown";
 }

if (x == 1) {
 cout << "x is 1";
 }
else if (x == 2) {
 cout << "x is 2";
 }
else {
 cout << "value of x unknown";
 }

I have commented before that the syntax of the switch instruction is a bit peculiar. Notice the
inclusion of the break instructions at the end of each block. This is necessary because if, for
example, we did not include it after block of instructions 1 the program would not jump
to the end of the switch selective block (}) and it would continue executing the rest of the blocks of
instructions until the first appearance of the break instruction or the end of the switch selective
block. This makes it unnecessary to include curly brackets { } in each of the cases, and it can also
be useful to execute the same block of instructions for different possible values for the expression
evaluated. For example:

switch (x) {
 case 1:
 case 2:
 case 3:
 cout << "x is 1, 2 or 3";
 break;
 default:
 cout << "x is not 1, 2 nor 3";
 }

Notice that switch can only be used to compare an expression with different constants. Therefore
we cannot put variables (case (n*2):) or ranges (case (1..3):) because they are not valid
constants.

http://www.cplusplus.com/doc/tutorial/tut2-1.html (9 of 10)14-04-2004 18:36:00

C++ Tutorial: 2.1, Control Structures.

If you need to check ranges or values that are not constants use a concatenation of if and else if
sentences.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
1-4. Comunication throgh console. index

Next:
2-2. Functions.

http://www.cplusplus.com/doc/tutorial/tut2-1.html (10 of 10)14-04-2004 18:36:00

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 2.2, Functions (I).

Section 2.2
Functions (I).

Using functions we can structure our programs in a more modular way, accessing all the potential that
structured programming in C++ can offer us.

A function is a block of instructions that is executed when it is called from some other point of the program.
The following is its format:

type name (argument1, argument2, ...) statement

where:
 · type is the type of data returned by the function.
 · name is the name by which it will be possible to call the function.
 · arguments (as many as wanted can be specified). Each argument consists of a type of data followed by
its identifier, like in a variable declaration (for example, int x) and which acts within the function like any
other variable. They allow passing parameters to the function when it is called. The different parameters are
separated by commas.
 · statement is the function's body. It can be a single instruction or a block of instructions. In the latter
case it must be delimited by curly brackets {}.

Here you have the first function example:

// function example
#include <iostream.h>

int addition (int a, int b)
{
 int r;
 r=a+b;
 return (r);
}

int main ()
{
 int z;
 z = addition (5,3);
 cout << "The result is " << z;
 return 0;
}

The result is 8

In order to examine this code, first of all remember something said at the beginning of this tutorial: a C++

http://www.cplusplus.com/doc/tutorial/tut2-2.html (1 of 6)14-04-2004 18:36:09

C++ Tutorial: 2.2, Functions (I).

program always begins its execution with the main function. So we will begin there.

We can see how the main function begins by declaring the variable z of type int. Right after that we see a
call to addition function. If we pay attention we will be able to see the similarity between the structure of
the call to the function and the declaration of the function itself in the code lines above:

The parameters have a clear correspondence. Within the main function we called to addition passing two
values: 5 and 3 that correspond to the int a and int b parameters declared for the function addition.

At the moment at which the function is called from main, control is lost by main and passed to function
addition. The value of both parameters passed in the call (5 and 3) are copied to the local variables int
a and int b within the function.

Function addition declares a new variable (int r;), and by means of the expression r=a+b;, it assigns
to r the result of a plus b. Because the passed parameters for a and b are 5 and 3 respectively, the result is 8.

The following line of code:

return (r);

finalizes function addition, and returns the control back to the function that called it (main) following the
program from the same point at which it was interrupted by the call to addition. But additionally, return
was called with the content of variable r (return (r);), which at that moment was 8, so this value is said
to be returned by the function.

The value returned by a function is the value given to the function when it is evaluated. Therefore, z will store
the value returned by addition (5, 3), that is 8. To explain it another way, you can imagine that the
call to a function (addition (5,3)) is literally replaced by the value it returns (8).

The following line of code in main is:

cout << "The result is " << z;

that, as you may already suppose, produces the printing of the result on the screen.

http://www.cplusplus.com/doc/tutorial/tut2-2.html (2 of 6)14-04-2004 18:36:09

C++ Tutorial: 2.2, Functions (I).

Scope of variables [re]

You must consider that the
scope of variables declared
within a function or any other
block of instructions is only
their own function or their own
block of instructions and cannot
be used outside of them. For
example, in the previous
example it had been impossible
to use the variables a, b or r
directly in function main since
they were local variables to
function addition. Also, it
had been impossible to use the
variable z directly within
function addition, since this
was a local variable to the function main.

Therefore, the scope of local variables is limited to the same nesting level in which they are declared.
Nevertheless you can also declare global variables that are visible from any point of the code, inside and
outside any function. In order to declare global variables you must do it outside any function or block of
instructions, that means, directly in the body of the program.

And here is another example about functions:

// function example
#include <iostream.h>

int subtraction (int a, int b)
{
 int r;
 r=a-b;
 return (r);
}

int main ()
{
 int x=5, y=3, z;
 z = subtraction (7,2);
 cout << "The first result is " << z << '\n';
 cout << "The second result is " << subtraction (7,2) << '\n';
 cout << "The third result is " << subtraction (x,y) << '\n';
 z= 4 + subtraction (x,y);

The
first
result
is 5
The
second
result
is 5
The
third
result
is 2
The
fourth
result
is 6

http://www.cplusplus.com/doc/tutorial/tut2-2.html (3 of 6)14-04-2004 18:36:09

C++ Tutorial: 2.2, Functions (I).

 cout << "The fourth result is " << z << '\n';
 return 0;
}

In this case we have created the function subtraction. The only thing that this function does is to subtract
both passed parameters and to return the result.

Nevertheless, if we examine the function main we will see that we have made several calls to function
subtraction. We have used some different calling methods so that you see other ways or moments when
a function can be called.

In order to understand well these examples you must consider once again that a call to a function could be
perfectly replaced by its return value. For example the first case (that you should already know beacause it is
the same pattern that we have used in previous examples):

z = subtraction (7,2);
cout << "The first result is " << z;

If we replace the function call by its result (that is 5), we would have:

z = 5;
cout << "The first result is " << z;

As well as

cout << "The second result is " << subtraction (7,2);

has the same result as the previous call, but in this case we made the call to subtraction directly as a
parameter for cout. Simply imagine that we had written:

cout << "The second result is " << 5;

since 5 is the result of subtraction (7,2).

In the case of

cout << "The third result is " << subtraction (x,y);

The only new thing that we introduced is that the parameters of subtraction are variables instead of
constants. That is perfectly valid. In this case the values passed to the function subtraction are the values
of x and y, that are 5 and 3 respectively, giving 2 as result.

The fourth case is more of the same. Simply note that instead of:

http://www.cplusplus.com/doc/tutorial/tut2-2.html (4 of 6)14-04-2004 18:36:09

C++ Tutorial: 2.2, Functions (I).

z = 4 + subtraction (x,y);

we could have put:

z = subtraction (x,y) + 4;

with exactly the same result. Notice that the semicolon sign (;) goes at the end of the whole expression. It
does not necessarily have to go right after the function call. The explanation might be once again that you
imagine that a function can be replaced by its result:

z = 4 + 2;
z = 2 + 4;

Functions with no types. The use of void.

If you remember the syntax of a function declaration:

type name (argument1, argument2 ...) statement

you will see that it is obligatory that this declaration begins with a type, that is the type of the data that will
be returned by the function with the return instruction. But what if we want to return no value?

Imagine that we want to make a function just to show a message on the screen. We do not need it to return
any value, moreover, we do not need it to receive any parameters. For these cases, the void type was devised
in the C language. Take a look at:

// void function example
#include <iostream.h>

void dummyfunction (void)
{
 cout << "I'm a function!";
}

int main ()
{
 dummyfunction ();
 return 0;
}

I'm a function!

Although in C++ it is not necessary to specify void, its use is considered suitable to signify that it is a
function without parameters or arguments and not something else.

http://www.cplusplus.com/doc/tutorial/tut2-2.html (5 of 6)14-04-2004 18:36:09

C++ Tutorial: 2.2, Functions (I).

What you must always be aware of is that the format for calling a function includes specifing its name and
enclosing the arguments between parenthesis. The non-existence of arguments does not exempt us from the
obligation to use parenthesis. For that reason the call to dummyfunction is

dummyfunction ();

This clearly indicates that it is a call to a function and not the name of a variable or anything else.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
2-1. Control structures. index

Next:
2-3. Functions (II).

http://www.cplusplus.com/doc/tutorial/tut2-2.html (6 of 6)14-04-2004 18:36:09

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 2.3, Functions (II).

Section 2.3
Functions (II).

Arguments passed by value and by reference.

Until now, in all the functions we have seen, the parameters passed to the functions have
been passed by value. This means that when calling a function with parameters, what we
have passed to the function were values but never the specified variables themselves. For
example, suppose that we called our first function addition using the following code :

int x=5, y=3, z;
z = addition (x , y);

What we did in this case was to call function addition passing the values of x and y, that
means 5 and 3 respectively, not the variables themselves.

This way, when function addition is being called the value of its variables a and b
become 5 and 3 respectively, but any modification of a or b within the function addition
will not affect the values of x and y outside it, because variables x and y were not passed
themselves to the the function, only their values.

But there might be some cases where you need to manipulate from inside a function the
value of an external variable. For that purpose we have to use arguments passed by
reference, as in the function duplicate of the following example:

http://www.cplusplus.com/doc/tutorial/tut2-3.html (1 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (II).

// passing parameters by reference
#include <iostream.h>

void duplicate (int& a, int& b, int& c)
{
 a*=2;
 b*=2;
 c*=2;
}

int main ()
{
 int x=1, y=3, z=7;
 duplicate (x, y, z);
 cout << "x=" << x << ", y=" << y << ", z=" << z;
 return 0;
}

x=2,
y=6,
z=14

The first thing that should call your attention is that in the declaration of duplicate the
type of each argument was followed by an ampersand sign (&), that serves to specify that the
variable has to be passed by reference instead of by value, as usual.

When passing a variable by reference we are passing the variable itself and any modification
that we do to that parameter within the function will have effect in the passed variable
outside it.

To express it another way, we have associated a, b and c with the parameters used when
calling the function (x, y and z) and any change that we do on a within the function will
affect the value of x outside. Any change that we do on b will affect y, and the same with c
and z.

That is why our program's output, that shows the values stored in x, y and z after the call to

http://www.cplusplus.com/doc/tutorial/tut2-3.html (2 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (II).

duplicate, shows the values of the three variables of main doubled.

If when declaring the following function:

void duplicate (int& a, int& b, int& c)

we had declared it thus:

void duplicate (int a, int b, int c)

that is, without the ampersand (&) signs, we would have not passed the variables by
reference, but their values, and therefore, the output on screen for our program would have
been the values of x, y and z without having been modified.

This type of declaration "by reference" using the ampersand (&) sign is
exclusive of C++. In C language we had to use pointers to do something
equivalent.

Passing by reference is an effective way to allow a function to return more than one single
value. For example, here is a function that returns the previous and next numbers of the first
parameter passed.

// more than one returning value
#include <iostream.h>

void prevnext (int x, int& prev, int& next)
{
 prev = x-1;
 next = x+1;
}

int main ()
{
 int x=100, y, z;
 prevnext (x, y, z);
 cout << "Previous=" << y << ", Next=" << z;
 return 0;
}

Previous=99,
Next=101

http://www.cplusplus.com/doc/tutorial/tut2-3.html (3 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (II).

Default values in arguments.

When declaring a function we can specify a default value for each parameter. This value will
be used if that parameter is left blank when calling to the function. To do that we simply
have to assign a value to the arguments in the function declaration. If a value for that
parameter is not passed when the function is called, the default value is used, but if a value is
specified this default value is stepped on and the passed value is used. For example:

// default values in functions
#include <iostream.h>

int divide (int a, int b=2)
{
 int r;
 r=a/b;
 return (r);
}

int main ()
{
 cout << divide (12);
 cout << endl;
 cout << divide (20,4);
 return 0;
}

6
5

As we can see in the body of the program there are two calls to the function divide. In the
first one:

divide (12)

we have only specified one argument, but the function divide allows up to two. So the
function divide has assumed that the second parameter is 2 since that is what we have
specified to happen if this parameter is lacking (notice the function declaration, which

http://www.cplusplus.com/doc/tutorial/tut2-3.html (4 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (II).

finishes with int b=2). Therefore the result of this function call is 6 (12/2).

In the second call:

divide (20,4)

there are two parameters, so the default assignation (int b=2) is stepped on by the passed
parameter, that is 4, making the result equal to 5 (20/4).

Overloaded functions.

Two different functions can have the same name if the prototype of their arguments are
different, that means that you can give the same name to more than one function if they have
either a different number of arguments or different types in their arguments. For example,

// overloaded function
#include <iostream.h>

int divide (int a, int b)
{
 return (a/b);
}

float divide (float a, float b)
{
 return (a/b);
}

int main ()
{
 int x=5,y=2;
 float n=5.0,m=2.0;
 cout << divide (x,y);
 cout << "\n";
 cout << divide (n,m);
 cout << "\n";
 return 0;
}

2
2.5

http://www.cplusplus.com/doc/tutorial/tut2-3.html (5 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (II).

In this case we have defined two functions with the same name, but one of them accepts two
arguments of type int and the other accepts them of type float. The compiler knows
which one to call in each case by examining the types when the function is called. If it is
called with two ints as arguments it calls to the function that has two int arguments in the
prototype and if it is called with two floats it will call to the one which has two floats
in its prototype.

For simplicity I have included the same code within both functions, but this is not
compulsory. You can make two function with the same name but with completely different
behaviors.

inline functions.

The inline directive can be included before a function declaration to specify that the function
must be compiled as code at the same point where it is called. This is equivalent to declaring
a macro. Its advantage is only appreciated in very short functions, in which the resulting
code from compiling the program may be faster if the overhead of calling a function
(stacking of arguments) is avoided.

The format for its declaration is:
inline type name (arguments ...) { instructions ... }
and the call is just like the call to any other function. It is not necessary to include the
inline keyword before each call, only in the declaration.

Recursivity.

Recursivity is the property that functions have to be called by themselves. It is useful for
tasks such as some sorting methods or to calculate the factorial of a number. For example, to
obtain the factorial of a number (n) its mathematical formula is:

n! = n * (n-1) * (n-2) * (n-3) ... * 1

more concretely, 5! (factorial of 5) would be:

5! = 5 * 4 * 3 * 2 * 1 = 120

http://www.cplusplus.com/doc/tutorial/tut2-3.html (6 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (II).

and a recursive function to do that could be this:

// factorial calculator
#include <iostream.h>

long factorial (long a)
{
 if (a > 1)
 return (a * factorial (a-1));
 else
 return (1);
}

int main ()
{
 long l;
 cout << "Type a number: ";
 cin >> l;
 cout << "!" << l << " = " << factorial (l);
 return 0;
}

Type a
number: 9
!9 = 362880

Notice how in function factorial we included a call to itself, but only if the argument is
greater than 1, since otherwise the function would perform an infinite recursive loop in
which once it arrived at 0 it would continue multiplying by all the negative numbers
(probably provoking a stack overflow error on runtime).

This function has a limitation because of the data type used in its design (long) for more
simplicity. In a standard system, the type long would not allow storing factorials greater
than 12!.

Prototyping functions.

Until now, we have defined the all of the functions before the first appearance of calls to
them, that generally was in main, leaving the function main for the end. If you try to repeat
some of the examples of functions described so far, but placing the function main before
any other function that is called from within it, you will most likely obtain an error. The

http://www.cplusplus.com/doc/tutorial/tut2-3.html (7 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (II).

reason is that to be able to call a function it must have been declared previously (it must be
known), like we have done in all our examples.

But there is an alternative way to avoid writing all the code of all functions before they can
be used in main or in another function. It is by prototyping functions. This consists in
making a previous shorter, but quite significant, declaration of the complete definition so
that the compiler can know the arguments and the return type needed.

Its form is:

type name (argument_type1, argument_type2, ...);

It is identical to the header of a function definition, except:

● It does not include a statement for the function. That means that it does not
include the body with all the instructions that are usually enclose within curly
brackets { }.

● It ends with a semicolon sign (;).
● In the argument enumeration it is enough to put the type of each argument. The

inclusion of a name for each argument as in the definition of a standard function is
optional, although recommended.

For example:

// prototyping
#include <iostream.h>

void odd (int a);
void even (int a);

int main ()
{
 int i;
 do {
 cout << "Type a number: (0 to exit)";
 cin >> i;
 odd (i);
 } while (i!=0);

Type a number
(0 to exit): 9
Number is odd.
Type a number
(0 to exit): 6
Number is
even.
Type a number
(0 to exit):
1030
Number is
even.
Type a number
(0 to exit): 0

http://www.cplusplus.com/doc/tutorial/tut2-3.html (8 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (II).

 return 0;
}

void odd (int a)
{
 if ((a%2)!=0) cout << "Number is odd.\n";
 else even (a);
}

void even (int a)
{
 if ((a%2)==0) cout << "Number is even.\n";
 else odd (a);
}

Number is
even.

This example is indeed not an example of effectiveness, I am sure that at this point you can
already make a program with the same result using only half of the code lines. But this
example ilustrates how protyping works. Moreover, in this concrete case the prototyping of -
at least- one of the two functions is necessary.

The first things that we see are the prototypes of functions odd and even:

void odd (int a);
void even (int a);

that allows these functions to be used before they are completely defined, for example, in
main, which now is located in a more logical place: the beginning of the program's code.

Nevertheless, the specific reason why this program needs at least one of the functions
prototyped is because in odd there is a call to even and in even there is a call to odd. If
none of the two functions had been previously declared, an error would have happened,
since either odd would not be visible from even (because it has not still been declared), or
even would not be visible from odd.

Many programmers recommend that all functions be prototyped. It is also my
recommendation, mainly in case that there are many functions or in case that they are very
long. Having the prototype of all the functions in the same place can spare us some time

http://www.cplusplus.com/doc/tutorial/tut2-3.html (9 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (II).

when determining how to call it or even ease the creation of a header file.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
2-2. Functions (I). index

Next:
3-1. Arrays. String of characters.

http://www.cplusplus.com/doc/tutorial/tut2-3.html (10 of 10)14-04-2004 18:36:21

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 3.1, Arrays

Section 3.1
Arrays

Arrays are a series of elements (variables) of the same type placed consecutively in memory that can be
individually referenced by adding an index to a unique name.

That means that, for example, we can store 5 values of type int without having to declare 5 different
variables each with a different identifier. Instead, using an array we can store 5 different values of the same
type, int for example, with a unique identifier.

For example, an array to contain 5 integer values of type int called billy could be represented this way:

where each blank panel represents an element of the array, that in this case are integer values of type int.
These are numbered from 0 to 4 since in arrays the first index is always 0, independently of its length .

Like any other variable, an array must be declared before it is used. A typical declaration for an array in C++
is:

type name [elements];

where type is a valid object type (int, float...), name is a valid variable identifier and the elements field,
that is enclosed within brackets [], specifies how many of these elements the array contains.

Therefore, to declare billy as shown above it is as simple as the following sentence:

int billy [5];

NOTE: The elements field within brackets [] when declaring an array must be a constant value, since
arrays are blocks of static memory of a given size and the compiler must be able to determine exactly how
much memory it must assign to the array before any instruction is considered.

Initializing arrays.

When declaring an array of local scope (within a function), if we do not specify otherwise, it will not be
initialized, so its content is undetermined until we store some values in it.

If we declare a global array (outside any function) its content will be initialized with all its elements filled
with zeros. Thus, if in the global scope we declare:

http://www.cplusplus.com/doc/tutorial/tut3-1.html (1 of 7)14-04-2004 18:36:31

C++ Tutorial: 3.1, Arrays

int billy [5];

every element of billy will be set initialy to 0:

But additionally, when we declare an Array, we have the possibility to assign initial values to each one of its
elements using curly brackets { }. For example:

int billy [5] = { 16, 2, 77, 40, 12071 };

this declaration would have created an array like the following one:

The number of elements in the array that we initialized within curly brackets { } must match the length in
elements that we declared for the array enclosed within square brackets []. For example, in the example of
the billy array we have declared that it had 5 elements and in the list of initial values within curly brackets
{ } we have set 5 different values, one for each element.

Because this can be considered useless repetition, C++ includes the possibility of leaving the brackets empty
[] and the size of the Array will be defined by the number of values included between curly brackets { }:

int billy [] = { 16, 2, 77, 40, 12071 };

Access to the values of an Array.

In any point of the program in which the array is visible we can access individually anyone of its values for
reading or modifying as if it was a normal variable. The format is the following:

name[index]

Following the previous examples in which billy had 5 elements and each of those elements was of type int,
the name which we can use to refer to each element is the following:

For example, to store the value 75 in the third element of billy a suitable sentence would be:

billy[2] = 75;

http://www.cplusplus.com/doc/tutorial/tut3-1.html (2 of 7)14-04-2004 18:36:31

C++ Tutorial: 3.1, Arrays

and, for example, to pass the value of the third element of billy to the variable a, we could write:

a = billy[2];

Therefore, for all purposes, the expression billy[2] is like any other variable of type int.

Notice that the third element of billy is specified billy[2], since first is billy[0], the second is
billy[1], and therefore, third is billy[2]. By this same reason, its last element is billy[4]. Since if
we wrote billy[5], we would be acceding to the sixth element of billy and therefore exceeding the size of
the array.

In C++ it is perfectly valid to exceed the valid range of indices for an Array, which can create problems
since they do not cause compilation errors but they can cause unexpected results or serious errors during
execution. The reason why this is allowed will be seen farther ahead when we begin to use pointers.

At this point it is important to be able to clearly distinguish between the two uses that brackets [] have
related to arrays. They perform two differt tasks: one is to set the size of arrays when declaring them; and
second is to specify indices for a concrete array element when referring to it. We must simply take care not
to confuse these two possible uses of brackets [] with arrays:

int billy[5]; // declaration of a new Array (begins
with a type name)
billy[2] = 75; // access to an element of the Array.

Other valid operations with arrays:

billy[0] = a;
billy[a] = 75;
b = billy [a+2];
billy[billy[a]] = billy[2] + 5;

// arrays example
#include <iostream.h>

int billy [] = {16, 2, 77, 40, 12071};
int n, result=0;

int main ()
{
 for (n=0 ; n<5 ; n++)
 {
 result += billy[n];
 }
 cout << result;

12206

http://www.cplusplus.com/doc/tutorial/tut3-1.html (3 of 7)14-04-2004 18:36:31

C++ Tutorial: 3.1, Arrays

 return 0;
}

Multidimensional Arrays

Multidimensional arrays can be described as arrays of arrays. For example, a bidimensional array can be
imagined as a bidimensional table of a uniform concrete data type.

jimmy represents a bidimensional array of 3 per 5 values of type int. The way to declare this array would
be:

int jimmy [3][5];

and, for example, the way to reference the second element vertically and fourth horizontally in an expression
would be:

jimmy[1][3]

(remember that array indices always begin by 0).

Multidimensional arrays are not limited to two indices (two dimensions). They can contain as many indices
as needed, although it is rare to have to represent more than 3 dimensions. Just consider the amount of
memory that an array with many indices may need. For example:

char century [100][365][24][60][60];

assigns a char for each second contained in a century, that is more than 3 billion chars! This would
consume about 3000 megabytes of RAM memory if we could declare it.

Multidimensional arrays are nothing more than an abstraction, since we can obtain the same results with a

http://www.cplusplus.com/doc/tutorial/tut3-1.html (4 of 7)14-04-2004 18:36:31

C++ Tutorial: 3.1, Arrays

simple array just by putting a factor between its indices:

int jimmy [3][5]; is equivalent to
int jimmy [15]; (3 * 5 = 15)

with the only difference that the compiler remembers for us the depth of each imaginary dimension. Serve as
example these two pieces of code, with exactly the same result, one using bidimensional arrays and the other
using only simple arrays:

// multidimensional array
#include <iostream.h>

#define WIDTH 5
#define HEIGHT 3

int jimmy [HEIGHT][WIDTH];
int n,m;

int main ()
{
 for (n=0;n<HEIGHT;n++)
 for (m=0;m<WIDTH;m++)
 {
 jimmy[n][m]=(n+1)*(m+1);
 }
 return 0;
}

// pseudo-multidimensional array
#include <iostream.h>

#define WIDTH 5
#define HEIGHT 3

int jimmy [HEIGHT * WIDTH];
int n,m;

int main ()
{
 for (n=0;n<HEIGHT;n++)
 for (m=0;m<WIDTH;m++)
 {
 jimmy[n * WIDTH + m]=(n+1)*(m+1);
 }
 return 0;
}

none of the programs above produce any output on the screen, but both assign values to the memory block
called jimmy in the following way:

We have used defined constants (#define) to simplify possible future modifications of the program, for
example, in case that we decided to enlarge the array to a height of 4 instead of 3 it could be done by
changing the line:

#define HEIGHT 3

http://www.cplusplus.com/doc/tutorial/tut3-1.html (5 of 7)14-04-2004 18:36:31

C++ Tutorial: 3.1, Arrays

to

#define HEIGHT 4

with no need to make any other modifications to the program.

Arrays as parameters

At some moment we may need to pass an array to a function as a parameter. In C++ is not possible to pass
by value a complete block of memory as a parameter to a function, even if it is ordered as an array, but it is
allowed to pass its address. This has almost the same practical effect and it is a much faster and more
efficient operation.

In order to admit arrays as parameters the only thing that we must do when declaring the function is to
specify in the argument the base type for the array, an identifier and a pair of void brackets []. For
example, the following function:

void procedure (int arg[])

admits a parameter of type "Array of int" called arg. In order to pass to this function an array declared as:

int myarray [40];

it would be enough to write a call like this:

procedure (myarray);

Here you have a complete example:

// arrays as parameters
#include <iostream.h>

void printarray (int arg[], int length) {
 for (int n=0; n<length; n++)
 cout << arg[n] << " ";
 cout << "\n";
}

int main ()
{
 int firstarray[] = {5, 10, 15};
 int secondarray[] = {2, 4, 6, 8, 10};
 printarray (firstarray,3);
 printarray (secondarray,5);

5 10 15
2 4 6 8 10

http://www.cplusplus.com/doc/tutorial/tut3-1.html (6 of 7)14-04-2004 18:36:31

C++ Tutorial: 3.1, Arrays

 return 0;
}

As you can see, the first argument (int arg[]) admits any array of type int, wathever its length is. For
that reason we have included a second parameter that tells the function the length of each array that we pass
to it as the first parameter. This allows the for loop that prints out the array to know the range to check in
the passed array.

In a function declaration is also possible to include multidimensional arrays. The format for a tridimensional
array is:

base_type[][depth][depth]

for example, a function with a multidimensional array as argument could be:

void procedure (int myarray[][3][4])

notice that the first brackets [] are void and the following ones are not. This must always be thus because
the compiler must be able to determine within the function which is the depth of each additional dimension.

Arrays, both simple or multidimensional, passed as function parameters are a quite common source of errors
for less experienced programmers. I recommend the reading of chapter 3.3, Pointers for a better
understanding of how arrays operate.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
2-3. Functions (II). index

Next:
3-2. Strings of characters.

http://www.cplusplus.com/doc/tutorial/tut3-1.html (7 of 7)14-04-2004 18:36:31

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 3.2, Strings of Characters.

Section 3.2
Strings of Characters.

In all programs seen until now, we have used only numerical variables, used to express numbers
exclusively. But in addition to numerical variables there also exist strings of characters, that
allow us to represent successions of characters, like words, sentences, names, texts, et cetera.
Until now we have only used them as constants, but we have never considered variables able to
contain them.

In C++ there is no specific elemental variable type to store strings of characters. In order to
fulfill this feature we can use arrays of type char, which are successions of char elements.
Remember that this data type (char) is the one used to store a single character, for that reason
arrays of them are generally used to make strings of single characters.

For example, the following array (or string of characters):

char jenny [20];

can store a string up to 20 characters long. You may imagine it thus:

This maximum size of 20 characters is not required to always be fully used. For example,
jenny could store at some moment in a program either the string of characters "Hello" or
the string "Merry christmas". Therefore, since the array of characters can store shorter
strings than its total length, a convention has been reached to end the valid content of a string
with a null character, whose constant can be written 0 or '\0'.

We could represent jenny (an array of 20 elements of type char) storing the strings of
characters "Hello" and "Merry Christmas" in the following way:

http://www.cplusplus.com/doc/tutorial/tut3-2.html (1 of 8)14-04-2004 18:36:42

C++ Tutorial: 3.2, Strings of Characters.

Notice how after the valid content a null character ('\0') it is included in order to indicate the
end of the string. The panels in gray color represent indeterminate values.

Initialization of strings

Because strings of characters are ordinary arrays they fulfill all their same rules. For example, if
we want to initialize a string of characters with predetermined values we can do it just like any
other array:

char mystring[] = { 'H', 'e', 'l', 'l', 'o', '\0' };

In this case we would have declared a string of characters (array) of 6 elements of type char
initialized with the characters that compose Hello plus a null character '\0'.

Nevertheless, strings of characters have an additional way to initialize their values: using
constant strings.

In the expressions we have used in examples in previous chapters constants that represented
entire strings of characters have already appeared several times. These are specified enclosed
between double quotes ("), for example:

"the result is: "

is a constant string that we have probably used on some occasion.

Unlike single quotes (') which specify single character constants, double quotes (") are
constants that specify a succession of characters. Strings enclosed between double quotes
always have a null character ('\0') automatically appended at the end.

Therefore we could initialize the string mystring with values by either of these two ways:

char mystring [] = { 'H', 'e', 'l', 'l', 'o', '\0' };
char mystring [] = "Hello";

In both cases the array or string of characters mystring is declared with a size of 6 characters
(elements of type char): the 5 characters that compose Hello plus a final null character
('\0') which specifies the end of the string and that, in the second case, when using double
quotes (") it is automatically appended.

http://www.cplusplus.com/doc/tutorial/tut3-2.html (2 of 8)14-04-2004 18:36:42

C++ Tutorial: 3.2, Strings of Characters.

Before going further, notice that the assignation of multiple constants like double-quoted
constants (") to arrays are only valid when initializing the array, that is, at the moment when
declared. Expressions within the code like:

mystring = "Hello";
mystring[] = "Hello";

are not valid for arrays, like neither would be:

mystring = { 'H', 'e', 'l', 'l', 'o', '\0' };

So remember: We can "assign" a multiple constant to an Array only at the moment of
initializing it. The reason will be more comprehensible when you know a bit more about
pointers, since then it will be clarified that an array is simply a constant pointer pointing to an
allocated block of memory. And because of this constantnes, the array itself can not be assigned
any value, but we can assing values to each of the elements of the array.

The moment of initializing an Array it is a special case, since it is not an assignation, although
the same equal sign (=) is used. Anyway, always have the rule previously underlined present.

Assigning values to strings

Since the lvalue of an assignation can only be an element of an array and not the entire array, it
would be valid to assign a string of characters to an array of char using a method like this:

mystring[0] = 'H';
mystring[1] = 'e';
mystring[2] = 'l';
mystring[3] = 'l';
mystring[4] = 'o';
mystring[5] = '\0';

But as you may think, this does not seem to be a very practical method. Generally for assigning
values to an array, and more specifically to a string of characters, a series of functions like
strcpy are used. strcpy (string copy) is defined in the cstring (string.h) library and
can be called the following way:

strcpy (string1, string2);

This does copy the content of string2 into string1. string2 can be either an array, a

http://www.cplusplus.com/doc/tutorial/tut3-2.html (3 of 8)14-04-2004 18:36:42

C++ Tutorial: 3.2, Strings of Characters.

pointer, or a constant string, so the following line would be a valid way to assign the constant
string "Hello" to mystring:

strcpy (mystring, "Hello");

For example:

// setting value to string
#include <iostream.h>
#include <string.h>

int main ()
{
 char szMyName [20];
 strcpy (szMyName,"J. Soulie");
 cout << szMyName;
 return 0;
}

J. Soulie

Notice that we needed to include <string.h> header in order to be able to use function
strcpy.

Although we can always write a simple function like the following setstring with the same
operation as cstring's strcpy:

// setting value to string
#include <iostream.h>

void setstring (char szOut [], char szIn [])
{
 int n=0;
 do {
 szOut[n] = szIn[n];
 } while (szIn[n++] != '\0');
}

int main ()
{

J. Soulie

http://www.cplusplus.com/doc/tutorial/tut3-2.html (4 of 8)14-04-2004 18:36:42

C++ Tutorial: 3.2, Strings of Characters.

 char szMyName [20];
 setstring (szMyName,"J. Soulie");
 cout << szMyName;
 return 0;
}

Another frequently used method to assign values to an array is by directly using the input stream
(cin). In this case the value of the string is assigned by the user during program execution.

When cin is used with strings of characters it is usually used with its getline method, that
can be called following this prototype:

cin.getline (char buffer[], int length, char
delimiter = ' \n');

where buffer is the address of where to store the input (like an array, for example), length
is the maximum length of the buffer (the size of the array) and delimiter is the character
used to determine the end of the user input, which by default - if we do not include that
parameter - will be the newline character ('\n').

The following example repeats whatever you type on your keyboard. It is quite simple but
serves as an example of how you can use cin.getline with strings:

// cin with strings
#include <iostream.h>

int main ()
{
 char mybuffer [100];
 cout << "What's your name? ";
 cin.getline (mybuffer,100);
 cout << "Hello " << mybuffer << ".\n";
 cout << "Which is your favourite team? ";
 cin.getline (mybuffer,100);
 cout << "I like " << mybuffer << " too.\n";
 return 0;
}

What's your
name? Juan
Hello Juan.
Which is your
favourite
team? Inter
Milan
I like Inter
Milan too.

http://www.cplusplus.com/doc/tutorial/tut3-2.html (5 of 8)14-04-2004 18:36:42

C++ Tutorial: 3.2, Strings of Characters.

Notice how in both calls to cin.getline we used the same string identifier (mybuffer).
What the program does in the second call is simply step on the previous content of buffer
with the new one that is introduced.

If you remember the section about communication through the console, you will remember that
we used the extraction operator (>>) to receive data directly from the standard input. This
method can also be used instead of cin.getline with strings of characters. For example, in
our program, when we requested an input from the user we could have written:

cin >> mybuffer;

this would work, but this method has the following limitations that cin.getline has not:

● It can only receive single words (no complete sentences) since this method uses as a
delimiter any occurrence of a blank character, including spaces, tabulators, newlines and
carriage returns.

● It is not allowed to specify a size for the buffer. That makes your program unstable in
case the user input is longer than the array that will host it.

For these reasons it is recommended that whenever you require strings of characters coming
from cin you use cin.getline instead of cin >>.

Converting strings to other types

Due to that a string may contain representations of other data types like numbers, it might be
useful to translate that content to a variable of a numeric type. For example, a string may
contain "1977", but this is a sequence of 5 chars not so easily convertable to a single integer
data type. The cstdlib (stdlib.h) library provides three useful functions for this purpose:

● atoi: converts string to int type.
● atol: converts string to long type.
● atof: converts string to float type.

All of these functions admit one parameter and return a value of the requested type (int, long
or float). These functions combined with getline method of cin are a more reliable way
to get the user input when requesting a number than the classic cin>> method:

http://www.cplusplus.com/doc/tutorial/tut3-2.html (6 of 8)14-04-2004 18:36:42

C++ Tutorial: 3.2, Strings of Characters.

// cin and ato* functions
#include <iostream.h>
#include <stdlib.h>

int main ()
{
 char mybuffer [100];
 float price;
 int quantity;
 cout << "Enter price: ";
 cin.getline (mybuffer,100);
 price = atof (mybuffer);
 cout << "Enter quantity: ";
 cin.getline (mybuffer,100);
 quantity = atoi (mybuffer);
 cout << "Total price: " << price*quantity;
 return 0;
}

Enter price:
2.75
Enter quantity:
21
Total price:
57.75

Functions to manipulate strings

The cstring library (string.h) defines many functions to perform manipulation operations
with C-like strings (like already explained strcpy). Here you have a brief look at the most usual:

strcat: char* strcat (char* dest, const char* src);
Appends src string at the end of dest string. Returns dest.

strcmp: int strcmp (const char* string1, const char* string2);
Compares strings string1 and string2. Returns 0 is both strings are equal.

strcpy: char* strcpy (char* dest, const char* src);
Copies the content of src to dest. Returns dest.

strlen: size_t strlen (const char* string);
Returns the length of string.

NOTE: char* is the same as char[]

http://www.cplusplus.com/doc/tutorial/tut3-2.html (7 of 8)14-04-2004 18:36:42

http://www.cplusplus.com/ref/cstring/strcat.html
http://www.cplusplus.com/ref/cstring/strcmp.html
http://www.cplusplus.com/ref/cstring/strcpy.html
http://www.cplusplus.com/ref/cstring/strlen.html

C++ Tutorial: 3.2, Strings of Characters.

Check the C++ Reference for extended information about these and other functions of this
library.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
3-1. Arrays index

Next:
3-3. Pointers

http://www.cplusplus.com/doc/tutorial/tut3-2.html (8 of 8)14-04-2004 18:36:42

http://www.cplusplus.com/ref/
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 3.3, Pointers.

Section 3.3
Pointers

We have already seen how variables are memory cells that we can access by an identifier. But these variables are stored
in concrete places of the computer memory. For our programs, the computer memory is only a succession of 1 byte cells
(the minimum size for a datum), each one with a unique address.

A good simile for the computer memory can be a street in a city. On a street all houses are consecutively numbered with
an unique identifier so if we talk about 27th of Sesame Street we will be able to find that place without trouble, since
there must be only one house with that number and, in addition, we know that the house will be between houses 26 and
28.

In the same way in which houses in a street are numbered, the operating system organizes the memory with unique and
consecutive numbers, so if we talk about location 1776 in the memory, we know that there is only one location with that
address and also that is between addresses 1775 and 1777.

Address (dereference) operator (&).

At the moment in which we declare a variable it must be stored in a concrete location in this succession of cells (the
memory). We generally do not decide where the variable is to be placed - fortunately that is something automatically
done by the compiler and the operating system at runtime, but once the operating system has assigned an address there
are some cases in which we may be interested in knowing where the variable is stored.

This can be done by preceding the variable identifier by an ampersand sign (&), which literally means "address of". For
example:

ted = &andy;

would assign to variable ted the address of variable andy, since when preceding the name of the variable andy with
the ampersand (&) character we are no longer talking about the content of the variable, but about its address in memory.

We are going to suppose that andy has been placed in the memory address 1776 and that we write the following:

andy = 25;
fred = andy;
ted = &andy;

the result is shown in the following diagram:

http://www.cplusplus.com/doc/tutorial/tut3-3.html (1 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

We have assigned to fred the content of variable andy as we have done in many other occasions in previous sections
of this tutorial, but to ted we have assigned the address in memory where the operating system stores the value of
andy, that we have imagined was 1776 (it can be any address, I have just invented this one). The reason is that in the
allocation of ted we have preceded andy with an ampersand (&) character.

The variable that stores the address of another variable (like ted in the previous example) is what we call a pointer. In
C++ pointers have certain virtues and they are used very often. Farther ahead we will see how this type of variable is
declared.

Reference operator (*)

Using a pointer we can directly access the value stored in the variable pointed by it just by preceding the pointer
identifier with the reference operator asterisk (*), that can be literally translated to "value pointed by". Therefore,
following with the values of the previous example, if we write:

beth = *ted;

(that we could read as: "beth equal to value pointed by ted") beth would take the value 25, since ted is 1776, and the
value pointed by 1776 is 25.

You must clearly differenciate that ted stores 1776, but *ted (with an asterisk * before) refers to the value stored in
the address 1776, that is 25. Notice the difference of including or not including the reference asterisk (I have included
an explanatory commentary of how each expression could be read):

beth = ted; // beth equal to ted (1776)
beth = *ted; // beth equal to value pointed by ted (25)

Operator of address or dereference (&)
It is used as a variable prefix and can be translated as "address of", thus: &variable1 can be read as "address of
variable1"

Operator of reference (*)
It indicates that what has to be evaluated is the content pointed by the expression considered as an address. It can be
translated by "value pointed by".
* mypointer can be read as "value pointed by mypointer".

http://www.cplusplus.com/doc/tutorial/tut3-3.html (2 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

At this point, and following with the same example initiated above where:

andy = 25;
ted = &andy;

you should be able to clearly see that all the following expressions are true:

andy == 25
&andy == 1776
ted == 1776
*ted == 25

The first expression is quite clear considering that its assignation was andy=25;. The second one uses the address (or
derefence) operator (&) that returns the address of the variable andy, that we imagined to be 1776. The third one is
quite obvious since the second was true and the assignation of ted was ted = &andy;. The fourth expression uses
the reference operator (*) that, as we have just seen, is equivalent to the value contained in the address pointed by ted,
that is 25.

So, after all that, you may also infer that while the address pointed by ted remains unchanged the following expression
will also be true:

*ted == andy

Declaring variables of type pointer

Due to the ability of a pointer to directly reference the value that it point to, it becomes necessary to specify which data
type a pointer points to when declaring it. It is not the same to point to a char as it is to point to an int or a float
type.

Therefore, the declaration of pointers follows this form:

type * pointer_name;

where type is the type of data pointed, not the type of the pointer itself. For example:

int * number;
char * character;
float * greatnumber;

they are three declarations of pointers. Each one points to a different data type, but the three are pointers and in fact the
three occupy the same amount of space in memory (the size of a pointer depends on the operating system), but the data
to which they point do not occupy the same amount of space nor are of the same type, one is int, another one is char
and the other one float.

I emphasize that the asterisk (*) that we use when declaring a pointer means only that it is a pointer, and should not be
confused with the reference operator that we have seen a bit earlier which is also written with an asterisk (*). They are
simply two different tasks represented with the same sign.

http://www.cplusplus.com/doc/tutorial/tut3-3.html (3 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

// my first pointer
#include <iostream.h>

int main ()
{
 int value1 = 5, value2 = 15;
 int * mypointer;

 mypointer = &value1;
 *mypointer = 10;
 mypointer = &value2;
 *mypointer = 20;
 cout << "value1==" << value1 << "/ value2==" << value2;
 return 0;
}

value1==10 /
value2==20

Notice how the values of value1 and value2 have changed indirectly. First we have assigned to mypointer the
address of value1 using the deference ampersand sign (&). Then we have assigned 10 to the value pointed by
mypointer, which is pointing to the address of value1, so we have modified value1 indirectly.

In order that you can see that a pointer may take several different values during the same program we have repeated the
process with value2 and the same pointer.

Here is an example a bit more complicated:

// more pointers
#include <iostream.h>

int main ()
{
 int value1 = 5, value2 = 15;
 int *p1, *p2;

 p1 = &value1; // p1 = address of value1
 p2 = &value2; // p2 = address of value2
 *p1 = 10; // value pointed by p1 = 10
 *p2 = *p1; // value pointed by p2 = value pointed by p1
 p1 = p2; // p1 = p2 (value of pointer copied)
 *p1 = 20; // value pointed by p1 = 20

 cout << "value1==" << value1 << "/ value2==" << value2;
 return 0;
}

value1==10 /
value2==20

I have included as comments on each line how the code can be read: ampersand (&) as "address of" and asterisk (*) as
"value pointed by". Notice that there are expressions with pointers p1 and p2 with and without the asterisk. The
meaning of using or not using a reference asterisk is very different: An asterisk (*) followed by the pointer refers to the

http://www.cplusplus.com/doc/tutorial/tut3-3.html (4 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

place pointed by the pointer, whereas a pointer without an asterisk (*) refers to the value of the pointer itself, that is, the
address of where it is pointing.

Another thing that can call your attention is the line:

int *p1, *p2;

that declares the two pointers of the previous example putting an asterisk (*) for each pointer. The reason is that the type
for all the declarations of the same line is int (and not int*). The explanation is because of the level of precedence of
the reference operator asterisk (*) that is the same as the declaration of types, therefore, because they are associative
operators from the right, the asterisks are evaluated first than the type. We have talked about this in section 1.3:
Operators, although it is enough that you know clearly that -unless you include parenthesis- you will have to put an
asterisk (*) before each pointer that you declare.

Pointers and arrays

The concept of array is very much bound to the one of pointer. In fact, the identifier of an array is equivalent to the
address of its first element, like a pointer is equivalent to the address of the first element that it points to, so in fact they
are the same thing. For example, supposing these two declarations:

int numbers [20];
int * p;

the following allocation would be valid:

p = numbers;

At this point p and numbers are equivalent and they have the same properties, the only difference is that we could
assign another value to the pointer p whereas numbers will always point to the first of the 20 integer numbers of type
int with which it was defined. So, unlike p, that is an ordinary variable pointer, numbers is a constant pointer
(indeed an array name is a constant pointer). Therefore, although the previous expression was valid, the following
allocation is not:

numbers = p;

because numbers is an array (constant pointer), and no values can be assigned to constant identifiers.

Due to the character of variables all the expressions that include pointers in the following example are perfectly valid:

http://www.cplusplus.com/doc/tutorial/tut3-3.html (5 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

// more pointers
#include <iostream.h>

int main ()
{
 int numbers[5];
 int * p;
 p = numbers; *p = 10;
 p++; *p = 20;
 p = &numbers[2]; *p = 30;
 p = numbers + 3; *p = 40;
 p = numbers; *(p+4) = 50;
 for (int n=0; n<5; n++)
 cout << numbers[n] << ", ";
 return 0;
}

10, 20, 30, 40, 50,

In chapter "Arrays" we used bracket signs [] several times in order to specify the index of the element of the Array to
which we wanted to refer. Well, the bracket signs operator [] are known as offset operators and they are equivalent to
adding the number within brackets to the address of a pointer. For example, both following expressions:

a[5] = 0; // a [offset of 5] = 0
*(a+5) = 0; // pointed by (a+5) = 0

are equivalent and valid either if a is a pointer or if it is an array.

Pointer initialization

When declaring pointers we may want to explicitly specify to which variable we want them to point,

int number;
int *tommy = &number;

this is equivalent to:

int number;
int *tommy;
tommy = &number;

When a pointer assignation takes place we are always assigning the address where it points to, never the value pointed.
You must consider that at the moment of declaring a pointer, the asterisk (*) indicates only that it is a pointer, it in no
case indicates the reference operator (*). Remember, they are two different operators, although they are written with the
same sign. Thus, we must take care not to confuse the previous with:

int number;
int *tommy;
*tommy = &number;

http://www.cplusplus.com/doc/tutorial/tut3-3.html (6 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

that anyway would not have much sense in this case.

As in the case of arrays, the compiler allows the special case that we want to initialize the content at which the pointer
points with constants at the same moment as declaring the variable pointer:

char * terry = "hello";

in this case static storage is reserved for containing "hello" and a pointer to the first char of this memory block (that
corresponds to 'h') is assigned to terry. If we imagine that "hello" is stored at addresses 1702 and following, the
previous declaration could be outlined thus:

it is important to indicate that terry contains the value 1702 and not 'h' nor "hello", although 1702 points to
these characters.

The pointer terry points to a string of characters and can be used exactly as if it was an Array (remember that an array
is just a constant pointer). For example, if our temper changed and we wanted to replace the 'o' by a '!' sign in the
content pointed by terry, we could do it by any of the following two ways:

terry[4] = '!';
*(terry+4) = '!';

remember that to write terry[4] is just the same as to write *(terry+4), although the most usual expression is the
first one. With either of those two expressions something like this would happen:

Arithmetic of pointers

To conduct arithmetical operations on pointers is a little different than to conduct them on other integer data types. To
begin with, only addition and subtraction operations are allowed to be conducted, the others make no sense in the world
of pointers. But both addition and subtraction have a different behavior with pointers according to the size of the data
type to which they point.

When we saw the different data types that exist, we saw that some occupy more or less space than others in the memory.
For example, in the case of integer numbers, char occupies 1 byte, short occupies 2 bytes and long occupies 4.

http://www.cplusplus.com/doc/tutorial/tut3-3.html (7 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

Let's suppose that we have 3 pointers:

char *mychar;
short *myshort;
long *mylong;

and that we know that they point to memory locations 1000, 2000 and 3000 respectively.

So if we write:

mychar++;
myshort++;
mylong++;

mychar, as you may expect, would contain the value 1001. Nevertheless, myshort would contain the value 2002,
and mylong would contain 3004. The reason is that when adding 1 to a pointer we are making it to point to the
following element of the same type with which it has been defined, and therefore the size in bytes of the type pointed is
added to the pointer.

This is applicable both when adding and subtracting any number to a pointer. It would happen exactly the same if we
write:

mychar = mychar + 1;
myshort = myshort + 1;
mylong = mylong + 1;

It is important to warn you that both increase (++) and decrease (--) operators have a greater priority than the reference
operator asterisk (*), therefore the following expressions may lead to confussion:

*p++;
*p++ = *q++;

The first one is equivalent to *(p++) and what it does is to increase p (the address where it points to - not the value that
contains).
In the second, because both increase operators (++) are after the expressions to be evaluated and not before, first the

http://www.cplusplus.com/doc/tutorial/tut3-3.html (8 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

value of *q is assigned to *p and then both q and p are increased by one. It is equivalent to:

*p = *q;
p++;
q++;

Like always, I recommend you use parenthesis () in order to avoid unexpected results.

Pointers to pointers

C++ allows the use of pointers that point to pointers, that these, in its turn, point to data. In order to do that we only need
to add an asterisk (*) for each level of reference:

char a;
char * b;
char ** c;
a = 'z';
b = &a;
c = &b;

this, supposing the randomly chosen memory locations of 7230, 8092 and 10502, could be described thus:

(inside the cells there is the content of the variable; under the cells its location)

The new thing in this example is variable c, which we can talk about in three different ways, each one of them would
correspond to a different value:

c is a variable of type (char **) with a value of 8092
c is a variable of type (char) with a value of 7230
**c is a variable of type (char) with a value of'z'

void pointers

The type of pointer void is a special type of pointer. void pointers can point to any data type, from an integer value or a
float to a string of characters. Its sole limitation is that the pointed data cannot be referenced directly (we can not use
reference asterisk * operator on them), since its length is always undetermined, and for that reason we will always have
to resort to type casting or assignations to turn our void pointer to a pointer of a concrete data type to which we can refer.

One of its utilities may be for passing generic parameters to a function:

http://www.cplusplus.com/doc/tutorial/tut3-3.html (9 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

// integer increaser
#include <iostream.h>

void increase (void* data, int type)
{
 switch (type)
 {
 case sizeof(char) : (*((char*)data))++; break;
 case sizeof(short): (*((short*)data))++; break;
 case sizeof(long) : (*((long*)data))++; break;
 }
}

int main ()
{
 char a = 5;
 short b = 9;
 long c = 12;
 increase (&a,sizeof(a));
 increase (&b,sizeof(b));
 increase (&c,sizeof(c));
 cout << (int) a << ", " << b << ", " << c;
 return 0;
}

6, 10, 13

sizeof is an operator integrated in the C++ language that returns a constant value with the size in bytes of its
parameter, so, for example, sizeof(char) is 1, because char type is 1 byte long.

Pointers to functions

C++ allows operations with pointers to functions. The greatest use of this is for passing a function as a parameter to
another function, since these cannot be passed dereferenced. In order to declare a pointer to a function we must declare it
like the prototype of the function except the name of the function is enclosed between parenthesis () and a pointer
asterisk (*) is inserted before the name. It might not be a very handsome syntax, but that is how it is done in C++:

// pointer to functions
#include <iostream.h>

int addition (int a, int b)
{ return (a+b); }

int subtraction (int a, int b)
{ return (a-b); }

int (*minus)(int,int) = subtraction;

int operation (int x, int y, int (*functocall)(int,int))
{
 int g;

8

http://www.cplusplus.com/doc/tutorial/tut3-3.html (10 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

 g = (*functocall)(x,y);
 return (g);
}

int main ()
{
 int m,n;
 m = operation (7, 5, addition);
 n = operation (20, m, minus);
 cout <<n;
 return 0;
}

In the example, minus is a global pointer to a function that has two parameters of type int, it is immediately assigned
to point to the function subtraction, all in a single line:

int (* minus)(int,int) = subtraction;

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
3-2. Strings of characters. index

Next:
3-4. Dynamic memory.

http://www.cplusplus.com/doc/tutorial/tut3-3.html (11 of 11)14-04-2004 18:36:55

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 3.4, Dynamic memory.

Section 3.4
Dynamic memory.

Until now, in our programs, we have only had as much memory as we have requested in
declarations of variables, arrays and other objects that we included, having the size of all of them
fixed before the execution of the program. But, what if we need a variable amount of memory that
can only be determined during the program execution (runtime), for example, in case that we need
an user input to determine the necessary amount of space?

The answer is dynamic memory, for which C++ integrates the operators new and delete.

Operators new and delete are exclusive of C++. Farther ahead in this section are
shown the C equivalents for these operators.

Operators new and new[]
In order to request dynamic memory, the operator new exists. new is followed by a data type and
optionally the number of elements required within brackets []. It returns a pointer to the beginning
of the new block of assigned memory. Its form is:

pointer = new type

or

pointer = new type [elements]

The first expression is used to assign memory to contain one single element of type. The second one
is used to assign a block (an array) of elements of type.
For example:

int * bobby;
bobby = new int [5];

in this case, the operating system has assigned space for 5 elements of type int in a heap and it has
returned a pointer to its beginning that has been assigned to bobby. Therefore, now, bobby points
to a valid block of memory with space for 5 int elements.

http://www.cplusplus.com/doc/tutorial/tut3-4.html (1 of 5)14-04-2004 18:37:04

C++ Tutorial: 3.4, Dynamic memory.

You could ask what is the difference between declaring a normal array and assigning memory to a
pointer as we have just done. The most important one is that the size of an array must be a constant
value, which limits its size to what we decide at the moment of designing the program before its
execution, whereas the dynamic memory allocation allows assigning memory during the execution
of the program using any variable, constant or combination of both as size.

The dynamic memory is generally managed by the operating system, and in multitask interfaces it
can be shared between several applications, so there is a possibility that the memory exhausts. If
this happens and the operating system cannot assign the memory that we request with the operator
new, a null pointer will be returned. For that reason it is recommended to always check to see if the
returned pointer is null after a call to new.

int * bobby;
bobby = new int [5];
if (bobby == NULL) {
 // error assigning memory. Take measures.
 };

Operator delete.
Since the necessity of dynamic memory is usually limited to concrete moments within a program,
once it is no longer needed it should be freed so that it becomes available for future requests of
dynamic memory. The operator delete exists for this purpose, whose form is:

delete pointer;

or

delete [] pointer;

The first expression should be used to delete memory alloccated for a single element, and the
second one for memory allocated for multiple elements (arrays). In most compilers both
expressions are equivalent and can be used without distinction, although indeed they are two
different operators and so must be considered for operator overloading (we will see that on section
4.2).

http://www.cplusplus.com/doc/tutorial/tut3-4.html (2 of 5)14-04-2004 18:37:04

C++ Tutorial: 3.4, Dynamic memory.

// rememb-o-matic
#include <iostream.h>
#include <stdlib.h>

int main ()
{
 char input [100];
 int i,n;
 long * l;
 cout << "How many numbers do you want to type in? ";
 cin.getline (input,100); i=atoi (input);
 l= new long[i];
 if (l == NULL) exit (1);
 for (n=0; n<i; n++)
 {
 cout << "Enter number: ";
 cin.getline (input,100); l[n]=atol (input);
 }
 cout << "You have entered: ";
 for (n=0; n<i; n++)
 cout << l[n] << ", ";
 delete[] l;
 return 0;
}

How many
numbers
do you
want to
type in?
5
Enter
number :
75
Enter
number :
436
Enter
number :
1067
Enter
number :
8
Enter
number :
32
You have
entered:
75, 436,
1067, 8,
32,

This simple example that memorizes numbers does not have a limited amount of numbers that can
be introduced, thanks to us requesting to the system to provide as much space as is necessary to
store all the numbers that the user wishes to introduce.

NULL is a constant value defined in manyfold C++ libraries specially designed to indicate null
pointers. In case that this constant is not defined you can do it yourself by defining it to 0:

#define NULL 0

It is indifferent to put 0 or NULL when checking pointers, but the use of NULL with pointers is
widely extended and it is recommended for greater legibility. The reason is that a pointer is rarely
compared or set directly to a numerical literal constant except precisely number 0, and this way this
action is symbolically masked.

http://www.cplusplus.com/doc/tutorial/tut3-4.html (3 of 5)14-04-2004 18:37:04

C++ Tutorial: 3.4, Dynamic memory.

Dynamic memory in ANSI-C

Operators new and delete are exclusive of C++ and they are not available in C language. In C
language, in order to assign dynamic memory we have to resort to the library stdlib.h. We are
going to see them, since they are also valid in C++ and they are used in some existing programs.

The function malloc
It is the generic function to assign dynamic memory to pointers. Its prototype is:

void * malloc (size_t nbytes);

where nbytes is the number of bytes that we want to be assigned to the pointer. The function
returns a pointer of type void*, which is the reason why we have to type cast the value to the type
of the destination pointer, for example:

char * ronny;
ronny = (char *) malloc (10);

This assigns to ronny a pointer to an usable block of 10 bytes. When we want to assign a block of
data of a different type other than char (different from 1 byte) we must multiply the number of
elements desired by the size of each element. Luckyly we have at our disposition the operator
sizeof, that returns the size of the type of a concrete datum.

int * bobby;
bobby = (int *) malloc (5 * sizeof(int));

This piece of code assigns to bobby a pointer to a block of 5 integers of type int, this size can be
equal to 2, 4 or more bytes according to the system where the program is compiled.

The function calloc.
calloc is very similar to malloc in its operation, its main difference is in its prototype:

void * calloc (size_t nelements, size_t size);

since it admits 2 parameters instead of one. These two parameters are multiplied to obtain the total
size of the memory block to be assigned. Usually the first parameter (nelements) is the number
of elements and the second one (size) serves to specify the size of each element. For example, we
could define bobby with calloc thus:

int * bobby;
bobby = (int *) calloc (5, sizeof(int));

http://www.cplusplus.com/doc/tutorial/tut3-4.html (4 of 5)14-04-2004 18:37:04

C++ Tutorial: 3.4, Dynamic memory.

Another difference between malloc and calloc is that calloc initializates all its elements to
0.

The function realloc.
It changes the size of a block of memory already assigned to a pointer.

void * realloc (void * pointer, size_t size);

pointer parameter receives a pointer to an already assigned memory block or a null pointer, and
size specifies the new size that the memory block shall have. The function assigns size bytes of
memory to the pointer. The function may need to change the location of the memory block so that
the new size can fit, in that case the present content of the block is copied to the new one to
guarantee that the existing data is not lost. The new pointer is returned by the function. If it has not
been posible to assign the memory block with the new size it returns a null pointer but the
pointer specified as parameter and its content remains unchanged.

The function free.
It releases a block of dynamic memory previously assigned using malloc, calloc or realloc.

void free (void * pointer);

This function must only be used to release memory assigned with functions malloc, calloc and
realloc.

You may obtain more information about these functions in the C++ reference for cstdlib.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
3-3. Pointers index

Next:
3-5. Structures.

http://www.cplusplus.com/doc/tutorial/tut3-4.html (5 of 5)14-04-2004 18:37:04

http://www.cplusplus.com/ref/cstdlib/
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 3.5, Structures.

Section 3.5
Structures

Data structures.

A data structure is a set of diverse types of data that may have different lengths grouped
together under a unique declaration. Its form is the following:

struct model_name {
 type1 element1;
 type2 element2;
 type3 element3;
 .
 .
} object_name;

where model_name is a name for the model of the structure type and the optional
parameter object_name is a valid identifier (or identifiers) for structure object
instantiations. Within curly brackets { } they are the types and their sub-identifiers
corresponding to the elements that compose the structure.

If the structure definition includes the parameter model_name (optional), that parameter
becomes a valid type name equivalent to the structure. For example:

struct products {
 char name [30];
 float price;
} ;

products apple;
products orange, melon;

We have first defined the structure model products with two fields: name and price,
each of a different type. We have then used the name of the structure type (products) to
declare three objects of that type: apple, orange and melon.

Once declared, products has become a new valid type name like the fundamental ones

http://www.cplusplus.com/doc/tutorial/tut3-5.html (1 of 8)14-04-2004 18:37:11

C++ Tutorial: 3.5, Structures.

int, char or short and we are able to declare objects (variables) of that type.

The optional field object_name that can go at the end of the structure declaration serves
to directly declare objects of the structure type. For example, we can also declare the
structure objects apple, orange and melon this way:

struct products {
 char name [30];
 float price;
} apple, orange, melon;

Moreover, in cases like the last one in which we took advantage of the declaration of the
structure model to declare objects of it, the parameter model_name (in this case
products) becomes optional. Although if model_name is not included it will not be
possible to declare more objects of this same model later.

It is important to clearly differentiate between what is a structure model, and what is a
structure object. Using the terms we used with variables, the model is the type, and the object
is the variable. We can instantiate many objects (variables) from a single model (type).

Once we have declared our three objects of a determined structure model (apple, orange
and melon) we can operate with the fields that form them. To do that we have to use a point
(.) inserted between the object name and the field name. For example, we could operate
with any of these elements as if they were standard variables of their respective types:

apple.name
apple.price
orange.name
orange.price
melon.name
melon.price

each one being of its corresponding data type: apple.name, orange.name and melon.
name are of type char[30], and apple.price, orange.price and melon.price
are of type float.

We are going to leave apples, oranges and melons and go with an example about movies:

http://www.cplusplus.com/doc/tutorial/tut3-5.html (2 of 8)14-04-2004 18:37:11

C++ Tutorial: 3.5, Structures.

// example about structures
#include <iostream.h>
#include <string.h>
#include <stdlib.h>

struct movies_t {
 char title [50];
 int year;
} mine, yours;

void printmovie (movies_t movie);

int main ()
{
 char buffer [50];

 strcpy (mine.title, "2001 A Space Odyssey");
 mine.year = 1968;

 cout << "Enter title: ";
 cin.getline (yours.title,50);
 cout << "Enter year: ";
 cin.getline (buffer,50);
 yours.year = atoi (buffer);

 cout << "My favourite movie is:\n ";
 printmovie (mine);
 cout << "And yours:\n ";
 printmovie (yours);
 return 0;
}

void printmovie (movies_t movie)
{
 cout << movie.title;
 cout << " (" << movie.year << ")\n";
}

Enter
title: Alien
Enter year:
1979

My
favourite
movie is:
 2001 A
Space
Odyssey
(1968)
And yours:
 Alien
(1979)

http://www.cplusplus.com/doc/tutorial/tut3-5.html (3 of 8)14-04-2004 18:37:11

C++ Tutorial: 3.5, Structures.

The example shows how we can use the elements of a structure and the structure itself as
normal variables. For example, yours.year is a valid variable of type int, and mine.
title is a valid array of 50 chars.

Notice that mine and yours are also treated as valid variables of type movies_t when
being passed to the function printmovie(). Therefore, one of the most important
advantages of structures is that we can refer either to their elements individually or to the
entire structure as a block.

Structures are a feature used very often to build data bases, specially if we consider the
possibility of building arrays of them.

// array of structures
#include <iostream.h>
#include <stdlib.h>

#define N_MOVIES 5

struct movies_t {
 char title [50];
 int year;
} films [N_MOVIES];

void printmovie (movies_t movie);

int main ()
{
 char buffer [50];
 int n;
 for (n=0; n<N_MOVIES; n++)
 {
 cout << "Enter title: ";
 cin.getline (films[n].title,50);
 cout << "Enter year: ";
 cin.getline (buffer,50);
 films[n].year = atoi (buffer);
 }
 cout << "\nYou have entered these movies:\n";

Enter
title:
Alien
Enter
year: 1979
Enter
title:
Blade
Runner
Enter
year: 1982
Enter
title:
Matrix
Enter
year: 1999
Enter
title:
Rear Window
Enter
year: 1954
Enter
title:
Taxi Driver
Enter
year: 1975

http://www.cplusplus.com/doc/tutorial/tut3-5.html (4 of 8)14-04-2004 18:37:11

C++ Tutorial: 3.5, Structures.

 for (n=0; n<N_MOVIES; n++)
 printmovie (films[n]);
 return 0;
}

void printmovie (movies_t movie)
{
 cout << movie.title;
 cout << " (" << movie.year << ")\n";
}

You have
entered
these
movies:
Alien
(1979)
Blade
Runner
(1982)
Matrix
(1999)
Rear
Window
(1954)
Taxi
Driver
(1975)

Pointers to structures

Like any other type, structures can be pointed by pointers. The rules are the same as for any
fundamental data type: The pointer must be declared as a pointer to the structure:

struct movies_t {
 char title [50];
 int year;
};

movies_t amovie;
movies_t * pmovie;

Here amovie is an object of struct type movies_t and pmovie is a pointer to point to
objects of struct type movies_t. So, the following, as with fundamental types, would also
be valid:

pmovie = &amovie;

http://www.cplusplus.com/doc/tutorial/tut3-5.html (5 of 8)14-04-2004 18:37:11

C++ Tutorial: 3.5, Structures.

Ok, we will now go with another example, that will serve to introduce a new operator:

// pointers to structures
#include <iostream.h>
#include <stdlib.h>

struct movies_t {
 char title [50];
 int year;
};

int main ()
{
 char buffer[50];

 movies_t amovie;
 movies_t * pmovie;
 pmovie = & amovie;

 cout << "Enter title: ";
 cin.getline (pmovie->title,50);
 cout << "Enter year: ";
 cin.getline (buffer,50);
 pmovie->year = atoi (buffer);

 cout << "\nYou have entered:\n";
 cout << pmovie->title;
 cout << " (" << pmovie->year << ")\n";

 return 0;
}

Enter title:
Matrix
Enter year: 1999

You have entered:
Matrix (1999)

The previous code includes an important introduction: operator ->. This is a reference
operator that is used exclusively with pointers to structures and pointers to classes. It allows

http://www.cplusplus.com/doc/tutorial/tut3-5.html (6 of 8)14-04-2004 18:37:11

C++ Tutorial: 3.5, Structures.

us not to have to use parenthesis on each reference to a structure member. In the example we
used:

pmovie->title

that could be translated to:

(*pmovie).title

both expressions pmovie->title and (*pmovie).title are valid and mean that we
are evaluating the element title of the structure pointed by pmovie. You must
distinguish it clearly from:

*pmovie.title

that is equivalent to

*(pmovie.title)

and that would serve to evaluate the value pointed by element title of structure movies,
that in this case (where title is not a pointer) it would not make much sense. The following
panel summarizes possible combinations of pointers and structures:

Expression Description Equivalent

pmovie.title
Element title of structure
pmovie

pmovie->title
Element title of structure
pointed by pmovie

(*pmovie).title

*pmovie.title
Value pointed by element
title of structure pmovie

*(pmovie.title)

Nesting structures

Structures can also be nested so that a valid element of a structure can also be another
structure.

http://www.cplusplus.com/doc/tutorial/tut3-5.html (7 of 8)14-04-2004 18:37:11

C++ Tutorial: 3.5, Structures.

struct movies_t {
 char title [50];
 int year;
}

struct friends_t {
 char name [50];
 char email [50];
 movies_t favourite_movie;
 } charlie, maria;

friends_t * pfriends = &charlie;

Therefore, after the previous declaration we could use the following expressions:

charlie.name
maria.favourite_movie.title
charlie.favourite_movie.year
pfriends->favourite_movie.year

(where, by the way, the last two expressions are equivalent).

The concept of structures that has been discussed in this section is the same as used in C
language, nevertheless, in C++, the structure concept has been extended up to the same
functionality of a class with the peculiarity that all of its elements are considered public. But
you will have more details about this topic on section 4.1, Classes.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
3-4. Dynamic memory index

Next:
3-6. User defined data types.

http://www.cplusplus.com/doc/tutorial/tut3-5.html (8 of 8)14-04-2004 18:37:11

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 3.6, User defined data types.

Section 3.6
User defined data types

We have already seen a data type that is defined by the user (programmer): the structures.
But in addition to these there are other kinds of user defined data types:

Definition of own types (typedef).

C++ allows us to define our own types based on other existing data types. In order to do that
we shall use keyword typedef, whose form is:

typedef existing_type new_type_name ;

where existing_type is a C++ fundamental or any other defined type and
new_type_name is the name that the new type we are going to define will receive. For
example:

typedef char C;
typedef unsigned int WORD;
typedef char * string_t;
typedef char field [50];

In this case we have defined four new data types: C, WORD, string_t and field as
char, unsigned int, char* and char[50] respectively, that we could perfectly use
later as valid types:

C achar, anotherchar, *ptchar1;
WORD myword;
string_t ptchar2;
field name;

typedef can be useful to define a type that is repeatedly used within a program and it is
possible that we will need to change it in a later version, or if a type you want to use has too
long a name and you want it to be shorter.

Unions

http://www.cplusplus.com/doc/tutorial/tut3-6.html (1 of 5)14-04-2004 18:37:26

C++ Tutorial: 3.6, User defined data types.

Unions allow a portion of memory to be accessed as different data types, since all of them
are in fact the same location in memory. Its declaration and use is similar to the one of
structures but its functionality is totally different:

union model_name {
 type1 element1;
 type2 element2;
 type3 element3;
 .
 .
} object_name;

All the elements of the union declaration occupy the same space of memory. Its size is the
one of the greatest element of the declaration. For example:

union mytypes_t {
 char c;
 int i;
 float f;
 } mytypes;

defines three elements:

mytypes.c
mytypes.i
mytypes.f

each one of a different data type. Since all of them are referring to a same location in
memory, the modification of one of the elements will afect the value of all of them.

One of the uses a union may have is to unite an elementary type with an array or structures
of smaller elements. For example,

union mix_t{
 long l;
 struct {
 short hi;
 short lo;

http://www.cplusplus.com/doc/tutorial/tut3-6.html (2 of 5)14-04-2004 18:37:26

C++ Tutorial: 3.6, User defined data types.

 } s;
 char c[4];
} mix;

defines three names that allow us to access the same group of 4 bytes: mix.l, mix.s and
mix.c and which we can use according to how we want to access it, as long, short or
char respectively. I have mixed types, arrays and structures in the union so that you can see
the different ways that we can access the data:

Anonymous unions

In C++ we have the option that unions be anonymous. If we include a union in
a structure without any object name (the one that goes after the curly brackets
{ }) the union will be anonymous and we will be able to access the elements

directly by its name. For example, look at the difference between these two declarations:

union anonymous union

struct {
 char title[50];
 char author[50];
 union {
 float dollars;
 int yens;
 } price;
} book;

struct {
 char title[50];
 char author[50];
 union {
 float dollars;
 int yens;
 };
} book;

The only difference between the two pieces of code is that in the first one we gave a name to
the union (price) and in the second we did not. The difference is when accessing members

http://www.cplusplus.com/doc/tutorial/tut3-6.html (3 of 5)14-04-2004 18:37:26

C++ Tutorial: 3.6, User defined data types.

dollars and yens of an object. In the first case it would be:

book.price.dollars
book.price.yens

whereas in the second it would be:

book.dollars
book.yens

Once again I remind you that because it is a union, the fields dollars and yens occupy
the same space in the memory so they cannot be used to store two different values. That
means that you can include a price in dollars or yens, but not both.

Enumerations (enum)

Enumerations serve to create data types to contain something different that is not limited to
either numerical or character constants nor to the constants true and false. Its form is the
following:

enum model_name {
 value1,
 value2,
 value3,
 .
 .
} object_name;

For example, we could create a new type of variable called color to store colors with the
following declaration:

enum colors_t {black, blue, green, cyan, red,
purple, yellow, white};

Notice that we do not include any fundamental data type in the declaration. To say it another
way, we have created a new data type without it being based on any existing one: the type
color_t, whose possible values are the colors that we have enclosed within curly brackets
{}. For example, once declared the colors_t enumeration in the following expressions

http://www.cplusplus.com/doc/tutorial/tut3-6.html (4 of 5)14-04-2004 18:37:26

C++ Tutorial: 3.6, User defined data types.

will be valid:

colors_t mycolor;

mycolor = blue;
if (mycolor == green) mycolor = red;

In fact our enumerated data type is compiled as an integer and its possible values are any
type of integer constant specified. If it is not specified, the integer value equivalent to the
first possible value is 0 and the following ones follow a +1 progression. Thus, in our data
type colors_t that we defined before, black would be equivalent to 0, blue would be
equivalent to 1, green to 2 and so on.

If we explicitly specify an integer value for some of the possible values of our enumerated
type (for example the first one) the following values will be the increases of this, for
example:

enum months_t { january=1, february, march, april,
 may, june, july, august,
 september, october, november,
december} y2k;

in this case, variable y2k of the enumerated type months_t can contain any of the 12
possible values that go from january to december and that are equivalent to values
between 1 and 12, not between 0 and 11 since we have made january equal to 1.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
3-5. Structures index

Next:
4-1. Classes.

http://www.cplusplus.com/doc/tutorial/tut3-6.html (5 of 5)14-04-2004 18:37:26

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 4.1, Classes

Section 4.1
Classes

A class is a logical method to organize data and functions in the same structure. They are
declared using keyword class, whose functionality is similar to that of the C keyword
struct, but with the possibility of including functions as members, instead of only data.

Its form is:

class class_name {
 permission_label_1:
 member1;
 permission_label_2:
 member2;
 ...
 } object_name;

where class_name is a name for the class (user defined type) and the optional field
object_name is one, or several, valid object identifiers. The body of the declaration can
contain members, that can be either data or function declarations, and optionally
permission labels, that can be any of these three keywords: private:, public:
or protected:. They make reference to the permission which the following members
acquire:

● private members of a class are accessible only from other members of their same
class or from their "friend" classes.

● protected members are accessible from members of their same class and friend
classes, and also from members of their derived classes.

● Finally, public members are accessible from anywhere the class is visible.

If we declare members of a class before including any permission label, the members are
considered private, since it is the default permission that the members of a class declared
with the class keyword acquire.

For example:

class CRectangle {

http://www.cplusplus.com/doc/tutorial/tut4-1.html (1 of 12)14-04-2004 18:37:33

C++ Tutorial: 4.1, Classes

 int x, y;
 public:
 void set_values (int,int);
 int area (void);
 } rect;

Declares class CRectangle and an object called rect of this class (type). This class
contains four members: two variables of type int (x and y) in the private section
(because private is the default permission) and two functions in the public section:
set_values() and area(), of which we have only included the prototype.

Notice the difference between class name and object name: In the previous example,
CRectangle was the class name (i.e., the user-defined type), whereas rect was an object
of type CRectangle. Is the same difference that int and a have in the following
declaration:

int a;

int is the class name (type) and a is the object name (variable).

On successive instructions in the body of the program we can refer to any of the public
members of the object rect as if they were normal functions or variables, just by putting
the object's name followed by a point and then the class member (like we did with C
structs). For example:

rect.set_value (3,4);
myarea = rect.area();

but we will not be able to refer to x or y since they are private members of the class and they
could only be referred from other members of that same class. Confused? Here is the
complete example of class CRectangle:

http://www.cplusplus.com/doc/tutorial/tut4-1.html (2 of 12)14-04-2004 18:37:33

C++ Tutorial: 4.1, Classes

// classes example
#include <iostream.h>

class CRectangle {
 int x, y;
 public:
 void set_values (int,int);
 int area (void) {return (x*y);}
};

void CRectangle::set_values (int a, int b) {
 x = a;
 y = b;
}

int main () {
 CRectangle rect;
 rect.set_values (3,4);
 cout << "area: " << rect.area();
}

area: 12

The new thing in this code is the operator :: of scope included in the definition of
set_values(). It is used to declare a member of a class outside it. Notice that we have
defined the behavior of function area() within the definition of the CRectangle class -
given its extreme simplicity. Whereas set_values() has only its protype declared within
the class but its definition is outside. In this outside declaration we must use the operator of
scope ::.

The scope operator (::) specifies the class to which the member being declared belongs,
granting exactly the same scope properties as if it was directly defined within the class. For
example, in the function set_values() of the previous code, we have referred to the
variables x and y, that are members of class CRectangle and that are only visible inside it
and its members (since they are private).

The only difference between defining a class member function completely within its class
and to include only the prototype, is that in the first case the function will automatically be
considered inline by the compiler, while in the second it will be a normal (not-inline) class

http://www.cplusplus.com/doc/tutorial/tut4-1.html (3 of 12)14-04-2004 18:37:33

C++ Tutorial: 4.1, Classes

member function.

The reason why we have made x and y private members (remember that if nothing else
is said all members of a class defined with keyword class have private access) it is
because we have already defined a function to introduce those values in the object
(set_values()) and therefore the rest of the program does not have a way to directly
access them. Perhaps in a so simple example as this you do not see a great utility protecting
those two variables, but in greater projects it may be very important that values cannot be
modified in an unexpected way (unexpected from the point of view of the object).

One of the greater advantages of a class is that we can declare several different objects from
it. For example, following with the previous example of class CRectangle, we could have
declared the object rectb in addition to the object rect :

// class example
#include <iostream.h>

class CRectangle {
 int x, y;
 public:
 void set_values (int,int);
 int area (void) {return (x*y);}
};

void CRectangle::set_values (int a, int b) {
 x = a;
 y = b;
}

int main () {
 CRectangle rect, rectb;
 rect.set_values (3,4);
 rectb.set_values (5,6);
 cout << "rect area: " << rect.area() << endl;
 cout << "rectb area: " << rectb.area() << endl;
}

rect
area: 12
rectb
area: 30

http://www.cplusplus.com/doc/tutorial/tut4-1.html (4 of 12)14-04-2004 18:37:33

C++ Tutorial: 4.1, Classes

Notice that the call to rect.area() does not give the same result as the call to rectb.
area(). This is because each object of class CRectangle has its own variables x and y,
and its own functions set_value() and area().

On that is based the concept of object and object-oriented programming. In that data and
functions are properties of the object, instead of the usual view of objects as function
parameters in structured programming. In this and the following sections we will discuss
advantages of this methodology.

In this concrete case, the class (type of object) to which we were talking about is
CRectangle, of which there are two instances, or objects: rect and rectb, each one
with its own member variables and member functions.

Constructors and destructors

Objects generally need to initialize variables or assign dynamic memory during their process
of creation to become totally operative and to avoid returning unexpected values during their
execution. For example, what would happen if in the previous example we called the
function area() before having called function set_values? Probably an indetermined
result since the members x and y would have never been assigned a value.

In order to avoid that, a class can include a special function: a constructor, which can be
declared by naming a member function with the same name as the class. This constructor
function will be called automatically when a new instance of the class is created (when
declaring a new object or allocating an object of that class) and only then. We are going to
implement CRectangle including a constructor:

http://www.cplusplus.com/doc/tutorial/tut4-1.html (5 of 12)14-04-2004 18:37:33

C++ Tutorial: 4.1, Classes

// classes example
#include <iostream.h>

class CRectangle {
 int width, height;
 public:
 CRectangle (int,int);
 int area (void) {return (width*height);}
};

CRectangle::CRectangle (int a, int b) {
 width = a;
 height = b;
}

int main () {
 CRectangle rect (3,4);
 CRectangle rectb (5,6);
 cout << "rect area: " << rect.area() << endl;
 cout << "rectb area: " << rectb.area() << endl;
}

rect
area: 12
rectb
area: 30

As you can see, the result of this example is identical to the previous one. In this case we
have only replaced the function set_values, that no longer exists, by a class constructor.
Notice the way in which the parameters are passed to the constructor at the moment at which
the instances of the class are created:

CRectangle rect (3,4);
CRectangle rectb (5,6);

You can also see how neither the prototype nor the later constructor declaration includes a
return value, not even void type. This must always be thus. A constructor never returns a
value nor does the void have to be specified, as we have shown in the previous example.

The Destructor fulfills the opposite functionality. It is automatically called when an object
is released from the memory, either because its scope of existence has finished (for example,
if it was defined as a local object within a function and the function ends) or because it is an

http://www.cplusplus.com/doc/tutorial/tut4-1.html (6 of 12)14-04-2004 18:37:33

C++ Tutorial: 4.1, Classes

object dynamically assigned and it is released using operator delete.

The destructor must have the same name as the class with a tilde (~) as prefix and it must
return no value.

The use of destructors is specially suitable when an object assigns dynamic memory during
its life and at the moment of being destroyed we want to release the memory that it has used.

// example on constructors and destructors
#include <iostream.h>

class CRectangle {
 int *width, *height;
 public:
 CRectangle (int,int);
 ~CRectangle ();
 int area (void) {return (*width * *height);}
};

CRectangle::CRectangle (int a, int b) {
 width = new int;
 height = new int;
 *width = a;
 *height = b;
}

CRectangle::~CRectangle () {
 delete width;
 delete height;
}

int main () {
 CRectangle rect (3,4), rectb (5,6);
 cout << "rect area: " << rect.area() << endl;
 cout << "rectb area: " << rectb.area() << endl;
 return 0;
}

rect
area: 12
rectb
area: 30

http://www.cplusplus.com/doc/tutorial/tut4-1.html (7 of 12)14-04-2004 18:37:33

C++ Tutorial: 4.1, Classes

Overloading Constructors

Like any other function, a constructor can also be overloaded with several functions that
have the same name but different types or numbers of parameters. Remember that the
compiler will execute the one that matches at the moment at which a function with that name
is called (Section 2.3, Functions-II). In this case, at the moment at which a class object is
declared.

In fact, in the cases where we declare a class and we do not specify any constructor the
compiler automatically assumes two overloaded constructors ("default constructor" and
"copy constructor"). For example, for the class:

class CExample {
 public:
 int a,b,c;
 void multiply (int n, int m) { a=n; b=m;
c=a*b; };
 };

with no constructors, the compiler automatically assumes that it has the following
constructor member functions:

● Empty constructor
It is a constructor with no parameters defined as nop (empty block of instructions). It
does nothing.

CExample::CExample () { };

● Copy constructor
It is a constructor with only one parameter of its same type that assigns to every
nonstatic class member variable of the object a copy of the passed object.

CExample::CExample (const CExample& rv) {
 a=rv.a; b=rv.b; c=rv.c;
 }

It is important to realize that both default constructors: the empty construction and the copy
constructor exist only if no other constructor is explicitly declared. In case that any

http://www.cplusplus.com/doc/tutorial/tut4-1.html (8 of 12)14-04-2004 18:37:33

C++ Tutorial: 4.1, Classes

constructor with any number of parameters is declared, none of these two default
constructors will exist. So if you want them to be there, you must define your own ones.

Of course, you can also overload the class constructor providing different constructors for
when you pass parameters between parenthesis and when you do not (empty):

// overloading class constructors
#include <iostream.h>

class CRectangle {
 int width, height;
 public:
 CRectangle ();
 CRectangle (int,int);
 int area (void) {return (width*height);}
};

CRectangle::CRectangle () {
 width = 5;
 height = 5;
}

CRectangle::CRectangle (int a, int b) {
 width = a;
 height = b;
}

int main () {
 CRectangle rect (3,4);
 CRectangle rectb;
 cout << "rect area: " << rect.area() << endl;
 cout << "rectb area: " << rectb.area() << endl;
}

rect
area: 12
rectb
area: 25

In this case rectb was declared without parameters, so it has been initialized with the
constructor that has no parameters, which declares both width and height with a value
of 5.

http://www.cplusplus.com/doc/tutorial/tut4-1.html (9 of 12)14-04-2004 18:37:33

C++ Tutorial: 4.1, Classes

Notice that if we declare a new object and we do not want to pass parameters to it we do not
include parentheses ():

CRectangle rectb; // right
CRectangle rectb(); // wrong!

Pointers to classes

It is perfectly valid to create pointers pointing to classes, in order to do that we must simply
consider that once declared, the class becomes a valid type, so use the class name as the type
for the pointer. For example:

CRectangle * prect;

is a pointer to an object of class CRectangle.

As it happens with data structures, to refer directly to a member of an object pointed by a
pointer you should use operator ->. Here is an example with some possible combinations:

// pointer to classes example
#include <iostream.h>

class CRectangle {
 int width, height;
 public:
 void set_values (int, int);
 int area (void) {return (width * height);}
};

void CRectangle::set_values (int a, int b) {
 width = a;
 height = b;
}

int main () {
 CRectangle a, *b, *c;
 CRectangle * d = new CRectangle[2];
 b= new CRectangle;

a area: 2
*b area: 12
*c area: 2
d[0] area:
30
d[1] area:
56

http://www.cplusplus.com/doc/tutorial/tut4-1.html (10 of 12)14-04-2004 18:37:33

C++ Tutorial: 4.1, Classes

 c= &a;
 a.set_values (1,2);
 b->set_values (3,4);
 d->set_values (5,6);
 d[1].set_values (7,8);
 cout << "a area: " << a.area() << endl;
 cout << "*b area: " << b->area() << endl;
 cout << "*c area: " << c->area() << endl;
 cout << "d[0] area: " << d[0].area() << endl;
 cout << "d[1] area: " << d[1].area() << endl;
 return 0;
}

Next you have a summary on how can you read some pointer and class operators (*,
&, ., ->, []) that appear in the previous example:

*x can be read: pointed by x
&x can be read: address of x
x.y can be read: member y of object x
(*x).y can be read: member y of object pointed by x
x->y can be read: member y of object pointed by x
(equivalent to the previous one)
x[0] can be read: first object pointed by x
x[1] can be read: second object pointed by x

x[n] can be read: (n+1)th object pointed by x

Be sure you understand the logic of all of these before going on. If you have doubts, read
again this section and/or consult sections "3.3, Pointers" and "3.5, Structures".

Classes defined with keyword struct

C++ language has extended the C keyword struct to the same functionality of the C++
class keyword except that its members are public by default instead of being
private.

Anyway, because both class and struct have almost the same functionality in C++,
struct is usually used for data-only structures and class for classes that have procedures

http://www.cplusplus.com/doc/tutorial/tut4-1.html (11 of 12)14-04-2004 18:37:33

C++ Tutorial: 4.1, Classes

and member functions.

© The C++ Resources Network, 2000 - All rights reserved

Previous:
3-6. User defined data types. index

Next:
4-2. Overloading operators. this.

Static members.

http://www.cplusplus.com/doc/tutorial/tut4-1.html (12 of 12)14-04-2004 18:37:33

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 4.2, Overloading operators

Section 4.2
Overloading operators

C++ incorporates the option to use language standard operators between classes in addition
to between fundamental types. For example:

int a, b, c;
a = b + c;

is perfectly valid, since the different variables of the addition are all fundamental types.
Nevertheless, is not so obvious that we can perform the following operation (in fact it is
incorrect):

struct { char product [50]; float price; } a, b, c;
a = b + c;

The assignation of a class (or struct) to another one of the same type is allowed (default
copy constructor). What would produce an error would be the addition operation, that in
principle is not valid between non-fundamental types.

But thanks to the C++ ability to overload operators, we can get to do that. Objects derived
from composed types such as the previous one can accept operators which would not be
accepted otherwise, and we can even modify the effect of operators that they already admit.
Here is a list of all the operators that can be overloaded:

+ - * / = < > += -= *= /
= << >>
<<= >>= == != <= >= ++ -- % &
^ ! |
~ &= ^= |= && || %= [] () new
delete

To overload an operator we only need to write a class member function whose name is
operator followed by the operator sign that we want to overload, following this
prototype:

type operator sign (parameters);

http://www.cplusplus.com/doc/tutorial/tut4-2.html (1 of 8)14-04-2004 18:37:37

C++ Tutorial: 4.2, Overloading operators

Here you have an example that includes the operator +. We are going to sum the
bidimensional vectors a(3,1) and b(1,2). The addition of two bidimensional vectors is
an operation as simple as adding the two x coordinates to obtain the resulting x coordinate
and adding the two y coordinates to obtain the resulting y. In this case the result will be (3
+1,1+2) = (4,3).

// vectors: overloading operators example
#include <iostream.h>

class CVector {
 public:
 int x,y;
 CVector () {};
 CVector (int,int);
 CVector operator + (CVector);
};

CVector::CVector (int a, int b) {
 x = a;
 y = b;
}

CVector CVector::operator+ (CVector param) {
 CVector temp;
 temp.x = x + param.x;
 temp.y = y + param.y;
 return (temp);
}

int main () {
 CVector a (3,1);
 CVector b (1,2);
 CVector c;
 c = a + b;
 cout << c.x << "," << c.y;
 return 0;
}

4,3

http://www.cplusplus.com/doc/tutorial/tut4-2.html (2 of 8)14-04-2004 18:37:37

C++ Tutorial: 4.2, Overloading operators

If you are baffled seeing CVector so many times, consider that some of them make
reference to the class name CVector and others are functions with that name. Do not
confuse them:

CVector (int, int); // function name
CVector (constructor)
CVector operator+ (CVector); // function operator+
that returns CVector type

The function operator+ of class CVector is the one that is in charge of overloading the
arithmetic operator +. This one can be called by any of these two ways:

c = a + b;
c = a.operator+ (b);

Notice also that we have incuded the empty constructor (without parameters) and we have
defined it with a no-op block of instructions:

CVector () { };

this is necessary, since there already exists another constructor,

CVector (int, int);

so none of the default constructors will exist in CVector if we do not explicitly declare
one as we have done. Otherwise the declaration

CVector c;

included in main() would not be valid.

Anyway, I have to warn you that a no-op block is not a recommended implementation for
a constructor, since it does not fulfill the minimum functionality that a constructor should
have, which is the initialization of all the variables in the class. In our case this constructor
leaves variables x and y undefined. Therefore, a more advisable declaration would have
been something similar to this:

http://www.cplusplus.com/doc/tutorial/tut4-2.html (3 of 8)14-04-2004 18:37:37

C++ Tutorial: 4.2, Overloading operators

CVector () { x=0; y=0; };

that for simplicity I have not included in the code.

As well as a class includes by deafult an empty and a copy constructor, it also includes a
default definition for the assignation operator (=) between two classes of the same type.
This copies the whole content of the non-static data members of the parameter object (the
one at the right side of the sign) to the one at the left side. Of course, you can redefine it to
any other functionality that you want for this operator, like for example, copy only certain
class members.

The overload of operators does not force its operation to bear a relation to the mathematical
or usual meaning of the operator, although it is recommended. For example, it is not very
logical to use operator + to subtract two classes or operator == to fill with zeros a class,
although it is perfectly possible to do so.

Although the prototype of a function operator+ can seem obvious since it takes the right
side of the operator as the parameter for the function operator+ of the left side object,
other operators are not so clear. Here you have a table with a summary on how the different
operator functions must be declared (replace @ by the operator in each case):

Expression Operator (@) Function member Global function

@a
+ - *

& ! ~ ++
--

A::operator@() operator@(A)

a@ ++ --
A::operator@

(int)
operator@(A,

int)

a@b

+ - * /
% ^ & |
< > == !
= <= >=
<< >> &&

|| ,

A::operator@(B) operator@(A, B)

http://www.cplusplus.com/doc/tutorial/tut4-2.html (4 of 8)14-04-2004 18:37:37

C++ Tutorial: 4.2, Overloading operators

a@b

= += -=
*= /= %=
^= &= |=
<<= >>=

[]

A::operator@(B) -

a(b,
c...)

()
A::operator()
(B, C...)

-

a->b -> A::operator->() -

* where a is an object of class A, b is an object of class B and c is an object of
class C.

You can see in this panel that there are two ways to overload some class operators: as
member function and as global function. Its use is indistinct, nevertheless I remind you that
functions that are not members of a class cannot access the private or protected
members of the class unless the global function is friend of the class (friend is explained
later).

The keyword this

The keyword this represents within a class the address in memory of the object of that
class that is being executed. It is a pointer whose value is always the address of the object.

It can be used to check if a parameter passed to a member function of an object is the object
itself. For example,

// this
#include <iostream.h>

class CDummy {
 public:
 int isitme (CDummy& param);
};

int CDummy::isitme (CDummy& param)
{
 if (¶m == this) return 1;
 else return 0;

yes, &a is b

http://www.cplusplus.com/doc/tutorial/tut4-2.html (5 of 8)14-04-2004 18:37:37

C++ Tutorial: 4.2, Overloading operators

}

int main () {
 CDummy a;
 CDummy* b = &a;
 if (b->isitme(a))
 cout << "yes, &a is b";
 return 0;
}

It is also frequenty used in operator= member functions that return objects by reference
(avoiding the use of temporary objects). Following with the vector's examples seen before
we could have written an operator= function like this:

CVector& CVector::operator= (const CVector& param)
{
 x=param.x;
 y=param.y;
 return *this;
}

In fact this is a probable default code generated for the class if we include no operator=
member function.

Static members

A class can contain static members, either data or functions.

Static data members of a class are also known as "class variables", because their content
does not depend on any object. There is only one unique value for all the objects of that
same class.

For example, it may be used for a variable within a class that can contain the number of
objects of that class that have been declared, as in the following example:

http://www.cplusplus.com/doc/tutorial/tut4-2.html (6 of 8)14-04-2004 18:37:37

C++ Tutorial: 4.2, Overloading operators

// static members in classes
#include <iostream.h>

class CDummy {
 public:
 static int n;
 CDummy () { n++; };
 ~CDummy () { n--; };
};

int CDummy::n=0;

int main () {
 CDummy a;
 CDummy b[5];
 CDummy * c = new CDummy;
 cout << a.n << endl;
 delete c;
 cout << CDummy::n << endl;
 return 0;
}

7
6

In fact, static members have the same properties as global variables but they enjoy class
scope. For that reason, and to avoid that they may be declared several times, according to
ANSI-C++ standard, we can only include the protype (declaration) in the class declaration
but not the definition (initialization). In order to initialize a static data-member we must
include a formal definition outside the class, in the global scope, as in the previous example.

Because it is a unique variable for all the objects of the same class, it can be referred to as a
member of any object of that class or even directly by the class name (of course this is only
valid for static members):

cout << a.n;
cout << CDummy::n;

These two calls included in the previous example are referring to the same variable: the
static variable n within class CDummy.

http://www.cplusplus.com/doc/tutorial/tut4-2.html (7 of 8)14-04-2004 18:37:37

C++ Tutorial: 4.2, Overloading operators

Once again, I remind you that in fact it is a global variable. The only difference is its name
outside the class.

Just as we may include static data within a class, we can also include static functions. They
represent the same: they are global functions that are called as if they were object members
of a given class. They can only refer to static data, in no case to nonstatic members of the
class, as well as they do not allow the use of the keyword this, since it makes reference to
an object pointer and these functions in fact are not members of any object but direct
members of the class.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
4-1. Classes. index

Next:
4-3. Relationships between

classes. Inheritance.

http://www.cplusplus.com/doc/tutorial/tut4-2.html (8 of 8)14-04-2004 18:37:37

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 4.3, Relationships between Classes

Section 4.3
Relationships between classes

Friend functions (friend keyword)

In the previous section we have seen that there were three levels of internal protection for the
different members of a class: public, protected and private. In the case of members
protected and private, these could not be accessed from outside the same class at which they
are declared. Nevertheless, this rule can be transgressed with the use of the friend
keyword in a class, so we can allow an external function to gain access to the protected
and private members of a class.

In order to allow an external function to have access to the private and protected
members of a class we have to declare the prototye of the external function that will gain
access preceded by the keyword friend within the class declaration that shares its
members. In the following example we declare the friend function duplicate:

// friend functions
#include <iostream.h>

class CRectangle {
 int width, height;
 public:
 void set_values (int, int);
 int area (void) {return (width * height);}
 friend CRectangle duplicate (CRectangle);
};

void CRectangle::set_values (int a, int b) {
 width = a;
 height = b;
}

CRectangle duplicate (CRectangle rectparam)
{
 CRectangle rectres;
 rectres.width = rectparam.width*2;

24

http://www.cplusplus.com/doc/tutorial/tut4-3.html (1 of 10)14-04-2004 18:37:44

C++ Tutorial: 4.3, Relationships between Classes

 rectres.height = rectparam.height*2;
 return (rectres);
}

int main () {
 CRectangle rect, rectb;
 rect.set_values (2,3);
 rectb = duplicate (rect);
 cout << rectb.area();
}

From within the duplicate function, that is a friend of CRectangle, we have been able
to access the members width and height of different objects of type CRectangle.
Notice that neither in the declaration of duplicate() nor in its later use in main() have
we considered duplicate as a member of class CRectangle. It isn't.

The friend functions can serve, for example, to conduct operations between two different
classes. Generally the use of friend functions is out of an object-oriented programming
methodology, so whenever possible it is better to use members of the same class to make the
process. Such as in the previous example, it would have been shorter to integrate
duplicate() within the class CRectangle.

Friend classes (friend)

Just as we have the possibility to define a friend function, we can also define a class as friend
of another one, allowing that the second one access to the protected and private
members of the first one.

http://www.cplusplus.com/doc/tutorial/tut4-3.html (2 of 10)14-04-2004 18:37:44

C++ Tutorial: 4.3, Relationships between Classes

// friend class
#include <iostream.h>

class CSquare;

class CRectangle {
 int width, height;
 public:
 int area (void)
 {return (width * height);}
 void convert (CSquare a);
};

class CSquare {
 private:
 int side;
 public:
 void set_side (int a)
 {side=a;}
 friend class CRectangle;
};

void CRectangle::convert (CSquare a) {
 width = a.side;
 height = a.side;
}

int main () {
 CSquare sqr;
 CRectangle rect;
 sqr.set_side(4);
 rect.convert(sqr);
 cout << rect.area();
 return 0;
}

16

In this example we have declared CRectangle as a friend of CSquare so that
CRectangle can access the protected and private members of CSquare, more

http://www.cplusplus.com/doc/tutorial/tut4-3.html (3 of 10)14-04-2004 18:37:44

C++ Tutorial: 4.3, Relationships between Classes

concretely CSquare::side, that defines the square side width.

You may also see something new in the first instruction of the program, that is the empty
prototype of class CSquare. This is necessary because within the declaration of
CRectangle we refer to CSquare (as a parameter in convert()). The definition of
CSquare is included later, so if we did not include a previous definition for CSquare this
class would not be visible from within the definition of CRectangle.

Consider that friendships are not corresponded if we do not explicitly specify it. In our
CSquare example CRectangle is considered as a class friend, but CRectangle does
not do the proper thing with CSquare, so CRectangle can access to the protected
and private members of CSquare but not the reverse way. Although nothing prevents us
from declaring CSquare as a friend of CRectangle.

Inheritance between classes

An important feature of classes is inheritance. This allows us to create an object derived
from another one, so that it may include some of the other's members plus its own. For
example, we are going to suppose that we want to declare a series of classes that describe
polygons like our CRectangle, or CTriangle. They have certain common features,
such as both can be described by means of only two sides: height and base.

This could be represented in the world of classes with a class CPolygon from which we
would derive the two referred ones, CRectangle and CTriangle.

The class CPolygon would contain members that are common for all polygons. In our
case: width and height. And CRectangle and CTriangle would be its derived
classes.

http://www.cplusplus.com/doc/tutorial/tut4-3.html (4 of 10)14-04-2004 18:37:44

C++ Tutorial: 4.3, Relationships between Classes

Classes derived from others inherit all the visible members of the base class. That means that
if a base class includes a member A and we derive it to another class with another member
called B, the derived class will contain both A and B.

In order to derive a class from another, we must use the operator : (colon) in the declaration
of the derived class in the following way:

class derived_class_name: public base_class_name;

where derived_class_name is the name of the derived class and base_class_name
is the name of the class on which it is based. public may be replaced by any of the other
access specifiers protected or private, and describes the access for the inherited
members, as we will see right after this example:

// derived classes
#include <iostream.h>

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b;}
 };

class CRectangle: public CPolygon {
 public:
 int area (void)
 { return (width * height); }
 };

class CTriangle: public CPolygon {
 public:
 int area (void)
 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;

20
10

http://www.cplusplus.com/doc/tutorial/tut4-3.html (5 of 10)14-04-2004 18:37:44

C++ Tutorial: 4.3, Relationships between Classes

 CTriangle trgl;
 rect.set_values (4,5);
 trgl.set_values (4,5);
 cout << rect.area() << endl;
 cout << trgl.area() << endl;
 return 0;
}

As you may see, objects of classes CRectangle and CTriangle each contain members
of CPolygon, that are: width, height and set_values().

The protected specifier is similar to private, its only difference occurs when deriving
classes. When we derive a class, protected members of the base class can be used by
other members of the derived class, nevertheless private member cannot. Since we
wanted width and height to have the ability to be manipulated by members of the
derived classes CRectangle and CTriangle and not only by members of CPolygon,
we have used protected access instead of private.

We can summarize the different access types according to whom can access them in the
following way:

Access public protected private

members of the same class yes yes yes

members of derived classes yes yes no

not-members yes no no

where "not-members" represent any reference from outside the class, such as from main(),
from another class or from any function, either global or local.

In our example, the members inherited by CRectangle and CTriangle follow with the
same access permission as in the base class CPolygon:

CPolygon::width // protected access
CRectangle::width // protected access

CPolygon::set_values() // public access

http://www.cplusplus.com/doc/tutorial/tut4-3.html (6 of 10)14-04-2004 18:37:44

C++ Tutorial: 4.3, Relationships between Classes

CRectangle::set_values() // public access

This is because we have derived a class from the other as public, remember:

class CRectangle: public CPolygon;

this public keyword represents the minimum level of protection that the inherited
members of the base class (CPolygon) must acquire in the new class (CRectangle). The
minimum access level for the inherited members can be changed by specifying protected
or private instead of public. For example, daughter is a class derived from mother
that we defined thus:

class daughter: protected mother;

this would establish protected as the minimum access level for the members of
daughter that it inherited from mother. That is, all members that were public in
mother would become protected in daughter, that would be the minimum level at
which they can be inherited. Of course, this would not restrict that daughter could have
its own public members. The minimum level would only be established for the inherited
members of mother.

The most common use of an inheritance level different from public is private that
serves to completely encapsulate the base class, since, in that case, nobody except its own
class will be able to access the members of the base class from which it is derived. Anyway,
in most cases classes are derived as public.

If no access level is explicitly written private is assumed for classes created with the
class keyword and public for those created with struct.

What is inherited from the base class?

In principle every member of a base class is inherited by a derived class except:

● Constructor and destructor
● operator=() member
● friends

Although the constructor and destructor of the base class are not inherited, the default

http://www.cplusplus.com/doc/tutorial/tut4-3.html (7 of 10)14-04-2004 18:37:44

C++ Tutorial: 4.3, Relationships between Classes

constructor (i.e. constructor with no parameters) and the destructor of the base class are
always called when a new object of a derived class is created or destroyed.

If the base class has no default constructor or you want that an overloaded constructor is
called when a new derived object is created, you can specify it in each constructor definition
of the derived class:

derived_class_name (parameters) : base_class_name
(parameters) {}

For example:

// constructors and derivated classes
#include <iostream.h>

class mother {
 public:
 mother ()
 { cout << "mother: no parameters\n"; }
 mother (int a)
 { cout << "mother: int parameter\n"; }
};

class daughter : public mother {
 public:
 daughter (int a)
 { cout << "daughter: int parameter\n\n"; }
};

class son : public mother {
 public:
 son (int a) : mother (a)
 { cout << "son: int parameter\n\n"; }
};

int main () {
 daughter cynthia (1);
 son daniel(1);

mother:
no
parameters
daughter:
int
parameter

mother:
int
parameter
son: int
parameter

http://www.cplusplus.com/doc/tutorial/tut4-3.html (8 of 10)14-04-2004 18:37:44

C++ Tutorial: 4.3, Relationships between Classes

 return 0;
}

Observe the difference between which mother's constructor is called when a new
daughter object is created and which when it is a son object. The difference is because
the constructor declaration of daughter and son:

daughter (int a) // nothing specified: call
default constructor
son (int a) : mother (a) // constructor specified:
call this one

Multiple inheritance

In C++ it is perfectly possible that a class inherits fields and methods from more than one
class simply by separating the different base classes with commas in the declaration of the
derived class. For example, if we had a specific class to print on screen (COutput) and we
wanted that our classes CRectangle and CTriangle also inherit its members in addition
to those of CPolygon we could write:

class CRectangle: public CPolygon, public COutput {
class CTriangle: public CPolygon, public COutput {

here is the complete example:

// multiple inheritance
#include <iostream.h>

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b;}
 };

20
10

http://www.cplusplus.com/doc/tutorial/tut4-3.html (9 of 10)14-04-2004 18:37:44

C++ Tutorial: 4.3, Relationships between Classes

class COutput {
 public:
 void output (int i);
 };

void COutput::output (int i) {
 cout << i << endl;
 }

class CRectangle: public CPolygon, public COutput {
 public:
 int area (void)
 { return (width * height); }
 };

class CTriangle: public CPolygon, public COutput {
 public:
 int area (void)
 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 rect.set_values (4,5);
 trgl.set_values (4,5);
 rect.output (rect.area());
 trgl.output (trgl.area());
 return 0;
}

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
4-2. Overloading operators. this.

Static members. index

Next:
4-4. Virtual members.

Abstraction. Polymorphism.

http://www.cplusplus.com/doc/tutorial/tut4-3.html (10 of 10)14-04-2004 18:37:44

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 4.4, Polymorphism

Section 4.4
Polymorphism

For a suitable understanding of this section you should clearly know how to use pointers and
inheritance between classes. I recommend that if some of these expressions seem strange to you,
you review the indicated sections:

 int a::b(c) {}; // Classes (Section 4.1)

 a->b // pointers and objects (Section 4.2)

 class a: public b; // Relationships between classes (Section 4.3)

Pointers to base class

One of the greater advantages of deriving classes is that a pointer to a derived class is type-
compatible with a pointer to its base class. This section is fully dedicated to taking advantage of this
powerful C++ feature. For example, we are going to rewrite our program about the rectangle and the
triangle of the previous section considering this property:

// pointers to base class
#include <iostream.h>

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 };

class CRectangle: public CPolygon {
 public:
 int area (void)
 { return (width * height); }
 };

class CTriangle: public CPolygon {
 public:
 int area (void)

20
10

http://www.cplusplus.com/doc/tutorial/tut4-4.html (1 of 7)14-04-2004 18:37:50

C++ Tutorial: 4.4, Polymorphism

 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 cout << rect.area() << endl;
 cout << trgl.area() << endl;
 return 0;
}

The function main creates two pointers that point to objects of class CPolygon, that are *ppoly1
and *ppoly2. These are assigned to the addresses of rect and trgl, and because they are objects
of classes derived from CPolygon they are valid assignations.

The only limitation of using *ppoly1 and *ppoly2 instead of rect and trgl is that both
*ppoly1 and *ppoly2 are of type CPolygon* and therefore we can only refer to the members
that CRectangle and CTriangle inherit from CPolygon. For that reason when calling the area
() members we have not been able to use the pointers *ppoly1 and *ppoly2.

To make it possible for the pointers to class CPolygon to admit area() as a valid
member, this should also have been declared in the base class and
not only in its derived ones. (see the following section).

Virtual members

In order to declare an element of a class which we are going to
redefine in derived classes we must precede it with the keyword
virtual so that the use of pointers to objects of that class can be
suitable.

Take a look at the following example:

http://www.cplusplus.com/doc/tutorial/tut4-4.html (2 of 7)14-04-2004 18:37:50

C++ Tutorial: 4.4, Polymorphism

// virtual members
#include <iostream.h>

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 virtual int area (void)
 { return (0); }
 };

class CRectangle: public CPolygon {
 public:
 int area (void)
 { return (width * height); }
 };

class CTriangle: public CPolygon {
 public:
 int area (void)
 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon poly;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 CPolygon * ppoly3 = &poly;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 ppoly3->set_values (4,5);
 cout << ppoly1->area() << endl;
 cout << ppoly2->area() << endl;
 cout << ppoly3->area() << endl;
 return 0;
}

20
10
0

Now the three classes (CPolygon, CRectangle and CTriangle) have the

http://www.cplusplus.com/doc/tutorial/tut4-4.html (3 of 7)14-04-2004 18:37:50

C++ Tutorial: 4.4, Polymorphism

same members: width, height, set_values() and area().

area() has been defined as virtual because it is later redefined in
derived classes. You can verify if you want that if you remove this
word (virtual) from the code and then you execute the program the
result will be 0 for the three polygons instead of 20,10,0. That is
because instead of calling the corresponding area() function for
each object (CRectangle::area(), CTriangle::area() and CPolygon::area
(), respectively), CPolygon::area() will be called for all of them
since the calls are via a pointer to CPolygon.

Therefore what the word virtual does is to allow that a member of a
derived class with the same name as one in the base class be
suitably called when a pointer to it is used, as in the above
example.

Note that in spite of its virtuality we have also been able to
declare an object of type CPolygon and to call its area() function,
that always returns 0 as the result.

Abstract base classes

Basic abstract classes are something very similar to the class
CPolygon of our previous example. The only difference is that in our
previous example we have defined a valid area() function for objects
that were of class CPolygon (like object poly), whereas in an
abstract base class we could have simply left without defining this
function by appending =0 (equal to zero) to the function
declaration.

The class CPolygon could have been thus:

// abstract class CPolygon
class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 virtual int area (void) =0;
 };

Notice how we have appended =0 to virtual int area (void) instead of

http://www.cplusplus.com/doc/tutorial/tut4-4.html (4 of 7)14-04-2004 18:37:50

C++ Tutorial: 4.4, Polymorphism

specifying an implementation for the function. This type of function
is called a pure virtual function, and all classes that contain a
pure virtual function are considered abstract base classes.

The greatest difference of an abstract base class is that instances
(objects) of it cannot be created, but we can create pointers to
them. Therefore a declaration like:

CPolygon poly;

would be incorrect for the abstract base class declared above.
Nevertheless the pointers:

CPolygon * ppoly1;
CPolygon * ppoly2

are be perfectly valid. This is because the pure virtual function
that it includes is not defined and it is impossible to create an
object if it does not have all its members defined. Nevertheless a
pointer that points to an object of a derived class where this
function has been defined is perfectly valid.

Here you have the complete example:

// virtual members
#include <iostream.h>

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 virtual int area (void) =0;
 };

class CRectangle: public CPolygon {
 public:
 int area (void)
 { return (width * height); }
 };

20
10

http://www.cplusplus.com/doc/tutorial/tut4-4.html (5 of 7)14-04-2004 18:37:50

C++ Tutorial: 4.4, Polymorphism

class CTriangle: public CPolygon {
 public:
 int area (void)
 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 cout << ppoly1->area() << endl;
 cout << ppoly2->area() << endl;
 return 0;
}

If you review the program you will notice that we can refer to
objects of different classes using a unique type of pointer
(CPolygon*). This can be tremendously useful. Imagine, now we can
create a function member of CPolygon that is able to print on screen
the result of the area() function independently of what the derived
classes are.

// virtual members
#include <iostream.h>

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 virtual int area (void) =0;
 void printarea (void)
 { cout << this->area() << endl; }
 };

class CRectangle: public CPolygon {
 public:
 int area (void)
 { return (width * height); }

20
10

http://www.cplusplus.com/doc/tutorial/tut4-4.html (6 of 7)14-04-2004 18:37:50

C++ Tutorial: 4.4, Polymorphism

 };

class CTriangle: public CPolygon {
 public:
 int area (void)
 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 ppoly1->printarea();
 ppoly2->printarea();
 return 0;
}

Remember that this represents a pointer to the object whose code is
being executed.

Abstract classes and virtual members grant to C++ the polymorphic
characteristics that make object-oriented programming such a useful
instrument. Of course we have seen the simplest way to use these
features, but imagine these features applied to arrays of objects or
objects assigned through dynamic memory.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
4-3. Relationships between classes. index

Next:
5-1. Templates.

http://www.cplusplus.com/doc/tutorial/tut4-4.html (7 of 7)14-04-2004 18:37:50

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 5.1, Templates

Section 5.1
Templates

Templates are a new feature introduced by ANSI-C++ standard. If you use a C++
compiler that is not adapted to this standard it is possible that you cannot use them.

Function templates

Templates allow to create generic functions that admit any data type as parameters and
return a value without having to overload the function with all the possible data types. Until
certain point they fulfill the functionality of a macro. Its prototype is any of the two
following ones:

template <class identifier> function_declaration;
template <typename identifier> function_declaration;

the only difference between both prototypes is the use of keyword class or typename, its
use is indistinct since both expressions have exactly the same meaning and behave exactly
the same way.

For example, to create a template function that returns the greater one of two objects we
could use:

template <class GenericType>
GenericType GetMax (GenericType a, GenericType b) {
 return (a>b?a:b);
}

As the first line specifies, we have created a template for a generic data type that we have
called GenericType. Therefore in the function that follows, GenericType becomes a
valid data type and it is used as the type for its two parameters a and b and as the return type
for the function GetMax.

GenericType still does not represent any concrete data type; when the function GetMax
will be called we will be able to call it with any valid data type. This data type will serve as a
pattern and will replace GenericType in the function. The way to call a template class

http://www.cplusplus.com/doc/tutorial/tut5-1.html (1 of 10)14-04-2004 18:37:57

C++ Tutorial: 5.1, Templates

with a type pattern is the following:

function <pattern> (parameters);

Thus, for example, to call GetMax and to compare two integer values of type int we can
write:

int x,y;
GetMax <int> (x,y);

so GetMax will be called as if each appearance of GenericType was replaced by an int
expression.

Here is the complete example:

// function template
#include <iostream.h>

template <class T>
T GetMax (T a, T b) {
 T result;
 result = (a>b)? a : b;
 return (result);
}

int main () {
 int i=5, j=6, k;
 long l=10, m=5, n;
 k=GetMax<int>(i,j);
 n=GetMax<long>(l,m);
 cout << k << endl;
 cout << n << endl;
 return 0;
}

6
10

(In this case we have called the generic type T instead of GenericType because it is
shorter and in addition is one of the most usual identifiers used for templates, although it is

http://www.cplusplus.com/doc/tutorial/tut5-1.html (2 of 10)14-04-2004 18:37:57

C++ Tutorial: 5.1, Templates

valid to use any valid identifier).

In the example above we used the same function GetMax() with arguments of type int
and long having written a single implementation of the function. That is to say, we have
written a function template and called it with two different patterns.

As you can see, within our GetMax() template function the type T can be used to declare
new objects:

T result;

result is an object of type T, like a and b, that is to say, of the type that we enclose
between angle-brackets <> when calling our template function.

In this concrete case where the generic T type is used as a parameter for function GetMax
the compiler can find out automatically which data type is passed to it without having to
specify it with patterns <int> or <long>. So we could have written:

int i,j;
GetMax (i,j);

since both i and j are of type int the compiler would assume automatically that the wished
function is for type int. This implicit method is more usual and would produce the same
result:

// function template II
#include <iostream.h>

template <class T>
T GetMax (T a, T b) {
 return (a>b?a:b);
}

int main () {
 int i=5, j=6, k;
 long l=10, m=5, n;
 k=GetMax(i,j);
 n=GetMax(l,m);

6
10

http://www.cplusplus.com/doc/tutorial/tut5-1.html (3 of 10)14-04-2004 18:37:57

C++ Tutorial: 5.1, Templates

 cout << k << endl;
 cout << n << endl;
 return 0;
}

Notice how in this case, within function main() we called our template function GetMax
() without explicitly specifying the type between angle-brackets <>. The compiler
automatically determines what type is needed on each call.

Because our template function includes only one data type (class T) and both arguments
it admits are both of that same type, we cannot call our template function with two objects of
different types as parameters:

int i;
long l;
k = GetMax (i,l);

This would be incorrect, since our function waits for two arguments of the same type (or
class).

We can also make template-functions that admit more than one generic class or data type.
For example:

template <class T, class U>
T GetMin (T a, U b) {
 return (a<b?a:b);
}

In this case, our template function GetMin() admits two parameters of different types and
returns an object of the same type as the first parameter (T) that is passed. For example, after
that declaration we could call the function by writing:

int i,j;
long l;
i = GetMin<int,long> (j,l);

or simply

http://www.cplusplus.com/doc/tutorial/tut5-1.html (4 of 10)14-04-2004 18:37:57

C++ Tutorial: 5.1, Templates

i = GetMin (j,l);

even though j and l are of different types.

Class templates

We also have the possibility to write class templates, so that a class can have members based
on generic types that do not need to be defined at the moment of creating the class or whose
members use these generic types. For example:

template <class T>
class pair {
 T values [2];
 public:
 pair (T first, T second)
 {
 values[0]=first; values[1]=second;
 }
};

The class that we have just defined serves to store two elements of any valid type. For
example, if we wanted to declare an object of this class to store two integer values of type
int with the values 115 and 36 we would write:

pair<int> myobject (115, 36);

this same class would also serve to create an object to store any other type:

pair<float> myfloats (3.0, 2.18);

The only member function has been defined inline within the class declaration. If we define
a function member outside the declaration we must always precede the definition with the
prefix template <... >.

http://www.cplusplus.com/doc/tutorial/tut5-1.html (5 of 10)14-04-2004 18:37:57

C++ Tutorial: 5.1, Templates

// class templates
#include <iostream.h>

template <class T>
class pair {
 T value1, value2;
 public:
 pair (T first, T second)
 {value1=first; value2=second;}
 T getmax ();
};

template <class T>
T pair<T>::getmax ()
{
 T retval;
 retval = value1>value2? value1 : value2;
 return retval;
}

int main () {
 pair <int> myobject (100, 75);
 cout << myobject.getmax();
 return 0;
}

100

notice how the definition of member function getmax begins:

template <class T>
T pair<T>::getmax ()

All Ts that appear are necessary because whenever you declare member functions you have
to follow a format similar to this (the second T makes reference to the type returned by the
function, so this may vary).

Template specialization

A template specialization allows a template to make specific implementations when the

http://www.cplusplus.com/doc/tutorial/tut5-1.html (6 of 10)14-04-2004 18:37:57

C++ Tutorial: 5.1, Templates

pattern is of a determined type. For example, suppose that our class template pair included
a function to return the result of the module operation between the objects contained in it,
but we only want it to work when the contained type is int. For the rest of the types we
want this function to return 0. This can be done the following way:

// Template specialization
#include <iostream.h>

template <class T>
class pair {
 T value1, value2;
 public:
 pair (T first, T second)
 {value1=first; value2=second;}
 T module () {return 0;}
};

template <>
class pair <int> {
 int value1, value2;
 public:
 pair (int first, int second)
 {value1=first; value2=second;}
 int module ();
};

template <>
int pair<int>::module() {
 return value1%value2;
}

int main () {
 pair <int> myints (100,75);
 pair <float> myfloats (100.0,75.0);
 cout << myints.module() << '\n';
 cout << myfloats.module() << '\n';
 return 0;
}

25
0

http://www.cplusplus.com/doc/tutorial/tut5-1.html (7 of 10)14-04-2004 18:37:57

C++ Tutorial: 5.1, Templates

As you can see in the code the specialization is defined this way:

template <> class class_name <type>

The specialization is part of a template, for that reason we must begin the declaration with
template <>. And indeed because it is a specialization for a concrete type, the generic
type cannot be used in it and the first angle-brackets <> must appear empty. After the class
name we must include the type that is being specialized enclosed between angle-brackets
<>.

When we specialize a type of a template we must also define all the members equating them
to the specialization (if one pays attention, in the example above we have had to include its
own constructor, although it is identical to the one in the generic template). The reason is
that no member is "inherited" from the generic template to the specialized one.

Parameter values for templates

Besides the template arguments preceded by the class or typename keywords that
represent a type, function templates and class templates can include other parameters that are
not types whenever they are also constant values, like for example values of fundamental
types. As an example see this class template that serves to store arrays:

// array template
#include <iostream.h>

template <class T, int N>
class array {
 T memblock [N];
 public:
 void setmember (int x, T value);
 T getmember (int x);
};

template <class T, int N>
array<T,N>::setmember (int x, T value) {
 memblock[x]=value;
}

100
3.1416

http://www.cplusplus.com/doc/tutorial/tut5-1.html (8 of 10)14-04-2004 18:37:57

C++ Tutorial: 5.1, Templates

template <class T, int N>
T array<T,N>::getmember (int x) {
 return memblock[x];
}

int main () {
 array <int,5> myints;
 array <float,5> myfloats;
 myints.setmember (0,100);
 myfloats.setmember (3,3.1416);
 cout << myints.getmember(0) << '\n';
 cout << myfloats.getmember(3) << '\n';
 return 0;
}

It is also possible to set default values for any template parameter just as it is done with
function parameters.

Some possible template examples seen above:

template <class T> // The most usual:
one class parameter.
template <class T, class U> // Two class
parameters.
template <class T, int N> // A class and an
integer.
template <class T = char> // With a default
value.
template <int Tfunc (int)> // A function as
parameter.

Templates and multiple-file projects

From the point of view of the compiler, templates are not normal functions or classes. They
are compiled on demand, meaning that the code of a template function is not compiled until
an instantiation is required. At that moment, when an instantiation is required, the compiler

http://www.cplusplus.com/doc/tutorial/tut5-1.html (9 of 10)14-04-2004 18:37:57

C++ Tutorial: 5.1, Templates

generates a function specifically for that type from the template.

When projects grow it is usual to split the code of a program in different source files. In
these cases, generally the interface and implementation are separated. Taking a library of
functions as example, the interface generally consists of the prototypes of all the functions
that can be called. These are generally declared in a "header file" with .h extension, and the
implementation (the definition of these functions) is in an independent file of c++ code.

The macro-like functionality of templates, forces a restriction for multi-file projects: the
implementation (definition) of a template class or function must be in the same file as the
declaration. That means we cannot separate the interface in a separate header file and we
must include both interface and implementation in any file that uses the templates.

Going back to the library of functions, if we wanted to make a library of function templates,
instead of creating a header file (.h) we should create a "template file" with both the
interface and implementation of the function templates (there is no convention on the
extension for this type of file other than there be no extension at all or to keep the .h). The
inclusion more than once of the same template file with both declarations and definitions in a
project doesn't generate linkage errors, since they are compiled on demand and compilers
that allow templates should be prepared to not generate duplicate code in these cases.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
4-4. Polymorphism. index

Next:
5-2. Namespaces.

http://www.cplusplus.com/doc/tutorial/tut5-1.html (10 of 10)14-04-2004 18:37:57

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 5.2, Namespaces

Section 5.2
Namespaces

Namespaces allow us to group a set of global classes, objects and/or functions under a name.
To say it another way, they serve to split the global scope in sub-scopes known as
namespaces.

The form to use namespaces is:

namespace identifier
{
 namespace-body
}

Where identifier is any valid identifier and namespace-body is the set of classes,
objects and functions that are included within the namespace. For example:

namespace general
{
 int a, b;
}

In this case, a and b are normal variables integrated within the general namespace. In order
to access these variables from outside the namespace we have to use the scope operator ::.
For example, to access the previous variables we would have to put:

general::a
general::b

The functionality of namespaces is specially useful in case there is a possibility that a global
object or function has the same name as another one, causing a redefinition error. For
example:

http://www.cplusplus.com/doc/tutorial/tut5-2.html (1 of 6)14-04-2004 18:38:03

C++ Tutorial: 5.2, Namespaces

// namespaces
#include <iostream.h>

namespace first
{
 int var = 5;
}

namespace second
{
 double var = 3.1416;
}

int main () {
 cout << first::var << endl;
 cout << second::var << endl;
 return 0;
}

5
3.1416

In this case two global variables with the var name exist, one defined within namespace
first and another one in second. No redefinition errors thanks to namespaces.

using namespace

The using directive followed by namespace serves to associate the present nesting level
with a certain namespace so that the objects and functions of that namespace can be
accesible directly as if they were defined in the global scope. Its utilization follows this
prototype:

using namespace identifier;

Thus, for example:

http://www.cplusplus.com/doc/tutorial/tut5-2.html (2 of 6)14-04-2004 18:38:03

C++ Tutorial: 5.2, Namespaces

// using namespace example
#include <iostream.h>

namespace first
{
 int var = 5;
}

namespace second
{
 double var = 3.1416;
}

int main () {
 using namespace second;
 cout << var << endl;
 cout << (var*2) << endl;
 return 0;
}

3.1416
6.2832

In this case we have been able to use var without having to precede it with any scope
operator.

You have to consider that the sentence using namespace has validity only in the block
in which it is declared (understanding as a block the group of instructions within key
brackets {}) or in all the code if it is used in the global scope. For example, if we had
intention to first use the objects of a namespace and then those of another one we could do
something similar to:

http://www.cplusplus.com/doc/tutorial/tut5-2.html (3 of 6)14-04-2004 18:38:03

C++ Tutorial: 5.2, Namespaces

// using namespace example
#include <iostream.h>

namespace first
{
 int var = 5;
}

namespace second
{
 double var = 3.1416;
}

int main () {
 {
 using namespace first;
 cout << var << endl;
 }
 {
 using namespace second;
 cout << var << endl;
 }
 return 0;
}

5
3.1416

alias definition

We have the possibility to define alternative names for namespaces that already exist. The
form to do it is:

namespace new_name = current_name ;

Namespace std

One of the best examples that we can find about namespaces is the standard C++ library
itself. As defined in the ANSI C++ standard, all the classes, objects and functions of the

http://www.cplusplus.com/doc/tutorial/tut5-2.html (4 of 6)14-04-2004 18:38:03

C++ Tutorial: 5.2, Namespaces

standard C++ library are defined within namespace std.

You may have noticed that we have ignored this rule all through this tutorial. I've decided to
do so since this rule is almost as recent as the ANSI standard itself (1997) and many older
compilers do not comply with this rule.

Almost all compilers, even those complying with ANSI standard, allow the use of the
traditional header files (like iostream.h, stdlib.h, etc), the ones we have used
througout this tutorial. Nevertheless, the ANSI standard has completely redesigned these
libraries taking advantage of the templates feature and following the rule to declare all the
functions and variables under the namespace std.

The standard has specified new names for these "header" files, basically using the same
name for C++ specific files, but without the ending .h. For example, iostream.h
becomes iostream.

If we use the ANSI-C++ compliant include files we have to bear in mind that all the
functions, classes and objects will be declared under the std namespace. For example:

// ANSI-C++ compliant hello world
#include <iostream>

int main () {
 std::cout << "Hello world in ANSI-C++\n";
 return 0;
}

Hello world in
ANSI-C++

Although it is more usual to use using namespace and save us to have to use the scope
operator :: before all the references to standard objects:

http://www.cplusplus.com/doc/tutorial/tut5-2.html (5 of 6)14-04-2004 18:38:03

C++ Tutorial: 5.2, Namespaces

// ANSI-C++ compliant hello world (II)
#include <iostream>
using namespace std;

int main () {
 cout << "Hello world in ANSI-C++\n";
 return 0;
}

Hello world in ANSI-
C++

The name for the C files has also suffered some changes. You can find more information on
the new names for the standard header files in the document Standard header files.

The use of the ANSI-compliant way to include the standard libraries, apart for the ANSI-
compliance itself, is highly recommended for STL users.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
5-1. Templates. index

Next:
5-3. Exception handling.

http://www.cplusplus.com/doc/tutorial/tut5-2.html (6 of 6)14-04-2004 18:38:03

http://www.cplusplus.com/doc/ansi/hfiles.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 5.3, Exception handling

Section 5.3
Exception handling

Exception handling explained in this section is a new feature introduced by ANSI-C++ standard.
If you use a C++ compiler that is not adapted to this standard it is possible that you cannot use
this feature.

During the development of a program, there may be some cases where we do not have the certainty that a
piece of the code is going to work right, either because it accesses resources that do not exist or because it
gets out of an expected range, etc...

These types of anomalous situations are included in what we consider exceptions and C++ has recently
incorporated three new operators to help us handle these situations: try, throw and catch.

Their form of use is the following:

try {
 // code to be tried
 throw exception;
}
catch (type exception)
{
 // code to be executed in case of exception
}

And its operation:
- The code within the try block is executed normally. In case that an exception takes place, this code
must use the throw keyword and a parameter to throw an exception. The type of the parameter details
the exception and can be of any valid type.
- If an exception has taken place, that is to say, if it has executed a throw instruction within the try
block, the catch block is executed receiving as parameter the exception passed by throw.

For example:

http://www.cplusplus.com/doc/tutorial/tut5-3.html (1 of 6)14-04-2004 18:38:09

C++ Tutorial: 5.3, Exception handling

// exceptions
#include <iostream.h>

int main () {
 char myarray[10];
 try
 {
 for (int n=0; n<=10; n++)
 {
 if (n>9) throw "Out of range";
 myarray[n]='z';
 }
 }
 catch (char * str)
 {
 cout << "Exception: " << str << endl;
 }
 return 0;
}

Exception: Out of range

In this example, if within the n loop, n gets to be more than 9 an exception is thrown, since myarray
[n] would in that case point to a non-trustworthy memory address. When throw is executed, the try
block finalizes right away and every object created within the try block is destroyed. After that, the
control is passed to the corresponding catch block (that is only executed in these cases). Finally the
program continues right after the catch block, in this case: return 0;.

The syntax used by throw is similar to that of return: Only the parameter does not need to be
enclosed between parenthesis.

The catch block must go right after the try block without including any code line between them. The
parameter that catch accepts can be of any valid type. Even more, catch can be overloaded so that it
can accept different types as parameters. In that case the catch block executed is the one that matches
the type of the exception sent (the parameter of throw):

http://www.cplusplus.com/doc/tutorial/tut5-3.html (2 of 6)14-04-2004 18:38:09

C++ Tutorial: 5.3, Exception handling

// exceptions: multiple catch blocks
#include <iostream.h>

int main () {
 try
 {
 char * mystring;
 mystring = new char [10];
 if (mystring == NULL) throw "Allocation failure";
 for (int n=0; n<=100; n++)
 {
 if (n>9) throw n;
 mystring[n]='z';
 }
 }
 catch (int i)
 {
 cout << "Exception: ";
 cout << "index " << i << " is out of range" << endl;
 }
 catch (char * str)
 {
 cout << "Exception: " << str << endl;
 }
 return 0;
}

Exception:
index 10
is out of
range

In this case there is a possibility that at least two different exceptions could happen:

1. That the required block of 10 characters cannot be assigned (something rare, but possible): in this
case an exception is thrown that will be caught by catch (char * str).

2. That the maximum index for mystring is exceeded: in this case the exception thrown will be
caught by catch (int i), since the parameter is an integer number.

We can also define a catch block that captures all the exceptions independently of the type used in the
call to throw. For that we have to write three points instead of the parameter type and name accepted by
catch:

try {
 // code here
}
catch (...) {

http://www.cplusplus.com/doc/tutorial/tut5-3.html (3 of 6)14-04-2004 18:38:09

C++ Tutorial: 5.3, Exception handling

 cout << "Exception occurred";
}

It is also possible to nest try-catch blocks within more external try blocks. In these cases, we have
the possibility that an internal catch block forwards the exception received to the external level, for that
the expression throw; with no arguments is used. For example:

try {
 try {
 // code here
 }
 catch (int n) {
 throw;
 }
}
catch (...) {
 cout << "Exception occurred";
}

Exceptions not caught

If an exception is not caught by any catch statement because there is no catch statement with a
matching type, the special function terminate will be called.

This function is generally defined so that it terminates the current process immediately showing an
"Abnormal termination" error message. Its format is:

void terminate();

Standard exceptions

Some functions of the standard C++ language library send exceptions that can be captured if we include
them within a try block. These exceptions are sent with a class derived from std::exception as
type. This class (std::exception) is defined in the C++ standard header file <exception> and
serves as a pattern for the standard hierarchy of exceptions:

exception
bad_alloc (thrown by new)

bad_cast
(thrown by dynamic_cast when fails with
a referenced type)

bad_exception
(thrown when an exception doesn't match
any catch)

bad_typeid (thrown by typeid)

http://www.cplusplus.com/doc/tutorial/tut5-3.html (4 of 6)14-04-2004 18:38:09

C++ Tutorial: 5.3, Exception handling

logic_error
domain_error
invalid_argument
length_error
out_of_range

runtime_error
overflow_error
range_error
underflow_error

ios_base::failure (thrown by ios::clear)

Because this is a class hierarchy, if you include a catch block to capture any of the exceptions of this
hierarchy using the argument by reference (i.e. adding an ampersand & after the type) you will also
capture all the derived ones (rules of inheritance in C++).

The following example catches an exception of type bad_typeid (derived from exception) that is
generated when requesting information about the type pointed by a null pointer:

// standard exceptions

#include <iostream.h>
#include <exception>
#include <typeinfo>

class A {virtual f() {}; };

int main () {
 try {
 A * a = NULL;
 typeid (*a);
 }
 catch (std::exception& e)
 {
 cout << "Exception: " << e.what();
 }
 return 0;
}

Exception: Attempted typeid
of NULL pointer

You can use the classes of standard hierarchy of exceptions to throw your exceptions or derive new
classes from them.

© The C++ Resources Network, 2000-2001 - All rights reserved

http://www.cplusplus.com/doc/tutorial/tut5-3.html (5 of 6)14-04-2004 18:38:09

C++ Tutorial: 5.3, Exception handling

Previous:
5-2. Namespaces. index

Next:
5-4. Advanced classes type-cast.

http://www.cplusplus.com/doc/tutorial/tut5-3.html (6 of 6)14-04-2004 18:38:09

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 5.4: Advanced Class Type-casting

Section 5.4
Advanced Class Type-casting

Until now, in order to type-cast a simple object to another we have used the traditional type
casting operator. For example, to cast a floating point number of type double to an integer
of type int we have used:

int i;
double d;
i = (int) d;

or also

i = int (d);

This is quite good for basic types that have standard defined conversions, however this
operators can also be indiscriminately applied on classes and pointers to classes. So, it is
perfectly valid to write things like:

// class type-casting
#include <iostream.h>

class CDummy {
 int i;
};

class CAddition {
 int x,y;
 public:
 CAddition (int a, int b) { x=a; y=b; }
 int result() { return x+y;}
};

int main () {
 CDummy d;
 CAddition * padd;
 padd = (CAddition*) &d;

http://www.cplusplus.com/doc/tutorial/tut5-4.html (1 of 6)14-04-2004 18:38:14

C++ Tutorial: 5.4: Advanced Class Type-casting

 cout << padd->result();
 return 0;
}

Although the previous program in sintactically correct in C++ (in fact it will compile with no
warnings on most compilers) it is code with not much sense since we use function result,
that is a member of CAddition, without having declared an object of that class: padd is
not an object, it is only a pointer which we have assigned the address of a non related object.
When accessing its result member it will produce a run-time error or, at best, just an
unexpected result.

In order to control these types of conversions between classes, ANSI-C++ standard has
defined four new casting operators: reinterpret_cast, static_cast,
dynamic_cast and const_cast. All of them have the same format when used:

reinterpret_cast <new_type> (expression)
 dynamic_cast <new_type> (expression)
 static_cast <new_type> (expression)
 const_cast <new_type> (expression)

Where new_type is the destination type to which expression has to be casted. To make
an easily understandable parallelism with traditional type-casting operators these expression
mean:

(new_type) expression
new_type (expression)

but with their own special characteristics.

reinterpret_cast

reinterpret_cast casts a pointer to any other type of pointer. It also allows casting
from a pointer to an integer type and vice versa.

This operator can cast pointers between non-related classed. The operation results is a simple
binary copy of the value from one pointer to the other. The content pointed does not pass any
kind of check nor transformation between types.

http://www.cplusplus.com/doc/tutorial/tut5-4.html (2 of 6)14-04-2004 18:38:14

C++ Tutorial: 5.4: Advanced Class Type-casting

In the case that the copy is performed from a pointer to an integer, the interpretation of its
content is system dependent and therefore any implementation is non portable. A pointer
casted to an integer large enough to fully contain it can be casted back to a valid pointer.

class A {};
class B {};
A * a = new A;
B * b = reinterpret_cast<B*>(a);

reinterpret_cast treats all pointers exactly as traditional type-casting operators do.

static_cast

static_cast performs any casting that can be implicitly performed as well as the inverse
cast (even if this is not allowed implicitly).

Applied to pointers to classes, that is to say that it allows to cast a pointer of a derived class to
its base class (this is a valid conversion that can be implicitly performed) and it can also
perform the inverse: cast a base class to its derivated class.

In this last case the base class that is being casted is not checked to determine wether this is a
complete class of the destination type or not.

class Base {};
class Derived: public Base {};
Base * a = new Base;
Derived * b = static_cast<Derived*>(a);

static_cast, aside from manipulating pointers to classes, can also be used to perform
conversions explicitly defined in classes, as well as to perform standard conversions between
fundamental types:

double d=3.14159265;
int i = static_cast<int>(d);

dynamic_cast

http://www.cplusplus.com/doc/tutorial/tut5-4.html (3 of 6)14-04-2004 18:38:14

C++ Tutorial: 5.4: Advanced Class Type-casting

dynamic_cast is exclusively used with pointers and references to objects. It allows any
type-casting that can be implicitly performed as well as the inverse one when used with
polymorphic classes, however, unlike static_cast, dynamic_cast checks, in this last
case, if the operation is valid. That is to say, it checks if the casting is going to return a valid
complete object of the requested type.

Checking is performed during run-time execution. If the pointer being casted is not a pointer
to a valid complete object of the requested type, the value returned is a NULL pointer.

class Base { virtual dummy(){}; };
class Derived : public Base { };

Base* b1 = new Derived;
Base* b2 = new Base;
Derived* d1 = dynamic_cast<Derived*>(b1); //
succeeds
Derived* d2 = dynamic_cast<Derived*>(b2); //
fails: returns NULL

If the type-casting is performed to a reference type and this casting is not possible an
exception of type bad_cast is thrown:

class Base { virtual dummy(){}; };
class Derived : public Base { };

Base* b1 = new Derived;
Base* b2 = new Base;
Derived d1 = dynamic_cast<Derived&*>(b1); //
succeeds
Derived d2 = dynamic_cast<Derived&*>(b2); //
fails: exception thrown

const_cast

This type of casting manipulates the const attribute of the passed object, either to be set or
removed:

class C {};
const C * a = new C;

http://www.cplusplus.com/doc/tutorial/tut5-4.html (4 of 6)14-04-2004 18:38:14

C++ Tutorial: 5.4: Advanced Class Type-casting

C * b = const_cast<C*> (a);

Neither of the other three new cast operators can modify the constness of an object.

typeid

ANSI-C++ also defines a new operator called typeid that allows checking the type of an
expression:

typeid (expression)

this operator returns a refernece to a constant object of type type_info that is defined in
the standard header file <typeinfo>. This returned value can be compared with another
using operators == and != or can serve to obtain a string of characters representing the data
type or class name by using its name() method.

// typeid, typeinfo
#include <iostream.h>
#include <typeinfo>

class CDummy { };

int main () {
 CDummy* a,b;
 if (typeid(a) != typeid(b))
 {
 cout << "a and b are of different types:\n";
 cout << "a is: " << typeid(a).name() << '\n';
 cout << "b is: " << typeid(b).name() << '\n';
 }
 return 0;
}

a and b
are of
different
types:
a is:
class
CDummy *
b is:
class
CDummy

© The C++ Resources Network, 2000-2001 - All rights reserved

http://www.cplusplus.com/doc/tutorial/tut5-4.html (5 of 6)14-04-2004 18:38:14

C++ Tutorial: 5.4: Advanced Class Type-casting

Previous:
5-3. Exception handling. index

Next:
5-5. Preprocessor directives.

http://www.cplusplus.com/doc/tutorial/tut5-4.html (6 of 6)14-04-2004 18:38:14

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 5.5, Preprocessor directives

Section 5.5
Preprocessor directives

Preprocessor directives are orders that we include within the code of our programs that are
not instructions for the program itself but for the preprocessor. The preprocessor is executed
automatically by the compiler when we compile a program in C++ and is in charge of
making the first verifications and digestions of the program's code.

All these directives must be specified in a single line of code and they do not have to include
an ending semicolon ;.

#define

At the beginning of this tutorial we have already spoken about a preprocessor directive:
#define, that serves to generate what we called defined constantants or macros and whose
form is the following:

#define name value

Its function is to define a macro called name that whenever it is found in some point of the
code is replaced by value. For example:

#define MAX_WIDTH 100
char str1[MAX_WIDTH];
char str2[MAX_WIDTH];

It defines two strings to store up to 100 characters.

#define can also be used to generate macro functions:

#define getmax(a,b) a>b?a:b
int x=5, y;
y = getmax(x,2);

after the execution of this code y would contain 5.

http://www.cplusplus.com/doc/tutorial/tut5-5.html (1 of 5)14-04-2004 18:38:20

C++ Tutorial: 5.5, Preprocessor directives

#undef

#undef fulfills the inverse functionality of #define. It eliminates from the list of defined
constants the one that has the name passed as a parameter to #undef:

#define MAX_WIDTH 100
char str1[MAX_WIDTH];
#undef MAX_WIDTH
#define MAX_WIDTH 200
char str2[MAX_WIDTH];

#ifdef, #ifndef, #if, #endif, #else and #elif

These directives allow to discard part of the code of a program if a certain condition is not
fulfilled.

#ifdef allows that a section of a program is compiled only if the defined constant that is
specified as the parameter has been defined, independently of its value. Its operation is:

#ifdef name
// code here
#endif

For example:

#ifdef MAX_WIDTH
char str[MAX_WIDTH];
#endif

In this case, the line char str[MAX_WIDTH]; is only considered by the compiler if the
defined constant MAX_WIDTH has been previously defined, independently of its value. If it
has not been defined, that line will not be included in the program.

#ifndef serves for the opposite: the code between the #ifndef directive and the
#endif directive is only compiled if the constant name that is specified has not been
defined previously. For example:

#ifndef MAX_WIDTH

http://www.cplusplus.com/doc/tutorial/tut5-5.html (2 of 5)14-04-2004 18:38:20

C++ Tutorial: 5.5, Preprocessor directives

#define MAX_WIDTH 100
#endif
char str[MAX_WIDTH];

In this case, if when arriving at this piece of code the defined constant MAX_WIDTH has not
yet been defined it would be defined with a value of 100. If it already existed it would
maintain the value that it had (because the #define statement won't be executed).

The #if, #else and #elif (elif = else if) directives serve so that the portion of code that
follows is compiled only if the specified condition is met. The condition can only serve to
evaluate constant expressions. For example:

#if MAX_WIDTH>200
#undef MAX_WIDTH
#define MAX_WIDTH 200

#elsif MAX_WIDTH<50
#undef MAX_WIDTH
#define MAX_WIDTH 50

#else
#undef MAX_WIDTH
#define MAX_WIDTH 100
#endif

char str[MAX_WIDTH];

Notice how the structure of chained directives #if, #elsif and #else finishes with
#endif.

#line

When we compile a program and errors happen during the compiling process, the compiler
shows the error that happened preceded by the name of the file and the line within the file
where it has taken place.

The #line directive allows us to control both things, the line numbers within the code files
as well as the file name that we want to appear when an error takes place. Its form is the
following one:

http://www.cplusplus.com/doc/tutorial/tut5-5.html (3 of 5)14-04-2004 18:38:20

C++ Tutorial: 5.5, Preprocessor directives

#line number "filename"

Where number is the new line number that will be assigned to the next code line. The line
number of successive lines will be increased one by one from this.

filename is an optional parameter that serves to replace the file name that will be shown
in case of error from this directive until another one changes it again or the end of the file is
reached. For example:

#line 1 "assigning variable"
int a?;

This code will generate an error that will be shown as error in file "assigning
variable", line 1.

#error

This directive aborts the compilation process when it is found returning the error that is
specified as the parameter:

#ifndef __cplusplus
#error A C++ compiler is required
#endif

This example aborts the compilation process if the defined constant __cplusplus is not
defined.

#include

This directive has also been used assiduously in other sections of this tutorial. When the
preprocessor finds an #include directive it replaces it by the whole content of the
specified file. There are two ways to specify a file to be included:

#include "file"
#include <file>

The only difference between both expressions is the directories in which the compiler is

http://www.cplusplus.com/doc/tutorial/tut5-5.html (4 of 5)14-04-2004 18:38:20

C++ Tutorial: 5.5, Preprocessor directives

going to look for the file. In the first case where the file is specified between quotes, the file
is looked for in the same directory that includes the file containing the directive. In case that
it is not there, the compiler looks for the file in the default directories where it is configured
to look for the standard header files.

If the file name is enclosed between angle-brackets <> the file is looked for directly where
the compiler is configured to look for the standard header files.

#pragma

This directive is used to specify diverse options to the compiler. These options are specific
for the platform and the compiler you use. Consult the manual or the reference of your
compiler for more information on the possible parameters that you can define with
#pragma.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous:
5-4. Advances classes type

casting. index

Next:
6-1. Input/Output with files.

http://www.cplusplus.com/doc/tutorial/tut5-5.html (5 of 5)14-04-2004 18:38:20

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ tutorial: 6.1, Input/Output with files

Section 6.1
Input/Output with files

C++ has support both for input and output with files through the following classes:

● ofstream: File class for writing operations (derived from ostream)
● ifstream: File class for reading operations (derived from istream)
● fstream: File class for both reading and writing operations (derived from iostream)

Open a file

The first operation generally done on an object of one of these classes is to associate it to a real file, that
is to say, to open a file. The open file is represented within the program by a stream object (an
instantiation of one of these classes) and any input or output performed on this stream object will be
applied to the physical file.

In order to open a file with a stream object we use its member function open():

void open (const char * filename, openmode mode);

where filename is a string of characters representing the name of the file to be opened and mode is a
combination of the following flags:

ios::in Open file for reading

ios::out Open file for writing

ios::ate Initial position: end of file

ios::app Every output is appended at the end of file

ios::trunc If the file already existed it is erased

ios::binary Binary mode

These flags can be combined using bitwise operator OR: |. For example, if we want to open the file
"example.bin" in binary mode to add data we could do it by the following call to function-member
open:

ofstream file;
file.open ("example.bin", ios::out | ios::app | ios::
binary);

All of the member functions open of classes ofstream, ifstream and fstream include a default

http://www.cplusplus.com/doc/tutorial/tut6-1.html (1 of 8)14-04-2004 18:38:27

C++ tutorial: 6.1, Input/Output with files

mode when opening files that varies from one to the other:

class default mode to parameter

ofstream ios::out | ios::trunc

ifstream ios::in

fstream ios::in | ios::out

The default value is only applied if the function is called without specifying a mode parameter. If the
function is called with any value in that parameter the default mode is stepped on, not combined.

Since the first task that is performed on an object of classes ofstream, ifstream and fstream is
frequently to open a file, these three classes include a constructor that directly calls the open member
function and has the same parameters as this. This way, we could also have declared the previous object
and conducted the same opening operation just by writing:

ofstream file ("example.bin", ios::out | ios::app | ios::
binary);

Both forms to open a file are valid.

You can check if a file has been correctly opened by calling the member function is_open():

bool is_open();

that returns a bool type value indicating true in case that indeed the object has been correctly
associated with an open file or false otherwise.

Closing a file

When reading, writing or consulting operations on a file are complete we must close it so that it
becomes available again. In order to do that we shall call the member function close(), that is in
charge of flushing the buffers and closing the file. Its form is quite simple:

void close ();

Once this member function is called, the stream object can be used to open another file, and the file is
available again to be opened by other processes.

In case that an object is destructed while still associated with an open file, the destructor automatically
calls the member function close.

http://www.cplusplus.com/doc/tutorial/tut6-1.html (2 of 8)14-04-2004 18:38:27

C++ tutorial: 6.1, Input/Output with files

Text mode files

Classes ofstream, ifstream and fstream are derived from ostream, istream and
iostream respectively. That's why fstream objects can use the members of these parent classes to
access data.

Generally, when using text files we shall use the same members of these classes that we used in
communication with the console (cin and cout). As in the following example, where we use the
overloaded insertion operator <<:

// writing on a text file
#include <fstream.h>

int main () {
 ofstream examplefile ("example.txt");
 if (examplefile.is_open())
 {
 examplefile << "This is a line.\n";
 examplefile << "This is another line.\n";
 examplefile.close();
 }
 return 0;
}

file example.txt

This is a line.
This is another
line.

Data input from file can also be performed in the same way that we did with cin:

// reading a text file
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

int main () {
 char buffer[256];
 ifstream examplefile ("example.txt");
 if (! examplefile.is_open())
 { cout << "Error opening file"; exit (1); }

 while (! examplefile.eof())
 {
 examplefile.getline (buffer,100);
 cout << buffer << endl;

This is a line.
This is another
line.

http://www.cplusplus.com/doc/tutorial/tut6-1.html (3 of 8)14-04-2004 18:38:27

C++ tutorial: 6.1, Input/Output with files

 }
 return 0;
}

This last example reads a text file and prints out its content on the screen. Notice how we have used a
new member function, called eof that ifstream inherits from class ios and that returns true in
case that the end of the file has been reached.

Verification of state flags

In addition to eof(), other member functions exist to verify the state of the stream (all of them return a
bool value):

bad()
Returns true if a failure occurs in a reading or writing operation. For example in case we try to
write to a file that is not open for writing or if the device where we try to write has no space left.

fail()
Returns true in the same cases as bad() plus in case that a format error happens, as trying to
read an integer number and an alphabetical character is received.

eof()
Returns true if a file opened for reading has reached the end.

good()
It is the most generic: returns false in the same cases in which calling any of the previous
functions would return true.

In order to reset the state flags checked by the previous member functions you can use member function
clear(), with no parameters.

get and put stream pointers

All i/o streams objects have, at least, one stream pointer:

● ifstream, like istream, has a pointer known as get pointer that points to the next element to
be read.

● ofstream, like ostream, has a pointer put pointer that points to the location where the next
element has to be written.

● Finally fstream, like iostream, inherits both: get and put

These stream pointers that point to the reading or writing locations within a stream can be read and/or
manipulated using the following member functions:

http://www.cplusplus.com/doc/tutorial/tut6-1.html (4 of 8)14-04-2004 18:38:27

C++ tutorial: 6.1, Input/Output with files

tellg() and tellp()
These two member functions admit no parameters and return a value of type pos_type
(according ANSI-C++ standard) that is an integer data type representing the current position of
get stream pointer (in case of tellg) or put stream pointer (in case of tellp).

seekg() and seekp()
This pair of functions serve respectively to change the position of stream pointers get and put.
Both functions are overloaded with two different prototypes:

seekg (pos_type position);
seekp (pos_type position);

Using this prototype the stream pointer is changed to an absolute position from the
beginning of the file. The type required is the same as that returned by functions tellg
and tellp.

seekg (off_type offset, seekdir direction);
seekp (off_type offset, seekdir direction);

Using this prototype, an offset from a concrete point determined by parameter direction
can be specified. It can be:

ios::beg offset specified from the beginning of the stream

ios::cur offset specified from the current position of the stream pointer

ios::end offset specified from the end of the stream

The values of both stream pointers get and put are counted in different ways for text files than for binary
files, since in text mode files some modifications to the appearance of some special characters can
occur. For that reason it is advisable to use only the first prototype of seekg and seekp with files
opened in text mode and always use non-modified values returned by tellg or tellp. With binary
files, you can freely use all the implementations for these functions. They should not have any
unexpected behavior.

The following example uses the member functions just seen to obtain the size of a binary file:

http://www.cplusplus.com/doc/tutorial/tut6-1.html (5 of 8)14-04-2004 18:38:27

C++ tutorial: 6.1, Input/Output with files

// obtaining file size
#include <iostream.h>
#include <fstream.h>

const char * filename = "example.txt";

int main () {
 long l,m;
 ifstream file (filename, ios::in|ios::binary);
 l = file.tellg();
 file.seekg (0, ios::end);
 m = file.tellg();
 file.close();
 cout << "size of " << filename;
 cout << " is " << (m-l) << " bytes.\n";
 return 0;
}

size of example.
txt is 40 bytes.

Binary files

In binary files inputting and outputting data with operators like << and >> and functions like
getline, does not make too much sense, although they are perfectly valid.

File streams include two member functions specially designed for input and output of data sequentially:
write and read. The first one (write) is a member function of ostream, also inherited by ofstream.
And read is member function of istream and it is inherited by ifstream. Objects of class
fstream have both. Their prototypes are:

write (char * buffer, streamsize size);
 read (char * buffer, streamsize size);

Where buffer is the address of a memory block where the read data are stored or from where the data
to be written are taken. The size parameter is an integer value that specifies the number of characters
to be read/written from/to the buffer.

http://www.cplusplus.com/doc/tutorial/tut6-1.html (6 of 8)14-04-2004 18:38:27

C++ tutorial: 6.1, Input/Output with files

// reading binary file
#include <iostream.h>
#include <fstream.h>

const char * filename = "example.txt";

int main () {
 char * buffer;
 long size;
 ifstream file (filename, ios::in|ios::binary|ios::ate);
 size = file.tellg();
 file.seekg (0, ios::beg);
 buffer = new char [size];
 file.read (buffer, size);
 file.close();

 cout << "the complete file is in a buffer";

 delete[] buffer;
 return 0;
}

the
complete
file is
in a
buffer

Buffers and Synchronization

When we operate with file streams, these are associated to a buffer of type streambuf. This buffer is
a memory block that acts as an intermediary between the stream and the physical file. For example, with
an out stream, each time the member function put (write a single character) is called, the character is
not written directly to the physical file with which the stream is associated. Instead of that, the character
is inserted in the buffer for that stream.

When the buffer is flushed, all data that it contains is written to the physic media (if it is an out stream)
or simply erased (if it is an in stream). This process is called synchronization and it takes place under
any of the following circumstances:

● When the file is closed: before closing a file all buffers that have not yet been completely
written or read are synchronized.

● When the buffer is full: Buffers have a certain size. When the buffer is full it is automatically
synchronized.

● Explicitly with manipulators: When certain manipulators are used on streams a
synchronization takes place. These manipulators are: flush and endl.

● Explicitly with function sync(): Calling member function sync() (no parameters) causes

http://www.cplusplus.com/doc/tutorial/tut6-1.html (7 of 8)14-04-2004 18:38:27

C++ tutorial: 6.1, Input/Output with files

an immediate syncronization. This function returns an int value equal to -1 if the stream has
no associated buffer or in case of failure.

© The C++ Resources Network, 2000 - All rights reserved

Previous:
5-5. Preprocessor directives. index

http://www.cplusplus.com/doc/tutorial/tut6-1.html (8 of 8)14-04-2004 18:38:27

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: Authoring.

The C++ Language Tutorial
The Author

Hi,

My name is Juan Soulié, I'm a self-taught programmer born in 1977 in the Mediterranean
island of Mallorca belonging to the Kingdom of Spain.

Before bumping into C and subsequently C++ I used to program in Pascal and when I was a
child with Basic in my Spectrum and MSX-16kB machines. I also have some respect for
unix shell scripting and nowadays Perl. Right now I'm specialized in Windows' API
Programming and internet-related technologies.

The aim that pushed me to write this tutorial was to share with everyone interested in
learning this amazing and versatile programming language what I've learnt here and there
throughout the years using what seems to me simple and understandable explanations and
avoiding useless (or slightly useful) theory. I've tried to explain what you can do with C++
instead on emphasizing what you should do (I'm not saying that that is not important, it is
simply not covered in this tutorial).

Finally, I want to thank these people that have found some typos in previous versions of the
tutorial: Mike H, Proto, Anderson Fabiano, Alex Hoover, Jose Castaneda , nameless person,
Scott A. Fanjoy, Mr. Venom, Weilan W Wu, Vern Hamberg, Brian Agbay, Thomas Texier,
Cory Wheeler, Jay, Hugo Lavalle, Joshua Smith, Jaime Tenorio, sassi, Bruce Bertrand,
Nikolai Shevchuk, Devrim Ersanli, Guillermo, Luke Kurach, Nick Malden, Hans Verbrugge,
mikeg, Chouputra, Anna Grishkan, Patrick Seafield, Fede, Samuel Schultz, Mitchell Markin,
and some others whose names were not disclosed in their messages.

There are probably some other errors to find. If you find one please use the contact form to
notify me. Please notice that I don't know all about everything related to C++ and that I am
not a volunteer programming consultant, so if you have a particular programming question
you will probably get a better result posting your question in a programming forum, mailing
list or newsgroup rather than sending it to me.

 Regards,
 Juan Soulié

http://www.cplusplus.com/doc/tutorial/tut0-2.html (1 of 2)14-04-2004 18:38:52

http://www.cplusplus.com/contact.html

C++ Tutorial: Authoring.

© The C++ Resources Network, 2001 - All rights reserved

index

http://www.cplusplus.com/doc/tutorial/tut0-2.html (2 of 2)14-04-2004 18:38:52

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

	cplusplus.com
	C++ language tutorial
	C++ Tutorial: Introduction, Instructions for use.
	C++ Tutorial: 1.1, Structure of a program
	C++ Tutorial: 1.2, Variables. Data types. Constants.
	C++ tutorial: 1.3, Operators.
	C++ Tutorial: 1.4, Communication through console.
	C++ Tutorial: 2.1, Control Structures.
	C++ Tutorial: 2.2, Functions (I).
	C++ Tutorial: 2.3, Functions (II).
	C++ Tutorial: 3.1, Arrays
	C++ Tutorial: 3.2, Strings of Characters.
	C++ Tutorial: 3.3, Pointers.
	C++ Tutorial: 3.4, Dynamic memory.
	C++ Tutorial: 3.5, Structures.
	C++ Tutorial: 3.6, User defined data types.
	C++ Tutorial: 4.1, Classes
	C++ Tutorial: 4.2, Overloading operators
	C++ Tutorial: 4.3, Relationships between Classes
	C++ Tutorial: 4.4, Polymorphism
	C++ Tutorial: 5.1, Templates
	C++ Tutorial: 5.2, Namespaces
	C++ Tutorial: 5.3, Exception handling
	C++ Tutorial: 5.4: Advanced Class Type-casting
	C++ Tutorial: 5.5, Preprocessor directives
	C++ tutorial: 6.1, Input/Output with files
	C++ Tutorial: Authoring.

