C++ language tutorial

the
plusplus.com

futorial

The cplusplus.com tutorial
Complete C++ language tutorial

1.4 (August 2003)

. Introduction
o Instructions for use.
. 1. Basicsof C++.
o Structure of a C++ program.
o Variables. Datatypes. Constants.
o QOperators.
o Communication through console.

. 2. Control structuresand Functions.
o Control Structures.

o Functions (1).
o Functions (11).
. 3. Advanced Data.

o Arrays.
o Strings of Characters.

o Pointers.
» Dynamic Memory.
o Structures.
o User defined data types. (typedef, union, enum)
« 4. Object-oriented Programming.
o Classes. Constructors and Destructors. Pointers to classes.
o Overloading Operators. this. Static members.
o Relationships between classes: friend. Inheritance.
o Virtual Members. Abstraction. Polymorphism.
. 5. Advanced concepts.
u] TemQI ates.

o Namespaces.
o Exception handling.

http://www.cplusplus.com/doc/tutorial/ (1 of 2)14-04-2004 18:34:44

C++ language tutorial

o Advanced classes type-casting. (new cast and typeid operators)
o Preprocessor directives.

. 6.C++ Standard Library.
o Input/Output with files.

. Epilogue.
o The Author.

NOTE: The examplesincluded in thistutorial are complete applications that can be compiled with almost any C++
compiler. If you want more info on how to compile these programs check the document Compilation of Console

Programs.

Written by Juan Soulié for the C++ Resources Network (www.cplusplus.com). English revision: Mitchell Markin.
© The C++ Resources Network, 2000-2001 - All rights reserved

Go back: ‘ ’ Begin Tutorid:
documents section I ntroduction - Instructionsfor use

http://www.cplusplus.com/doc/tutorial/ (2 of 2)14-04-2004 18:34:44

http://www.cplusplus.com/doc/compiler/console.html
http://www.cplusplus.com/doc/compiler/console.html
http://www.cplusplus.com/
http://www.cplusplus.com/doc/
http://www.cplusplus.com/doc/
http://www.cplusplus.com/doc/

C++ Tutorial: Introduction, Instructions for use.

| ntroduction cpf;usgfus
I anruage
| nstructions for use /EAnEUAgS

To whom is this tutorial directed?

Thistutorial isfor those people who want to learn programming in C++ and do not
necessarily have any previous knowledge of other programming languages. Of course any
knowledge of other programming languages or any general computer skill can be useful to
better understand this tutorial, although it is not essential.

If you are familiar with C language you can take the first 3 parts of this tutorial (from 1.1 to
3.4) asareview, since they mainly explain the C part of C++.

Part 4 describes object-oriented programming.

Part 5 mostly describes the new features introduced by ANSI-C++ standard.

Structure of this tutorial

The tutorial isdivided in 6 parts and each part isin severa different sections. Y ou can access
any section directly from the main index or begin the tutorial from any point and follow the

links at the bottom of each section.

Many sections include an additional page with specific examples that describe the use of the
newly acquired knowledge in that chapter. It is recommended to read these examples and be
able to understand each of the code lines that constitute it before passing to the next chapter.

A good way to gain experience with a programming language is by modifying and adding
new functionalities on your own to the example programs that you fully understand. Don't be

scared to modify the examples provided with this tutorial. There are no reports of people
whose computer has been destroyed due to that.

Compatibility Notes

The ANSI-C++ standard accepted as an international standard is relatively recent. It was

http://ww.cplusplus.com/doc/tutorial /tutO-1.html (1 of 2)14-04-2004 18:35:06

http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: Introduction, Instructions for use.

published in November 1997, nevertheless the C++ language exists from long ago (1980s).
Therefore there are many compilers which do not support all the new capabilities included in
ANSI-C++, specially those released prior to the publication of the standard.

During this tutorial, the concepts that have been added by ANSI-C++ standard which are not
included in most older C++ compilers are indicated by the following icon:

'EH.FEI <- new in ANSI C++

Also, given the enormous extension that the C language enjoys (the language from which C+
+ was derived), an icon will also be included when the topic explained is a concept whose
implementation is clearly different between C and C++ or that is exclusive of C++:

C ||(++ <- different inplenentation in C and
i C++
Compilers

The examplesincluded in this tutorial are al console programs. That means they use text to
communicate with the user and to show results.

All C++ compilers support the compilation of console programs. If you want to get more
information on how to compile the examples that appear in this tutorial, check the document
Compilation of Console Programs, where you will find specific information about this

subject for several C++ compilers existing in the market.

© The C++ Resources Network, 2000-2001 - All rights reserved

’M

1.1 - Structure of a C++
program

Previous:
Main Menu in

o

ex

http://ww.cplusplus.com/doc/tutorial /tutO-1.html (2 of 2)14-04-2004 18:35:06

http://www.cplusplus.com/doc/compiler/console.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutoria: 1.1, Structure of a program

Section 1.1
Structure of a C++ program

Probably the best way to start learning a programming language is with a program. So hereis our
first program:

Il nmy first programin C++ Hel | o Worl d!
#i ncl ude <i ostream h>

int min ()

{
cout << "Hello World!'";
return O;

}

The left side shows the source code for our first program, which we can name, for example,

hi wor | d. cpp. Theright side shows the result of the program once compiled and executed. The
way to edit and compile a program depends on the compiler you are using. Depending on whether it
has a Development Interface or not and on its version. Consult section compilers and the manual or

help included with your compiler if you have doubts on how to compile a C++ console program.

The previous program is the first program that most programming apprentices write, and itsresult is
the printing on screen of the "Hello World!" sentence. It is one of the simpler programs that can be
written in C++, but it already includes the basic components that every C++ program has. We are
going to take alook at them one by one:

[l my first programin C++
Thisisacomment line. All the lines beginning with two slash signs(/ /) are considered
comments and do not have any effect on the behavior of the program. They can be used by
the programmer to include short explanations or observations within the source itself. In this
case, thelineisabrief description of what our program does.

#i ncl ude <i ostream h>
Sentences that begin with a pound sign (#) are directives for the preprocessor. They are not
executable code lines but indications for the compiler. In this case the sentence #i ncl ude
<i ost r eam h> tellsthe compiler's preprocessor to include the iostream standard header
file. This specific file includes the declarations of the basic standard input-output library in C

http://www.cplusplus.com/doc/tutorial /tut1-1.html (1 of 5)14-04-2004 18:35:18

http://www.cplusplus.com/doc/compiler/console.html

C++ Tutoria: 1.1, Structure of a program

++, and it isincluded because its functionality is used later in the program.

int main ()

cout

This line corresponds to the beginning of the mai n function declaration. The mai n function
isthe point by where all C++ programs begin their execution. It isindependent of whether it
is at the beginning, at the end or in the middle of the code - its content is always the first to
be executed when a program starts. In addition, for that same reason, it is essential that all C+
+ programs have amai n function.

mai n isfollowed by apair of parenthesis () becauseit isafunction. In C++ all functions
are followed by a pair of parenthesis () that, optionally, can include arguments within them.
The content of the mai n function immediately followsitsformal declaration and it is
enclosed between curly brackets ({ }), asin our example.

<< "Hello Worl d";

This instruction does the most important thing in this program. cout isthe standard output
stream in C++ (usually the screen), and the full sentence inserts a sequence of characters (in
this case "Hello World") into this output stream (the screen). cout isdeclared in the

i ost ream h header file, so in order to be able to use it that file must be included.

Notice that the sentence ends with a semicolon character (;). This character signifiesthe end
of the instruction and must be included after every instruction in any C++ program (one of
the most common errors of C++ programmersisindeed to forget to include a semicolon ; at
the end of each instruction).

return O;

Ther et ur n instruction causes the mai n() function finish and return the code that the
instruction isfollowed by, in thiscase 0. Thisit is most usual way to terminate a program
that has not found any errors during its execution. Asyou will seein coming examples, all C+
+ programs end with a sentence similar to this.

Therefore, you may have noticed that not all the lines of this program did an action. There were
lines containing only comments (those beginning by / /), lines with instructions for the compiler's
preprocessor (those beginning by #), then there were lines that initiated the declaration of afunction
(inthis case, the mai n function) and, finally lines with instructions (like the call to cout <<),
these last ones were all included within the block delimited by the curly brackets ({ }) of themai n
function.

The program has been structured in different lines in order to be more readable, but it is not
compulsory to do so. For example, instead of

int main ()

http://www.cplusplus.com/doc/tutorial /tut1-1.html (2 of 5)14-04-2004 18:35:18

C++ Tutoria: 1.1, Structure of a program

{
cout << " Hello World ";

return O;

}

we could have written:
int min () { cout << " Hello Wrld "; return O; }
in just one line and this would have had exactly the same meaning.

In C++ the separation between instructions is specified with an ending semicolon (;) after each one.
The division of codein different lines serves only to make it more legible and schematic for humans
that may read it.

Hereis a program with some more instructions:

/'l nmy second programin C++ Hello World! |I'ma C++ program

#i ncl ude <i ostream h>

int min ()

{
cout << "Hello World!' ";
cout << "I'"'ma C++ progrant;
return O;

}

In this case we used the cout << method twice in two different instructions. Once again, the
separation in different lines of the code has just been done to give greater readability to the program,
since mai n could have been perfectly defined thus:

int main () { cout << " Hello Wrld! "; cout << " I'mto C
++ program"; return 0O; }

We were aso free to divide the code into more lines if we considered it convenient:

int main ()

{

http://www.cplusplus.com/doc/tutorial /tut1-1.html (3 of 5)14-04-2004 18:35:18

C++ Tutoria: 1.1, Structure of a program

cout <<

"Hello Worl d!'";
cout

<< "|'ma C++ progrant;
return O;

}

And the result would have been exactly the same than in the previous examples.

Preprocessor directives (those that begin by #) are out of this rule since they are not true
instructions. They are lines read and discarded by the preprocessor and do not produce any code.
These must be specified in their own line and do not require the include a semicolon (;) at the end.

Comments.

Comments are pieces of source code discarded from the code by the compiler. They do nothing.
Their purpose is only to allow the programmer to insert notes or descriptions embedded within the
source code.

C++ supports two ways to insert comments:

[/ 1ine coment
/[* bl ock comment */

Thefirst of them, the line comment, discards everything from where the pair of dlash signs(/ /) is
found up to the end of that same line. The second one, the block comment, discards everything
between the/ * characters and the next appearance of the * / characters, with the possibility of
including several lines.

We are going to add comments to our second program:

http://www.cplusplus.com/doc/tutorial /tut1-1.html (4 of 5)14-04-2004 18:35:18

C++ Tutoria: 1.1, Structure of a program

/* nmy second programin C++ Hel | o
W th nore conmments */ Wor | d!
I'"'ma C
#i ncl ude <i ostream h> T
program
int min ()
{
cout << "Hello World! "; /'l says Hello Worl d!
cout << "I'ma C++ progrant; // says |I'ma C++ program
return O;
}

If you include comments within the sourcecode of your programs without using the comment
characters combinations/ / ,/ * or */ , the compiler will take them as if they were C++ instructions
and, most likely causing one or several error messages.

© The C++ Resources Network, 2000-2001 - All rights reserved

‘M

1-2. Variables. Data types.
Constants.

Previous: ‘

Main Menu in

|
2

X

Additional readings:
ANSI-C++: Standard Header Files.

http://www.cplusplus.com/doc/tutorial /tut1-1.html (5 of 5)14-04-2004 18:35:18

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/ansi/hfiles.html

C++ Tutorid: 1.2, Variables. Data types. Constants.

Section 1.2 Epfus;_rfus
I language
Variables. Datatypes. Constants. ot

The usefulness of the "Hello World" programs shown in the previous section are something
more than questionable. We had to write several lines of code, compile them, and then
execute the resulting program just to obtain a sentence on the screen asresult. It istrue that it
would have been much faster to simply write the output sentence by ourselves, but
programming is not limited only to printing texts on screen. In order to go alittle further on
and to become able to write programs that perform useful tasks that really save us work we
need to introduce the concept of the variable.

Let'sthink that | ask you to retain the number 5 in your mental memory, and then | ask you
to a'so memorize the number 2. Y ou have just stored two values in your memory. Now, if |
ask you to add 1 to the first number | said, you should be retaining the numbers 6 (that is 5
+1) and 2 in your memory. Values that we could now subtract and obtain 4 as the resullt.

All this process that you have made is a simile of what a computer can do with two
variables. This same process can be expressed in C++ with the following instruction set:

5,
2,

a + 1;

It = a - b;

-~ 9 T O

2 I L |

esu

Obviously thisis avery simple example since we have only used two small integer values,
but consider that your computer can store millions of numbers like these at the same time
and conduct sophisticated mathematical operations with them.

Therefore, we can define a variable as a portion of memory to store a determined value.

Each variable needs an identifier that distinguishesit from the others, for example, in the
previous code the variable identifierswerea, b and r esul t , but we could have called the
variables any names we wanted to invent, as long as they were valid identifiers.

Identifiers

A valid identifier is a sequence of one or more letters, digits or underline symbols(_). The

http://ww.cplusplus.com/doc/tutorial /tut1-2.html (1 of 13)14-04-2004 18:35:26

C++ Tutorid: 1.2, Variables. Data types. Constants.

length of an identifier is not limited, although for some compilers only the 32 first characters
of an identifier are significant (the rest are not considered).

Neither spaces nor marked letters can be part of an identifier. Only letters, digits and
underline characters are valid. In addition, variable identifiers should always begin with a
letter. They can also begin with an underline character (), but thisis usually reserved for
external links. In no case they can begin with adigit.

Another rule that you have to consider when inventing your own identifiersis that they
cannot match any key word of the C++ language nor your compiler's specific ones since
they could be confused with these. For example, the following expressions are always
considered key words according to the ANSI-C++ standard and therefore they must not be
used as identifiers:

asm auto, bool, break, case, catch, char, class,
const, const _cast, continue, default, delete, do,
doubl e, dynam c_cast, else, enum explicit, extern,
false, float, for, friend, goto, if, inline, int,

| ong, nutabl e, nanespace, new, operator, private,
protected, public, register, reinterpret_cast,
return, short, signed, sizeof, static, static_cast,
struct, swtch, tenplate, this, throw, true, try,
t ypedef, typeid, typenane, union, unsigned, using,
virtual, void, volatile, wchar t

Additionally, alternative representations for some operators do not have to be used as
identifiers since they are reserved words under some circumstances:

and, and _eq, bitand, bitor, conpl, not, not_eq, or,
or _eq, Xor, Xxor_eq

Y our compiler may also include some more specific reserved keywords. For example, many
compilers which generate 16 bit code (like some compilersfor DOS) also includef ar ,
huge and near askey words.

Very important: The C++ language is "case sensitive”, that means that an identifier written
in capital lettersis not equivalent to another one with the same name but written in small
letters. Thus, for example the variable RESULT is not the same as the variabler esul t nor
thevariable Resul t .

http://ww.cplusplus.com/doc/tutorial /tut1-2.html (2 of 13)14-04-2004 18:35:26

C++ Tutorid: 1.2, Variables. Data types. Constants.

Data types

When programming, we store the variables in our computer's memory, but the computer
must know what we want to store in them since storing a ssmple number, aletter or alarge

number is not going to occupy the same space in memory.

Our computer's memory is organized in bytes. A byte is the minimum amount of memory
that we can manage. A byte can store arelatively small amount of data, usually an integer
between 0 and 255 or one single character. But in addition, the computer can manipulate
more complex data types that come from grouping several bytes, such aslong numbers or
numbers with decimals. Next you have alist of the existing fundamental datatypesin C++,

as well asthe range of valuesthat can be represented with each one of them:

http://ww.cplusplus.com/doc/tutorial /tut1-2.html (3 of 13)14-04-2004 18:35:26

DATA TYPES
Name Bytes* |Description Range*
char 1 character or integer 8 signed: -128to 127
bits length. unsigned: 0 to 255
: : signed: -32768 to 32767
short 2 integer 16 bits length. unsigned: 01to 65535
signed:-2147483648 to
long 4 integer 32 bitslength. (2147483647
unsigned: 0 to 4294967295
Integer. Its length
traditionally depends on
the length of the
system's Word type,
thusin MSDOS it is 16
. bits long, whereas in 32
*)
int bit systems (like See short, long
Windows 9x/2000/NT
and systems that work
under protected mode in
x86 systems) it is 32
bits long (4 bytes).
float 4 floating point number. |3.4e+ /- 38 (7 digits)

C++ Tutorid: 1.2, Variables. Data types. Constants.

double precision

double 8 floating point number.

1.7e + /- 308 (15 digits)

long double precision

longdouble|10 |, ng point number.

1.2e +/-4932 (19 digits)

Boolean value. It can
take one of two values:
trueorfal se
NOTE: thisisatype
recently added by the
bool 1 ANSI-C++ standard. trueorfal se
Not all compilers
support it. Consult
section bool type for
compatibility
information.

Wide character. It is
designed as atype to
store international
characters of atwo-byte
wchar _t 2 character set. NOTE: wide characters
thisis atype recently
added by the ANSI-C++
standard. Not all
compilers support it.

* Vaues of columns Bytes and Range may vary depending on your system. The values
included here are the most commonly accepted and used by almost all compilers.

In addition to these fundamental data types there also exist the pointers and the void
parameter type specification, that we will see later.

Declaration of variables

In order to use avariable in C++, we must first declare it specifying which of the data types
above we want it to be. The syntax to declare a new variable is to write the data type
specifier that wewant (likei nt,short,fl oat ...) followed by avalid variable identifier.
For example:

http://ww.cplusplus.com/doc/tutorial /tut1-2.html (4 of 13)14-04-2004 18:35:26

http://www.cplusplus.com/doc/ansi/bool.html

C++ Tutorid: 1.2, Variables. Data types. Constants.

I nt a;
fl oat mynunber;

Arevalid declarations of variables. The first one declares avariable of typei nt with the
identifier a. The second one declares avariable of typef | oat with the identifier
mynunber . Once declared, variables a and mynunber can be used within the rest of their
scope in the program.

If you need to declare several variables of the same type and you want to save some writing
work you can declare all of them in the same line separating the identifiers with commas.
For example:

int a, b, c;

declares three variables (a, b and c) of typei nt , and has exactly the same meaning as if
we had written:

int a;
i nt b;

int c;

Integer datatypes (char , short, | ong andi nt) can be signed or unsigned according to
the range of numbers that we need to represent. Thus to specify an integer data type we do it
by putting the keyword si gned or unsi gned before the data type itself. For example:

unsi gned short Nunmber O Sons;
signed i nt MyAccount Bal ance;

By default, if we do not specify si gned or unsi gned it will be assumed that the typeis
si gned, therefore in the second declaration we could have written:

I nt MyAccount Bal ance;

with exactly the same meaning and since this is the most usual way, few source codes
include the keyword signed as part of a compound type name.

The only exception to thisruleisthe char type that exists by itself and it is considered a
diferent typethan si gned char andunsi gned char.

http://ww.cplusplus.com/doc/tutorial /tut1-2.html (5 of 13)14-04-2004 18:35:26

C++ Tutorid: 1.2, Variables. Data types. Constants.

Findly, si gned and unsi gned may also be used as a simple types, meaning the same as
si gned i nt andunsi gned i nt respectivelly. The following two declarations are
equivalent:

unsi gned MyBirt hYear;
unsi gned int MyBirthYear;

To see what variable declaration looks like in action in a program, we are going to show the
C++ code of the example about your mental memory proposed at the beginning of this
section:

/'l operating with variabl es 4
#i ncl ude <i ostream h>

int main ()

{
/| declaring vari abl es:
int a, b;
int result;

/'l process:

a =5;
b = 2;
a=a+ 1;

result = a - b;

/1l print out the result:
cout << result;

// termnate the program
return O;

Do not worry if something about the variable declarations |looks a bit strange to you. You
will seetherest in detail in coming sections.

http://www.cplusplus.com/doc/tutorial/tut1-2.html (6 of 13)14-04-2004 18:35:26

C++ Tutorid: 1.2, Variables. Data types. Constants.

Initialization of variables

When declaring alocal variable, its value is undetermined by default. But you may want a
variable to store a concrete value the moment that it is declared. In order to do that, you have
to append an equal sign followed by the value wanted to the variable declaration:

type identifier = initial_value ;

For example, if we want to declareani nt variable called a that contains the value O at the
moment in which it is declared, we could write:

int a = 0;

Additionally to thisway of initializating variables (known as c-like), C++ has added a new
way to initialize avariable: by enclosing the initial value between parenthesis () :

type identifier (initial_value) ;
For example:
int a (0);

Both ways are valid and equivalent in C++.

Scope of variables

- | Animportant difference between the C and C++ languages, is that in C++ we
can declare variables anywhere in the source code, even between two
executable sentences, and not only at the beginning of a block of instructions, like happens
inC.

[T} [HI;J All the variables that we are going to use must have been previously declared.

Anyway, it is recommended under some circumstances to follow the indications of the C
language when declaring variables, since it can be useful when debugging a program to have
all the declarations grouped together. Therefore, the traditional C-like way to declare
variablesisto include their declaration at the beginning of each function (for local variables)
or directly in the body of the program outside any function (for global variables).

http://ww.cplusplus.com/doc/tutorial /tut1-2.html (7 of 13)14-04-2004 18:35:26

C++ Tutorid: 1.2, Variables. Data types. Constants.

Global
#include <iostream.h= variables can
- be referred to
int Integer; anywhere in the
char aﬂh;:u:anter ¢ Clobal variables COde, within any
char string [20]; .
) P Gy _ function,
unsigned in er Ons ; whenever it is
. after its
main () .
{ declaration.
unsigned short Age;
float AHumber, AnotherOne Local variables The Scope of the
local variables
cout << "Enter your age:" islimited to the
cin => Due; Instructions code level in
. which they are
} declared. If they
are declared at

the beginning of
afunction (likein mai n) their scopeisthe whole mai n function. In the example above,
this means that if another function existed in addition to mai n() , the local variables
declared in mai n could not be used in the other function and vice versa.

In C++, the scope of alocal variableis given by the block in which it isdeclared (ablock is
agroup of instructions grouped together within curly brackets{} signs). If it is declared
within afunction it will be a variable with function scope, if it is declared in aloop its scope
will be only the loop, etc...

In addition to local and global scopes there exists external scope, that causes a variable to
be visible not only in the same source file but in all other files that will be linked together.

Constants: Literals.

A constant is any expression that has a fixed value. They can be divided in Integer Numbers,
Floating-Point Numbers, Characters and Strings.

| nteger Numbers

1776

http://ww.cplusplus.com/doc/tutorial /tut1-2.html (8 of 13)14-04-2004 18:35:26

C++ Tutorid: 1.2, Variables. Data types. Constants.

707
-273

they are numerical constants that identify integer decimal numbers. Notice that to express a
numerical constant we do not need to write quotes (") nor any special character. Thereis no
doubt that it is a constant: whenever we write 1776 in aprogram we will be referring to the
value 1776.

In addition to decimal numbers (those that all of us already know) C++ allows the use as
literal constants of octal numbers (base 8) and hexadecimal numbers (base 16). If we want to
express an octal number we must precede it with a0 character (zero character). And to
express a hexadecimal number we have to precede it with the characters Ox (zero, x). For
example, the following literal constants are all equivalent to each other:

75 /] deci nal
0113 /] octal
Ox4b /| hexadeci nal

All of them represent the same number: 75 (seventy five) expressed as a radix-10 number,
octal and hexdecimal, respectively.

[Note: Y ou can find more information on hexadecimal and octal representations in the
document Numerical radixes]

Floating Point Numbers

They express numbers with decimals and/or exponents. They can include a decimal point, an
e character (that expresses "by ten at the Xth height”, where X is the following integer
value) or both.

3. 14159 /] 3.14159
6. 02e23 /] 6.02 x 10%°

1. 6e-19 /] 1.6 x 10°°
3.0 /] 3.0

these are four valid numbers with decimals expressed in C++. The first number is PI, the
second one is the number of Avogadro, the third is the electric charge of an electron (an
extremely small number) -all of them approximated- and the last one is the number 3
expressed as afloating point numeric literal.

http://ww.cplusplus.com/doc/tutorial /tut1-2.html (9 of 13)14-04-2004 18:35:26

http://www.cplusplus.com/doc/papers/hex.html

C++ Tutorid: 1.2, Variables. Data types. Constants.

Charactersand strings
There also exist non-numerical constants, like:

"Hell o worl d"
"How do you do?"

Thefirst two expressions represent single characters, and the following two represent strings
of several characters. Notice that to represent a single character we enclose it between single
quotes (') and to express a string of more than one character we enclose them between
double quotes ().

When writing both single characters and strings of charactersin a constant way, it is
necessary to put the quotation marks to distinguish them from possible variable identifiers or
reserved words. Notice this:

X

X
x refersto variable x, whereas' x' refersto the character constant ' x' .

Character constants and string constants have certain peculiarities, like the escape codes.
These are special characters that cannot be expressed otherwise in the sourcecode of a
program, like nemine (\ n) or tab (\ t). All of them are preceded by an inverted slash (\).
Here you have alist of such escape codes:

\n newline

\r carriage return
\ 't tabulation
\v vertical tabulation

\'b |backspace

\ f page feed

\a |aert (beep)

\! single quotes (*)

http://www.cplusplus.com/doc/tutorial /tut1-2.html (10 of 13)14-04-2004 18:35:26

C++ Tutorid: 1.2, Variables. Data types. Constants.

\ " double quotes (")
\'? |question (?)
\\ inverted slash (\)

For example:

\
N\t

"Left \'t R ght”
"one\ nt wo\ nt hr ee"

Additionally, you can express any character by its numerical ASCII code by writing an
inverted slash bar character (\) followed by the ASCII code expressed as an octal (radix-8)
or hexadecimal (radix-16) number. In the first case (octal) the number must immediately
follow the inverted slash (for example\ 23 or \ 40), in the second case (hexacedimal), you
must put an x character before the number (for example\ x20 or \ x4A).

[Consult the document ASCII Code for more information about this type of escape code].

coonstants of string of characters can be extended by more than asingle code line if each
code line ends with an inverted slash (\):

"string expressed in \
two |ines”

Y ou can also concatenate several string constants separating them by one or several
blankspaces, tabulators, newline or any other valid blank character:

"we fornl "a single" "string" "of characters”

Defined constants (#def i ne)

Y ou can define your own names for constants that you use quite often without having to
resort to variables, simply by using the#def i ne preprocessor directive. Thisisits format:

#define i1 dentifier val ue

For example:

http://www.cplusplus.com/doc/tutorial /tut1-2.html (11 of 13)14-04-2004 18:35:26

http://www.cplusplus.com/doc/papers/ascii.html

C++ Tutorid: 1.2, Variables. Data types. Constants.

#define Pl 3.14159265
#defi ne NEWLINE '\ n'
#defi ne WDTH 100

they define three new constants. Once they are declared, you are able to use them in the rest
of the code as any if they were any other constant, for example:

circle =2 * Pl * r;
cout << NEWLI NE;

In fact the only thing that the compiler does when it finds#def i ne directivesisto replace
literally any occurrence of the them (in the previous example, Pl , NEWLI NE or W DTH) by
the code to which they have been defined (3. 14159265,"' \ n' and 100, respectively).
For thisreason, #def i ne constants are considered macro constants.

The#def i ne directive is hot acode instruction, it is adirective for the preprocessor,
therefore it assumes the whole line as the directive and does not require a semicolon (;) at
the end of it. If you include a semicolon character (;) at the end, it will also be added when
the preprocessor will substitute any occurence of the defined constant within the body of the
program.

declared constants (const)

With the const prefix you can declare constants with a specific type exactly as you would
do with avariable:

const int width = 100:;
const char tab = "\t';
const zip = 12440,

In case that the type was not specified (asin the last example) the compiler assumesthat it is
typei nt .

© The C++ Resources Network, 2000-2001 - All rights reserved

http://www.cplusplus.com/doc/tutorial /tut1-2.html (12 of 13)14-04-2004 18:35:26

C++ Tutorid: 1.2, Variables. Data types. Constants.

Previous:
1-1. Structure of a C++ program. in

’M

X 1-3. Operators.

1
2

http://www.cplusplus.com/doc/tutorial /tut1-2.html (13 of 13)14-04-2004 18:35:26

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ tutorial: 1.3, Operators.

Section 1.3 Epfus;_rfus
lang
Operators. /enguage

Once we know of the existence of variables and constants we can begin to operate with
them. For that purpose, C++ provides the operators, which in this language are a set of
keywords and signs that are not part of the alphabet but are availablein all keyboards. It is
important to know them since they are the basis of the C++ language.

Y ou do not have to memorize all the content of this page, the details are only provided to
serve as alater reference in case you need it.

Assignation (=).
The assignation operator servesto assign avalue to avariable.

a =5;

assigns the integer value 5to variable a. The part at the |eft of the =operator is known as
Ivalue(left value) and the right one as rvalue(right value). valuemust always be a variable
whereas the right side can be either a constant, a variable, the result of an operation or any
combination of them.

It is necessary to emphasize that the assignation operation always takes place from right to
left and never at the inverse.

a = b;

assignsto variable a(lvalue) the value that contains variable b(rvalue) independently of the
value that was stored in aat that moment. Consider aso that we are only assigning the
valueof bto aand that alater change of bwould not affect the new value of a.

For example, if we take this code (with the evolution of the variables' content in green

color):
int a, b; /[l a:? b:?
a = 10:; /1l a:10 b:?
b = 4; /] a:10 b:4
a = b; [l a: 4 b:4

http://ww.cplusplus.com/doc/tutorial /tut1-3.html (1 of 10)14-04-2004 18:35:39

C++ tutorial: 1.3, Operators.

b = 7; Il a:4 b:7
will give usthe result that the value contained in ais 4and the one contained in bis 7. The
final modification of bhas not affected a, although before we have declareda = b; (right-
to-left rule).

A property that C++ has over other programming languages is that the assignation operation
can be used as the rvalue (or part of an rvalue) for another assignation. For example:

a=2+ (b =25);
Is equivalent to:

b
a

2 + b;

that means: first assign 5to variable band then assign to athe value 2plus the result of the
previous assignation of b(that is5), leaving awith afinal value of 7. Thus, the following
expression isalso valid in C++:

assigns 5 to the three variables a, band c.

Arithmeticoperators(+, -, *, [/, %)
The five arithmetical operations supported by the language are:

+ addition

- subtraction
* multiplication
[division

% module

Operations of addition, subtraction, multiplication and division should not suppose an
understanding challenge for you since they literally correspond with their respective
mathematical operators.

http://ww.cplusplus.com/doc/tutorial /tut1-3.html (2 of 10)14-04-2004 18:35:39

C++ tutorial: 1.3, Operators.

The only one that may not be known by you is the module, specified with the percentage
sign (%). Module is the operation that gives the remainder of a division of two integer
values. For example, if wewritea = 11 % 3; , thevariable a will contain 2 asthe result
since 2 isthe remainder from dividing 11 between 3.

Compound assignation operators(+=, -=, *=, [= %, >>= <<=, &=, "=,

| =)
A feature of assignation in C++ that contributes to its fame of sparing language when
writing are the compound assignation operators (+=, - =, * = and / = among others),
which allow to modify the value of a variable with one of the basic operators:

val ue += increase; isequivaenttoval ue = val ue +

| ncrease,

a -= 5; isequivaenttoa = a - 5;

a /= b; isequivadenttoa = a / b;

price *= units + 1; isequivaenttoprice = price * (units
+ 1);

and the same for all other operations.

| ncrease and decr ease.
Another example of saving language when writing code are the increase operator (+
+) and the decrease operator (- -). They increase or reduce by 1 the value stored in a
variable. They are equivalent to +=1 and to - =1, respectively. Thus:

a++:

a+=1;
a=a+tl;

are al equivalent in its functionality: the three increase by 1 the value of a.

Its existence is because in the first C compilers the three previous expressions produced
different executable code according to which one was used. Nowadays this type of code
optimization is generally done automatically by the compiler.

A characteristic of this operator isthat it can be used both as a prefix or as a suffix. That
means it can be written before the variable identifier (++a) or after (a++). Although in
simple expressions like a++ or ++a they have exactly the same meaning, in other operations
in which the result of the increase or decrease operation is evaluated as another expression

http://ww.cplusplus.com/doc/tutorial /tut1-3.html (3 of 10)14-04-2004 18:35:39

C++ tutorial: 1.3, Operators.

they may have an important difference in their meaning: In case that the increase operator is
used as a prefix (++a) the value isincreased before the expression is evaluated and therefore
the increased value is considered in the expression; in case that it is used as a suffix (a++)
the value stored in a isincreased after being evaluated and therefore the value stored before
the increase operation is evaluated in the expression. Notice the difference:

Example 1 Example 2

B=3; B=3;
A=++B; A=B++;

[l Ais 4, [l Ais 3,
Bis 4 Bis 4

In Example 1, Bisincreased before its value is copied to A. While in Example 2, the value of
Bis copied to Aand Bis later increased.

Relational operators(==, =, >, <, >= <=)
In order to evaluate a comparison between two expressions we can use the Relational
operators. As specified by the ANSI-C++ standard, the result of arelational operation
iIsabool valuethat canonly bet r ue or f al se, according to the result of the
comparison.

We may want to compare two expressions, for example, to know if they are equal or
If oneis greater than the other. Hereisalist of the relational operators that can be
performed in C++:

== Equd

I = Different

> Greater than

< Lessthan

>= Greater or equal than
<= Lessor equal than

Here you have some examples:

(7 == 5) wouldreturnf al se.
(5 > 4) wouldreturntrue.

http://ww.cplusplus.com/doc/tutorial /tut1-3.html (4 of 10)14-04-2004 18:35:39

C++ tutorial: 1.3, Operators.

(3 !'=2) wouldreturnt r ue.
(6 >= 6) wouldreturntr ue.
(5 < 5) wouldreturnf al se.

of course, instead of using only numberic constants, we can use any valid expression,
including variables. Suppose that a=2, b=3and c=6,

(a == 5) would returnf al se.

(a*b >= c) wouldreturntrue since(2*3 >= 6) isit.
(b+4 > a*c) wouldreturnfal se since(3+4 > 2*6) isit.
((b=2) == a) wouldreturntr ue.

Be aware. Operator =(one equal sign) is not the same as operator ==(two equal signs), the
first is an assignation operator (assigns the right side of the expression to the variable in the
left) and the other (==) isarelational operator of equality that compares whether both
expressions in the two sides of the operator are equal to each other. Thus, in the last
expression ((b=2) == a), wefirst assigned the value 2to band then we compared it to a,
that also storesvalue 2, so the result of the operationist r ue.

C++ | well asin the C language, the relational operations did not return abool value

true orf al se, rather they returned ani nt asresult withavalueof O in
order to represent " false" and a value different from O (generally 1) to represent
"true" . For more information, or if your compiler does not support the bool type,
consult the section bool type.

AHEI\ In many compilers previous to the publication of the ANSI-C++ standard, as

Logicoperators(!, && ||).
Operator ! is equivalent to boolean operation NOT, it has only one operand, located at
its right, and the only thing that it doesisto invert the value of it, producing f al se if
itsoperandist rue andt r ue if itsoperand isf al se. Itislike saying that it returns
the opposite result of evaluating its operand. For example:

returnsf al se because the expression at itsright (5 == 5)
would bet r ue.

1'(6 <= 4) returnstrue because (6 <= 4) would bef al se.
I'true returnsf al se.

1 (5 == 5)

http://ww.cplusplus.com/doc/tutorial /tut1-3.html (5 of 10)14-04-2004 18:35:39

http://www.cplusplus.com/doc/ansi/bool.html

C++ tutorial: 1.3, Operators.

I fal se returnst r ue.

L ogic operators &&and | | are used when evaluating two expressions to obtain a single resullt.
They correspond with boolean logic operations ANDand ORrespectively. The result of them
depends on the relation between its two operands:

FIE | =erail result [result
Operand Operand a & bla [| b
a b
true true true true
true false false true
false true false true
false false false false
For example:
((5 =05) & (3 > 6)) returnsfalse(true && fal se).
((5==05)|] (3 >6))retunstrue(true || false).

Conditional operator (?).
The conditional operator evaluates an expression and returns a different value
according to the evaluated expression, depending on whether it istrue or false. Its
format is:

condition ? resultl : result?2

if condi ti onist r uethe expression will returnr esul t 1, if not it will returnr esul t 2.

7==5 ? 4 . 3 returns 3 since 7 is not equal to 5.
7==5+2 ? 4 . 3 returns4since7isequal to 5+2.

53 ? a: b returns a, since 5 is greater than 3.
a>b ? a: b returns the greater one, a or b.

Bitwise Operators(&, |, *, ~, <<, >>).

Bitwise operators modify variables considering the bits that represent the values that

_~

http://ww.cplusplus.com/doc/tutorial /tut1-3.html (6 of 10)14-04-2004 18:35:39

C++ tutorial: 1.3, Operators.

they store, that means, their binary representation.

op |[asm |Description

& |AND |Logical AND

| |OR |Logica OR

A IXOR |Logical exclusive OR

~ [NOT |Complement to one (bit inversion)
<< |SHL |[Shift Left

>>|SHR |Shift Right

For more information about binary numbers and bitwise operations, consult Boolean logic.

Explicit type casting operators
Type casting operators allows you to convert a datum of a given type to another.
There are several waysto do thisin C++, the most popular one, compatible with the
C language is to precede the expression to be converted by the new type enclosed
between parenthesis () :

int i;
float f = 3. 14;

i = (int) f;

The previous code converts the float number 3. 14to an integer value (3). Here, the type
casting operator was (i nt) . Another way to do the same thing in C++ isusing the
constructor form: preceding the expression to be converted by the type and enclosing the
expressionbetween parenthesis:

i =int (f);
Both ways of type casting are valid in C++. And additionally ANSI-C++ added new type

casting operators more specific for object oriented programming (Section 5.4, Advanced
class type-casting).

sizeof()
This operator accepts one parameter, that can be either avariable type or avariable
itself and returns the size in bytes of that type or object:

http://ww.cplusplus.com/doc/tutorial /tut1-3.html (7 of 10)14-04-2004 18:35:39

http://www.cplusplus.com/doc/papers/boolean.html

C++ tutorial: 1.3, Operators.

a = sizeof (char);
Thiswill return 1to abecause char is aone byte long type.
The value returned by si zeof isaconstant, so it is always determined before program
execution.
Other operators
Later in the tutorial we will see afew more operators, like the ones referring to

pointers or the specifics for object-oriented programming. Each oneistreated inits
respective section.

Priority of operators

When making complex expressions with several operands, we may have some doubts about
which operand is evaluated first and which later. For example, in this expression:

a=5+7 %2
we may doubt if it really means:

a
a

=5+ (7 % 2) withresult 6, or

= (5 + 7) % 2 withresult 0

The correct answer isthe first of the two expressions, with aresult of 6. Thereisan
established order with the priority of each operator, and not only the arithmetic ones (those
whose preference we may already know from mathematics) but for al the operators which
can appear in C++. From greatest to lowest priority, the priority order is as follows:

Priority |Operator Description Associativity
1 - scope L eft
. et

++ - - Increment/decrement

~ Complement to one (bitwise)

! unary NOT

http://ww.cplusplus.com/doc/tutorial /tut1-3.html (8 of 10)14-04-2004 18:35:39

C++ tutorial: 1.3, Operators.

3 g Reference and Dereference [Right
(pointers)

(type) Type casting

+ - Unary less sign
4 * [% arithmetical operations Left
5 + - arithmetical operations Left
6 << >> bit shifting (bitwise) Left
7 < <= > >= Relational operators L eft
8 == I= Relational operators Left
9 & N | Bitwise operators L eft
10 && | | L ogic operators L eft
11 ?: Conditional Right

= 4= -= *= [=
12 i/i: ce= = A Assignation Right
13 : Comma, Separator Left

Associativity defines -in the case that there are several operators of the same priority level-
which one must be evaluated first, the rightmost one or the leftmost one.

All these precedence levels for operators can be manipulated or become more legible using
parenthesissigns (and) , asin this example:

a=5+7 %2;
might be written as:

a
a

5+ (7 %2); or
(5 +7) %2

according to the operation that we wanted to perform.

So if you want to write a complicated expression and you are not sure of the precedence

http://ww.cplusplus.com/doc/tutorial /tut1-3.html (9 of 10)14-04-2004 18:35:39

C++ tutorial: 1.3, Operators.

levels, always include parenthesis. It will probably also be more legible code.

© The C++ Resources Network, 2001 - All rights reserved

Previous: Next:
1-2. Variables. Data types. 1-4. Communication through
Constants. console.

1
2

index

http://www.cplusplus.com/doc/tutorial /tut1-3.html (10 of 10)14-04-2004 18:35:39

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutoria: 1.4, Communication through console.

Section 1.4 cpfusggyms
I i Alangnage
Communication through console. totorial

The console is the basic interface of computers, normally it is the set composed of the
keyboard and the screen. The keyboard is generally the standard input device and the screen
the standard output device.

In the iostream C++ library, standard input and output operations for a program are
supported by two data streams: ci n for input and cout for output. Additionally, cer r and
cl og have also been implemented - these are two output streams specially designed to show
error messages. They can be redirected to the standard output or to alog file.

Therefore cout (the standard output stream) is normally directed to the screen and ci n (the
standard input stream) is normally assigned to the keyboard.

By handling these two streams you will be able to interact with the user in your programs
since you will be able to show messages on the screen and receive hig/her input from the
keyboard.

Output (cout)

The cout stream is used in conjunction with the overloaded operator << (apair of "less
than" signs).

cout << "Qutput sentence"; // prints Qutput sentence

on screen
cout << 120; [l prints nunber 120 on
screen

cout << Xx; /1l prints the content of

vari abl e x on screen

The << operator is known as insertion operator since it inserts the data that followsit into
the stream that precedesit. In the examples above it inserted the constant string Qut put
sent ence, the numerical constant 120 and the variable x into the output stream cout .
Notice that the first of the two sentences is enclosed between double quotes (") becauseit is
astring of characters. Whenever we want to use constant strings of characters we must
enclose them between double quotes (") so that they can be clearly distinguished from

http://ww.cplusplus.com/doc/tutorial /tutl-4.html (1 of 5)14-04-2004 18:35:48

C++ Tutoria: 1.4, Communication through console.

variables. For example, these two sentences are very different:

cout << "Hello",; /1l prints Hello on screen
cout << Hell o; /'l prints the content of Hello
vari abl e on screen

The insertion operator (<<) may be used more than once in a same sentence:
cout << "Hello, " << "I am" << "a C++ sentence”;

thislast sentence would print themessageHel | o, | am a C++ sent ence onthe
screen. The utility of repeating the insertion operator (<<) is demonstrated when we want to
print out a combination of variables and constants or more than one variable:

cout << "Hello, I am" << age << " years old and ny
zi pcode is " << zipcode;

If we supose that variable age contains the number 24 and the variable zi pcode contains
90064 the output of the previous sentence would be:

Hello, | am 24 years old and ny zipcode is 90064

It isimportant to notice that cout does not add aline break after its output unless we
explicitly indicate it, therefore, the following sentences:

cout << "This is a sentence.";
cout << "This is another sentence.";

will be shown followed in screen:
This is a sentence. This i s anot her sentence.

even if we have written them in two different callsto cout . So, in order to perform aline
break on output we must explicitly order it by inserting a new-line character, that in C++ can
be written as\ n:

cout << "First sentence.\n ";
cout << "Second sentence.\nThird sentence.";

http://www.cplusplus.com/doc/tutorial /tutl-4.html (2 of 5)14-04-2004 18:35:48

C++ Tutoria: 1.4, Communication through console.

produces the following output:

Fi rst sentence.
Second sent ence.
Third sentence.

Additionally, to add a new-line, you may also use the endl manipulator. For example:

cout << "First sentence." << endl;
cout << "Second sentence." << endl;

would print out:

Fi rst sentence.
Second sent ence.

Theendl manipulator has a special behavior when it is used with buffered streams: they are
flushed. But anyway cout isunbuffered by default.

Y ou may use either the\ n escape character or the endl manipulator in order to specify a
line jump to cout . Notice the differences of use shown earlier.

Input (ci n).

Handling the standard input in C++ is done by applying the overloaded operator of
extraction (>>) on theci n stream. This must be followed by the variable that will store the
datathat is going to be read. For example:

I nt age;
cin >> age;

declaresthe variableage asani nt and then waits for an input from ci n (keyborad) in
order to storeit in thisinteger variable.

ci n can only process the input from the keyboard once the RETURN key has been pressed.
Therefore, even if you request a single character ci n will not process the input until the user
presses RETURN once the character has been introduced.

http://www.cplusplus.com/doc/tutorial /tutl-4.html (3 of 5)14-04-2004 18:35:48

C++ Tutoria: 1.4, Communication through console.

Y ou must always consider the type of the variable that you are using as a container with ci n
extraction. If you request an integer you will get an integer, if you request a character you
will get acharacter and if you request a string of characters you will get a string of

characters.
Il 1/0 exanple Pl ease
#i ncl ude <i ostream h> enter an
I nt eger

int main () val ue: 702

{ The val ue
int i1; you
cout << "Please enter an integer value: "; entered
cin >> i; Is 702
cout << "The value you entered is " << i; and its
cout << " and its double is " << i*2 << ".\n"; double is
return O; 1404.

}

The user of aprogram may be one of the reasons that provoke errors even in the simplest
programs that use ci n (like the one we have just seen). Since if you request an integer value
and the user introduces a name (which isastring of characters), the result may cause your
program to misoperate since it is not what we were expecting from the user. So when you
use the data input provided by ci n you will have to trust that the user of your program will
be totally cooperative and that he will not introduce his name when an interger valueis
requested. Farther ahead, when we will see how to use strings of characters we will see
possible solutions for the errors that can be caused by this type of user inpuit.

You can also use ci n to request more than one datum input from the user:
cin >> a >> b;
IS equivalent to:

cin >> a;
cin >> b;

http://ww.cplusplus.com/doc/tutorial /tutl-4.html (4 of 5)14-04-2004 18:35:48

C++ Tutoria: 1.4, Communication through console.

In both cases the user must give two data, one for variable a and another for variable b that
may be separated by any valid blank separator: a space, atab character or a newline.

© The C++ Resources Network, 2000-2001 - All rights reserved

’M

X 2-1. Control structures.

Previous:
1-3. Operators. in

1
2

http://ww.cplusplus.com/doc/tutorial /tut1-4.html (5 of 5)14-04-2004 18:35:48

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 2.1, Control Structures.

Section 2.1 cpfusggyms
lang
Control Structures. /EANgUARS

A program is usually not limited to alinear sequence of instructions. During its process it may
bifurcate, repeat code or take decisions. For that purpose, C++ provides control structures that serve
to specify what has to be done to perform our program.

With the introduction of control sequences we are going to have to introduce a new concept: the
block of instructions. A block of instructionsis agroup of instructions separated by semicolons (;)
but grouped in ablock delimited by curly bracket signs: { and } .

Most of the control structures that we will see in this section allow ageneric st at enent asa
parameter, this refers to either a single instruction or ablock of instructions, as we want. If we want
the statement to be a single instruction we do not need to enclose it between curly-brackets ({ }). If
we want the statement to be more than a single instruction we must enclose them between curly
brackets ({ }) forming ablock of instructions.

Conditional structure: if and else

It isused to execute an instruction or block of instructions only if a condition isfulfilled. Itsformis:
if (condition) statenent

where condi t i on isthe expression that is being evaluated. If this conditionist r ue, st at enent

isexecuted. If itisfalse, st at ement isignored (not executed) and the program continues on the

next instruction after the conditional structure.

For example, the following code fragment printsout x i s 100 only if the value stored in variable
X isindeed 100:

if (x == 100)
cout << "x is 100";:

If we want more than a single instruction to be executed in case that condi ti on ist r ue we can
specify ablock of instructions using curly brackets{ }:

if (x == 100)
{ "

cout << "X is ";
cout << X;

http://www.cplusplus.com/doc/tutorial/tut2-1.html (1 of 10)14-04-2004 18:36:00

C++ Tutorial: 2.1, Control Structures.

}

We can additionally specify what we want that happens if the condition is not fulfilled by using the
keyword else. Itsform used in conjunction withi f is:

If (condition) statenentl el se statenent?2

For example:
if (x == 100)
cout << "x is 100";
el se

cout << "x is not 100";

printsout onthescreenx i s 100 if indeed x isworth 100, but if it isnot -and only if not- it prints
outx is not 100.

Theif + else structures can be concatenated with the intention of verifying arange of values. The
following example shows its use telling if the present value stored in X is positive, negative or none
of the previous, that isto say, equal to zero.

if (x > 0)

cout << "x is positive";
else if (x < 0)

cout << "x is negative";
el se

cout << "x is 0";

Remember that in case we want more than a single instruction to be executed, we must group them in
ablock of instructions by using curly brackets{ }.

Repetitive structures or loops

Loops have as objective to repeat a statement a certain number of times or while a condition is
fulfilled.

The while loop.
Itsformat is:

whi | e (expression) statenent

http://www.cplusplus.com/doc/tutorial/tut2-1.html (2 of 10)14-04-2004 18:36:00

C++ Tutorial: 2.1, Control Structures.

and its function issimply to repeat st at enent whileexpr essi onistrue.

For example, we are going to make a program to count down using a while loop:

/'l custom countdown using while Enter the

#i ncl ude <i ostream h> starting nunber

int main () > 8

{ 8, 7, 6, 5, 4,
int n; 3, 2, 1, FIRE
cout << "Enter the starting nunber > *";
cin >> n;

while (n>0) {
cout << n << ", ";
__n;
}
cout << "FIRE!'";
return O;

When the program starts the user is prompted to insert a starting number for the countdown. Then the
whi | e loop begins, if the value entered by the user fulfills the condition n>0 (that n be greater than
0), the block of instructions that follows will execute an indefinite number of times while the
condition (n>0) remainstrue.

All the process in the program above can be interpreted according to the following script: beginning
inmai n:

o 1. User assignsavaueto n.
o 2. Thewhileinstruction checks if (n>0) . At this point there are two possibilities:
« true: execute statement (step 3,)
« false: jump statement. The program followsin step 5. .
o 3. Execute statement:
cout << n << ", ",
- - n;
(prints out n on screen and decreases n by 1).
o 4. End of block. Return Automatically to step 2.
o 5. Continue the program after the block: print out FI RE! and end of program.

We must consider that the loop has to end at some point, therefore, within the block of instructions
(loop'sst at enment) we must provide some method that forcescondi t i on to become false at

http://www.cplusplus.com/doc/tutorial/tut2-1.html (3 of 10)14-04-2004 18:36:00

C++ Tutorial: 2.1, Control Structures.

some moment, otherwise the loop will continue looping forever. In this case we have included - - n;
that causesthe condi t i on to becomef al se after some loop repetitions: when n becomes 0, that
iswhere our countdown ends.

Of coursethisis such asimple action for our computer that the whole countdown is performed
instantly without practical delay between numbers.

The do-while loop.
Format:

do statenment while (condition);

Its functionality is exactly the same as the whileloop except that condi t i onin the do-whileis
evaluated afterthe execution of st at enent instead of before, granting at least one execution of

st at emrent even if condi t i onisnever fulfilled. For example, the following program echoes any
number you enter until you enter O.

/'l nunber echoer Enter nunber (O
#i ncl ude <i ostream h> to end): 12345
int main () You entered:
{ 12345
unsi gned | ong n; Enter nunber (O
do { to end): 160277
cout << "Enter nunber (0 to end): "; You entered:
cin >> n; 160277
cout << "You entered: " << n << "\n"; Enter nunber (O
} while (n !'=0); to end): O
return O; You entered: O
}

The do-while loop is usually used when the condition that has to determine its end is determined
within the loop statement, like in the previous case, where the user input within the block of
intructions is what determines the end of the loop. If you never enter the O value in the previous
example the loop will never end.

Thefor loop.
Itsformat is:

for (initialization; condition; increase) statenent,

http://www.cplusplus.com/doc/tutorial/tut2-1.html (4 of 10)14-04-2004 18:36:00

C++ Tutorial: 2.1, Control Structures.

and its main function isto repeat st at emrent whilecondi t i onremainstrue, like the whileloop.
But in addition, f or provides placesto specify ani ni ti al i zat i oninstruction and an

I ncr easeinstruction. So thisloop is specially designed to perform arepetitive action with a
counter.

It works the following way:

l1,initializationisexecuted. Generaly itisan initial value setting for a counter
varible. Thisis executed only once.

2, condi ti on ischecked, if itist r ue the loop continues, otherwise the loop
finishesand st at enent is skipped.

3, st at enent isexecuted. Asusual, it can be either a single instruction or ablock of
instructions enclosed within curly brackets{ }.

4, finally, whatever is specified inthei ncr ease field is executed and the loop gets
back to step 2.

Here is an example of countdown using aforloop.

/1l countdown using a for loop 10, 9, 8, 7, 6, 5 4, 3, 2,
#i ncl ude <i ostream h> 1, FIRE!
int main ()
{
for (int n=10; n>0; n--) {
cout << n << ", "

}

cout << "FIRE!'";
return O;

Theinitializationandi ncrease fieldsare optional. They can be avoided but not the
semicolon signs among them. For example we could write: f or (; n<10;) if we want to specify
noinitializationandnoincrease;orfor (;n<10;n++) if wewant toincludean

I ncrease fieldbutnotani nitializati on.

Optionally, using the comma operator (,) we can specify more than one instruction in any of the
fieldsincluded in af or loop, likeini ni ti al i zati on, for example. The comma operator (,) is
an instruction separator, it serves to separate more than one instruction where only one instruction is
generally expected. For example, suppose that we wanted to intialize more than one variable in our
loop:

http://www.cplusplus.com/doc/tutorial/tut2-1.html (5 of 10)14-04-2004 18:36:00

C++ Tutorial: 2.1, Control Structures.

for (n=0, i=100 ; nl=i ; n++, i--)

{
}

[/ what ever here...

Thisloop will execute 50 timesif neither nnor i are modified within the loop:

w ITnitiglization

- Condition

|
for (|n=0, i=100 n'=i n++, i-—-|I

" "
L L

ITncresse

nstartswith Oand i with 100, the conditionis(n! =i) (that nbe not equal to i). Beacuse nis
increased by one and i decreased by one, the loop's condition will becomef al seafter the 50th loop,
when both nand i will be equal to 50.

Bifurcation of control and jumps.

The break instruction.
Using break we can leave aloop even if the condition for its end is not fulfilled. It can be
used to end an infinite loop, or to force it to end before its natural end. For example, we are
going to stop the count down before it naturally finishes (an engine failure maybe):

/'l break | oop exanple 10, 9, 8, 7, 6,
#i ncl ude <i ostream h> 5 4, 3,
int main () count down
{ abort ed!
int n;

for (n=10; n>0; n--) {
cout << n << ", ";
I f (n==3)
{

cout << "countdown aborted!";
br eak;

}
}

return O;

}

The continue instruction.

http://www.cplusplus.com/doc/tutorial/tut2-1.html (6 of 10)14-04-2004 18:36:00

C++ Tutorial: 2.1, Control Structures.

The continue instruction causes the program to skip the rest of the loop in the present iteration
asif theend of the st at enent block would have been reached, causing it to jump to the
following iteration. For example, we are going to skip the number 5 in our countdown:

/'l break | oop exanple 10, 9, 8, 7, 6, 4, 3,
#i ncl ude <i ostream h> 2, 1, FIRE

int main ()

{

for (int n=10; n>0; n--) {
i f (n==5) continue;

cout << n << ", :

}
cout << "FIRE!'";

return O;

}

The goto instruction.
It allows making an absolute jump to another point in the program. Y ou should use this
feature carefully since its execution ignores any type of nesting limitation.

The destination point isidentified by alabel, which is then used as an argument for the goto
instruction. A label is made of avalid identifier followed by acolon (:).

Thisinstruction does not have a concrete utility in structured or object oriented programming
aside from those that low-level programming fans may find for it. For example, hereis our
countdown loop using got o:

/1l goto | oop exanple 10, 9, 8, 7, 6, 5, 4, 3,
#i ncl ude <i ostream h> 2, 1, FIRE
int main ()
{
i nt n=10;
| oop:
cout << n << ", ";
R

if (n>0) goto |oop;
cout << "FIRE'";
return O;

http://www.cplusplus.com/doc/tutorial/tut2-1.html (7 of 10)14-04-2004 18:36:00

C++ Tutorial: 2.1, Control Structures.

The exit function.
exitisafunction definedincst dl i b (stdlib.h) library.

The purpose of exit isto terminate the running program with an specific exit code. Its
prototypeis:

void exit (int exit code);

Theexit code isused by some operating systems and may be used by calling programs.
By convention, anexi t code of 0 means that the program finished normally and any other
value means an error happened.

The selective Structure: switch.

The syntax of the switch instruction isabit peculiar. Its objective isto check several possible
constant values for an expression, something similar to what we did at the beginning of this section
with the linking of several if and else if sentences. Its form isthe following:

swtch (expression) {
case constant 1:
bl ock of instructions 1
br eak;
case constant 2:
bl ock of instructions 2
br eak;

def aul t:
default bl ock of instructions

}

It works in the following way: switch evaluates expr essi on and checksif it is equivalent to
constant 1,ifitis, itexecutesbl ock of instructions 1 untilitfindsthebreak keyword,
then the program will jump to the end of the switch selective structure,

If expr essi on wasnot equal to const ant 1 it will check if expr essi on isequivalent to
const ant 2. If itis, it will executebl ock of i nstructions 2 untilitfindsthe break
keyword.

Finally, if the value of expr essi on has not matched any of the previously specified constants (you
may specify as many case sentences as values you want to check), the program will execute the

http://www.cplusplus.com/doc/tutorial/tut2-1.html (8 of 10)14-04-2004 18:36:00

http://www.cplusplus.com/ref/cstdlib

C++ Tutorial: 2.1, Control Structures.

instructions included in the default: section, if this one exists, since it is optional.

Both of the following code fragments are equivalent:

switch example if-else equivalent
swtch (x) { f (x ==1) {

case 1: cout << "x is 1";
cout << "x is 1"; }
br eak; else if (x == 2) {

case 2: cout << "x is 2";
cout << "x is 2", }
br eak; el se {

defaul t: cout << "value of x unknown";
cout << "val ue of x unknown"; }

}

| have commented before that the syntax of the switch instruction is abit peculiar. Notice the
inclusion of the break instructions at the end of each block. Thisis necessary because if, for
example, we did not include it after bl ock of i nstructions 1 theprogram would not jump
to the end of the switch selective block (}) and it would continue executing the rest of the blocks of
instructions until the first appearance of the break instruction or the end of the switch selective
block. This makes it unnecessary to include curly brackets{ } ineach of the cases, and it can aso
be useful to execute the same block of instructions for different possible values for the expression
evaluated. For example:

swtch (x) {
case 1:
case 2:
case 3:
cout << "x is 1, 2 or 3";
br eak;
defaul t:
cout << "x is not 1, 2 nor 3";

}

Noticethat swi t ch can only be used to compare an expression with different constants. Therefore
we cannot put variables (case (n*2):)orranges(case (1..3):) becausethey arenot valid
constants.

http://www.cplusplus.com/doc/tutorial/tut2-1.html (9 of 10)14-04-2004 18:36:00

C++ Tutorial: 2.1, Control Structures.

If you need to check ranges or values that are not constants use a concatenationof i f andel se i f
sentences.

© The C++ Resources Network, 2000-2001 - All rights reserved

‘M

X 2-2. Functions.

Previous:
1-4. Comunication throgh console. in

|
2

http://www.cplusplus.com/doc/tutorial/tut2-1.html (10 of 10)14-04-2004 18:36:00

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 2.2, Functions (1).

Section 2.2
Functions ().

muin

Using functions we can structure our programsin a more modular way, accessing all the potential that
structured programming in C++ can offer us.

A function isablock of instructions that is executed when it is called from some other point of the program.
Thefollowing isits format:

type nane (argunentl, argunent2, ...) statenent

where:

t ype isthetype of datareturned by the function.

name isthe name by which it will be possibleto call the function.

ar gunent s (as many as wanted can be specified). Each argument consists of atype of datafollowed by
itsidentifier, likein avariable declaration (for example, i nt x) and which acts within the function like any
other variable. They allow passing parameters to the function when it is called. The different parameters are
separated by commas.

st at ement isthefunction's body. It can be asingle instruction or ablock of instructions. In the latter
case it must be delimited by curly brackets{} .

Here you have the first function example:

/| function exanple The result is 8
#i ncl ude <i ostream h>

int addition (int a, int b)
{.

int r;

r =a+b;

return (r);

}

int main ()
{ .
int z;
z = addition (5,3);
cout << "The result is " << z;
return O;

In order to examine this code, first of all remember something said at the beginning of thistutorial: a C++

http://www.cplusplus.com/doc/tutorial/tut2-2.html (1 of 6)14-04-2004 18:36:09

C++ Tutorial: 2.2, Functions (1).

program always begins its execution with the mai n function. So we will begin there.

We can see how the mai n function begins by declaring the variable z of typei nt . Right after that we see a
cal toaddi ti on function. If we pay attention we will be able to see the similarity between the structure of
the call to the function and the declaration of the function itself in the code lines above:

int addition (int a, int h}

r 1

£ = addition { 5 , 3 ;

The parameters have a clear correspondence. Within the mai n function we called to addi t i on passing two
values: 5 and 3 that correspondto thei nt aandi nt b parameters declared for the function addi t i on.

At the moment at which the function is called from mai n, control islost by mai n and passed to function
addi ti on. The value of both parameters passed in the call (5 and 3) are copied to the local variablesi nt
aandi nt b withinthe function.

Function addi t i on declaresanew variable (i nt r;), and by means of the expressionr =a+b; , it assigns
tor theresult of a plusb. Because the passed parametersfor a and b are 5 and 3 respectively, the result is 8.

The following line of code:
return (r);

finalizes function addi t i on, and returns the control back to the function that called it (mai n) following the
program from the same point at which it was interrupted by the call to addi t i on. But additionally, r et ur n
was called with the content of variabler (return (r);), which at that moment was 8, so thisvalueis said
to be returned by the function.

int addition (int a, int h)
lE
£ = addition (5 , 3)

The value returned by afunction is the value given to the function when it is evaluated. Therefore, z will store
thevaluereturned by addi ti on (5, 3),thatis8. Toexplainit another way, you can imagine that the
call toafunction (addi ti on (5, 3))isliterally replaced by the value it returns (8).

The following line of codein mai n is:
cout << "The result is " << z;

that, as you may already suppose, produces the printing of the result on the screen.

http://www.cplusplus.com/doc/tutorial/tut2-2.html (2 of 6)14-04-2004 18:36:09

C++ Tutorial: 2.2, Functions (1).

Scope of variables[re]
#include <iostxream.h-

Y ou must consider that the DR)
scope of variables declared o et
within afunction or any other char string [zui] Glohal variahles
block of instructionsis only . . !]

) _ _ unsigned int Humber0fSons;
their own function or their own
block of mst_ructl ons and cannot main ()
be used outside of them. For {
exampl e,_in the previ_ous _ unsigned short Age;
example it had been impossible float AHumber, AnotherDne : Local variahles
tousethevariablesa, b orr
directly in function mai n since cout << "Enter your age:"
they were local variablesto cin >> Dge; Instructions
function addi ti on. Also, it e
had been impossible to use the }

variable z directly within
function addi t i on, sincethis
was alocal variable to the function nai n.

Therefore, the scope of local variablesis limited to the same nesting level in which they are declared.
Nevertheless you can also declare global variablesthat are visible from any point of the code, inside and
outside any function. In order to declare global variables you must do it outside any function or block of
instructions, that means, directly in the body of the program.

And here is another example about functions:

/1 function exanple The
#i ncl ude <i ostream h> first
resul t
int subtraction (int a, int b) is 5
{ The
int r; second
r =a- b; resul t
return (r); is 5
} The
third
int main () resul t
{ is 2
int x=5, y=3, z; The
z = subtraction (7,2); fourth
cout << "The first result is " <<z << '\n'; resul t
cout << "The second result is " << subtraction (7,2) << '\n'; 1S 6

cout << "The third result is " << subtraction (Xx,y) << '\n';
z= 4 + subtraction (x,Yy);

http://www.cplusplus.com/doc/tutorial/tut2-2.html (3 of 6)14-04-2004 18:36:09

C++ Tutorial: 2.2, Functions (1).

cout << "The fourth result is " << z << '\n';
return O;

}

In this case we have created the function subt r act i on. The only thing that this function does is to subtract
both passed parameters and to return the result.

Nevertheless, if we examine the function mai n we will see that we have made severa calls to function
subt ract i on. We have used some different calling methods so that you see other ways or moments when
afunction can be called.

In order to understand well these examples you must consider once again that a call to a function could be
perfectly replaced by its return value. For example the first case (that you should already know beacause it is
the same pattern that we have used in previous examples):

z = subtraction (7, 2);
cout << "The first result is " << z;

If we replace the function call by itsresult (that is5), we would have:

z = 5;
cout << "The first result is " << z;

Aswell as
cout << "The second result is " << subtraction (7,2);

has the same result as the previous call, but in this case we made the call to subt r act i on directly asa
parameter for cout . Simply imagine that we had written:

cout << "The second result is " << 5;
since 5 istheresult of subt raction (7, 2).
In the case of
cout << "The third result is " << subtraction (x,y);

The only new thing that we introduced is that the parameters of subt r act i on are variables instead of
constants. That is perfectly valid. In this case the values passed to the function subt r act i on are the values
of x andy, that are 5 and 3 respectively, giving 2 as resullt.

The fourth case is more of the same. Simply note that instead of:

http://www.cplusplus.com/doc/tutorial/tut2-2.html (4 of 6)14-04-2004 18:36:09

C++ Tutorial: 2.2, Functions (1).

z =4 + subtraction (x,y);
we could have put:
z = subtraction (x,y) + 4;

with exactly the same result. Notice that the semicolon sign (;) goes at the end of the whole expression. It
does not necessarily have to go right after the function call. The explanation might be once again that you
imagine that a function can be replaced by its result:

2
4’

4 +
2 +

Functions with no types. The use of void.
If you remember the syntax of afunction declaration:
type nane (argunmentl, argunent2 ...) statenent

you will see that it is obligatory that this declaration beginswith at ype, that is the type of the data that will
be returned by the function with ther et ur n instruction. But what if we want to return no value?

Imagine that we want to make a function just to show a message on the screen. We do not need it to return
any value, moreover, we do not need it to receive any parameters. For these cases, the voi d type was devised
in the C language. Take alook at:

/1l void function exanpl e I"ma function!
#i ncl ude <i ostream h>

voi d dunmmyfunction (void)

{
cout << "I"ma function!";
}
int main ()
{
dumryfunction ();
return O;
}

Although in C++ it is not necessary to specify voi d, itsuseis considered suitable to signify that itisa
function without parameters or arguments and not something el se.

http://www.cplusplus.com/doc/tutorial/tut2-2.html (5 of 6)14-04-2004 18:36:09

C++ Tutorial: 2.2, Functions (1).

What you must always be aware of is that the format for calling a function includes specifing its name and
enclosing the arguments between parenthesis. The non-existence of arguments does not exempt us from the
obligation to use parenthesis. For that reason the call to dunmryf uncti onis

dumyfunction ();

This clearly indicates that it isacall to afunction and not the name of avariable or anything else.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous: ‘ E . Next:

2-1. Control structures. index 2-3. Functions (11).

http://www.cplusplus.com/doc/tutorial/tut2-2.html (6 of 6)14-04-2004 18:36:09

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 2.3, Functions (I1).

Section 2.3 Epf;us;_rfus
I anguage
Functions (I1). /anguage

Arguments passed by value and by reference.

Until now, in al the functions we have seen, the parameters passed to the functions have
been passed by value. This means that when calling a function with parameters, what we
have passed to the function were values but never the specified variables themselves. For
example, suppose that we called our first function addi t i on using the following code :

I nt x=5, y=3, z;
z = addition (x , y);

What we did in this case was to call function addi t i on passing the values of x and y, that
means 5 and 3 respectively, not the variables themselves.

int addition {(int a, int h)

IER E

z = addition (x Y o):

Thisway, when function addi t i on isbeing called the value of itsvariablesa and b
become 5 and 3 respectively, but any modification of a or b within the function addi ti on
will not affect the values of x and y outside it, because variables x andy were not passed
themselves to the the function, only their values.

But there might be some cases where you need to manipulate from inside a function the
value of an external variable. For that purpose we have to use arguments passed by
reference, asin the function dupl i cat e of the following example:

http://ww.cplusplus.com/doc/tutorial /tut2-3.html (1 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (I1).

/| passing paraneters by reference X=2
#i ncl ude <i ostream h> y=6
z=1

void duplicate (int& a, int& b, int& c)
{

a*=2;

b* =2,

c*=2,

}

int main ()
{
I nt x=1, y=3, z=7,
duplicate (x, vy, 2z);
cout << "x=" << x <", y=' <Ky <" z=" < 7;
return O;

Thefirst thing that should call your attention is that in the declaration of dupl i cat e the
type of each argument was followed by an ampersand sign (&), that serves to specify that the
variable has to be passed by reference instead of by value, as usual.

When passing a variable by reference we are passing the variable itself and any modification
that we do to that parameter within the function will have effect in the passed variable
outsideit.

void duplicate {(int&k a,int& b,int& c)

I

duplicate | . S ¥ z)

To express it another way, we have associated a, b and ¢ with the parameters used when
calling the function (x, y and z) and any change that we do on a within the function will
affect the value of x outside. Any change that we do on b will affect y, and the same with c
and z.

That iswhy our program's output, that shows the values stored in x, y and z after the call to

http://ww.cplusplus.com/doc/tutorial /tut2-3.html (2 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (I1).

dupl i cat e, showsthe values of the three variables of mai n doubled.
If when declaring the following function:

void duplicate (int& a, int& b, int& c)
we had declared it thus:

void duplicate (int a, int b, int c)

that is, without the ampersand (&) signs, we would have not passed the variables by
reference, but their values, and therefore, the output on screen for our program would have
been the values of x, y and z without having been modified.

exclusive of C++. In C language we had to use pointers to do something

[;} [HI;J This type of declaration "by reference" using the ampersand (&) signis
-
equivalent.

Passing by reference is an effective way to allow afunction to return more than one single
value. For example, hereis afunction that returns the previous and next numbers of the first
parameter passed.

/'l nmore than one returning val ue Previ ous=99,
#i ncl ude <i ostream h> Next =101

void prevnext (int x, int& prev, int& next)
{

prev = x-1;

next = x+1;

}

int main ()
{
I nt x=100, vy, z;
prevnext (x, Yy, 2);
cout << "Previous=" <<y << ", Next=" << z;
return O;

http://ww.cplusplus.com/doc/tutorial /tut2-3.html (3 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (I1).

Default values in arguments.

When declaring a function we can specify a default value for each parameter. This value will
be used if that parameter is left blank when calling to the function. To do that we simply
have to assign a value to the arguments in the function declaration. If avalue for that
parameter is not passed when the function is called, the default valueis used, but if avalueis
specified this default value is stepped on and the passed value is used. For example:

/]l default values in functions 6
#i ncl ude <i ostream h> 5

int divide (int a, int b=2)
{ .

int r;

r=al b;

return (r);

}

int main ()

{
cout << divide (12);
cout << endl;
cout << divide (20,4);
return O;

Aswe can see in the body of the program there are two callsto the function di vi de. Inthe
first one:

di vide (12)

we have only specified one argument, but the function di vi de alows up to two. So the
function di vi de has assumed that the second parameter is 2 since that is what we have
specified to happen if this parameter islacking (notice the function declaration, which

http://ww.cplusplus.com/doc/tutorial /tut2-3.html (4 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (I1).

finisheswithi nt b=2). Therefore the result of thisfunction call is6 (12/ 2).
In the second call:
di vide (20, 4)

there are two parameters, so the default assignation (i nt b=2) is stepped on by the passed
parameter, that is 4, making the result equal to 5 (20/ 4).

Overloaded functions.

Two different functions can have the same name if the prototype of their arguments are
different, that means that you can give the same name to more than one function if they have
either adifferent number of arguments or different typesin their arguments. For example,

/] overl oaded function 2
#i ncl ude <i ostream h> 2.5

int divide (int a, int b)
{

return (a/b);

}

float divide (float a, float b)
{

return (a/b);

}

int main ()

{
I nt x=5, y=2;
fl oat n=5.0, nF2. O;
cout << divide (X,VY);
cout << "\n";
cout << divide (n,m;
cout << "\n";
return O;

http://www.cplusplus.com/doc/tutorial/tut2-3.html (5 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (I1).

In this case we have defined two functions with the same name, but one of them accepts two
arguments of typei nt and the other accepts them of typef | oat . The compiler knows
which one to call in each case by examining the types when the function iscalled. If it is
called withtwo i nt sasargumentsit calls to the function that hastwo i nt argumentsin the
prototype and if it iscalled withtwo f | oat sit will call to the onewhich hastwof | oat s
In its prototype.

For simplicity | have included the same code within both functions, but thisis not
compulsory. Y ou can make two function with the same name but with completely different
behaviors.

inline functions.

Theinline directive can be included before a function declaration to specify that the function
must be compiled as code at the same point whereit is called. Thisis equivalent to declaring
amacro. Its advantage is only appreciated in very short functions, in which the resulting
code from compiling the program may be faster if the overhead of calling afunction
(stacking of arguments) is avoided.

The format for its declaration is:

inline type nane (argunents ...) { instructions ... }
and the call isjust like the call to any other function. It is not necessary to include the
I nl i ne keyword before each call, only in the declaration.

Recursivity.

Recursivity is the property that functions have to be called by themselves. It is useful for
tasks such as some sorting methods or to calculate the factorial of a number. For example, to
obtain the factorial of a number (n) its mathematical formulais:

nt =n?* (n-1) * (n-2) * (n-3) ... * 1
more concretely, 5! (factorial of 5) would be:

5l =5 * 4 * 3 * 2 * 1 =120

http://ww.cplusplus.com/doc/tutorial /tut2-3.html (6 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (I1).

and arecursive function to do that could be this:

/'l factorial calculator Type a
#i ncl ude <i ostream h> nunber: 9
19 = 362880
| ong factorial (long a)
{
if (a > 1)
return (a * factorial (a-1));
el se
return (1);
}
int main ()
{
| ong | ;
cout << "Type a nunber: ";
cin >> |;
cout << "I'" << | << " =" << factorial (I);
return O;
}

Notice how in functionf act ori al weincluded acall toitself, but only if the argument is
greater than 1, since otherwise the function would perform an infinite recursive loop in
which onceit arrived at O it would continue multiplying by all the negative numbers
(probably provoking a stack overflow error on runtime).

This function has a limitation because of the data type used in itsdesign (I ong) for more
simplicity. In a standard system, the type |l ong would not allow storing factorials greater
than 12! .

Prototyping functions.

Until now, we have defined the al of the functions before the first appearance of callsto
them, that generally wasin mai n, leaving the function mai n for the end. If you try to repeat
some of the examples of functions described so far, but placing the function nai n before
any other function that is called from within it, you will most likely obtain an error. The

http://ww.cplusplus.com/doc/tutorial /tut2-3.html (7 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (I1).

reason is that to be able to call afunction it must have been declared previoudly (it must be
known), like we have done in all our examples.

But there is an alternative way to avoid writing all the code of all functions before they can
be used in mai n or in another function. It is by prototyping functions. This consistsin
making a previous shorter, but quite significant, declaration of the complete definition so
that the compiler can know the arguments and the return type needed.

ltsformis:
type nane (argunent typel, argunent _type2, ...);
It isidentical to the header of afunction definition, except:

. Itdoesnotincludeast at enent for the function. That means that it does not
include the body with all the instructions that are usually enclose within curly
brackets{ }.

. Itendswith asemicolon sign (;).

. Inthe argument enumeration it is enough to put the type of each argument. The
inclusion of a name for each argument as in the definition of a standard functionis
optional, athough recommended.

For example
/| prototyping Type a nunber
#i ncl ude <i ostream h> (O toexit): 9
Nunber is odd.
void odd (int a); Type a nunber
void even (int a); (O toexit): 6
Nunber is

int main () even.

{ Type a nunber
int i; (O to exit):
do { 1030

cout << "Type a nunber: (0 to exit)"; Nunmber is

cin >> i; even.

odd (i); Type a nunber
} while (i!=0); (O toexit): O

http://ww.cplusplus.com/doc/tutorial /tut2-3.html (8 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (I1).

return O; Nunmber is
} even.

void odd (int a)

{
1 f ((a%)!=0) cout << "Nunber is odd.\n";
el se even (a);

}

void even (int a)

{
I f ((a%)==0) cout << "Nunber is even.\n",
el se odd (a);

}

This example isindeed not an example of effectiveness, | am sure that at this point you can
already make a program with the same result using only half of the code lines. But this
example ilustrates how protyping works. Moreover, in this concrete case the prototyping of -
at least- one of the two functions is necessary.

The first things that we see are the prototypes of functionsodd and even:

void odd (int a);
void even (int a);

that allows these functions to be used before they are completely defined, for example, in
mai n, which now islocated in amore logical place: the beginning of the program's code.

Nevertheless, the specific reason why this program needs at |east one of the functions
prototyped is because in odd thereisacall toeven andineven thereisacal to odd. If
none of the two functions had been previoudy declared, an error would have happened,
since either odd would not be visible from even (because it has not still been declared), or
even would not be visible from odd.

Many programmers recommend that all functions be prototyped. It isaso my
recommendation, mainly in case that there are many functions or in case that they are very
long. Having the prototype of all the functions in the same place can spare us some time

http://ww.cplusplus.com/doc/tutorial /tut2-3.html (9 of 10)14-04-2004 18:36:21

C++ Tutorial: 2.3, Functions (I1).

when determining how to call it or even ease the creation of a header file.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous: = Next:
2-2. Functions(l). index 3-1. Arrays. String of characters.

http://www.cplusplus.com/doc/tutorial /tut2-3.html (10 of 10)14-04-2004 18:36:21

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutoria: 3.1, Arrays

Section 3.1 cpf:rsgfus
aAnguase
Arr ayS ' tuEltnrig:ll

main

Arrays are a series of elements (variables) of the same type placed consecutively in memory that can be
individually referenced by adding an index to a unique name.

That means that, for example, we can store 5 values of typei nt without having to declare 5 different
variables each with a different identifier. Instead, using an array we can store 5 different values of the same
type, i nt for example, with aunique identifier.

For example, an array to contain 5 integer values of typei nt called billy could be represented this way:

0 1 2 3 . |
billy | | | | | |

 ——
int

where each blank panel represents an element of the array, that in this case are integer values of typei nt .
These are numbered from 0 to 4 since in arrays the first index is always 0, independently of its length .

Like any other variable, an array must be declared beforeit is used. A typical declaration for an array in C++
Is:

type nane [el ements];

wheret ype isavalid object type (int, float...), name isavalid variable identifier and the el enment s field,
that is enclosed within brackets|] , specifies how many of these elements the array contains.

Therefore, to declare billy as shown above it is as smple as the following sentence:
int billy [5];

NOTE: The elementsfield within brackets[] when declaring an array must be a constant value, since
arrays are blocks of static memory of a given size and the compiler must be able to determine exactly how
much memory it must assign to the array before any instruction is considered.

Initializing arrays.

When declaring an array of local scope (within afunction), if we do not specify otherwise, it will not be
initialized, so its content is undetermined until we store some valuesin it.

If we declare aglobal array (outside any function) its content will beinitialized with all its elementsfilled
with zeros. Thus, if in the global scope we declare:

http://lwww.cplusplus.com/doc/tutorial/tut3-1.html (1 of 7)14-04-2004 18:36:31

C++ Tutoria: 3.1, Arrays

int billy [5];
every element of billy will be set initialy to O:

0 1 2 3 4
billy | 0| 0| 0] 0] 0]

But additionally, when we declare an Array, we have the possibility to assign initial valuesto each one of its
elements using curly brackets{ } . For example:

int billy [5] ={ 16, 2, 77, 40, 12071 };
this declaration would have created an array like the following one:

0 1 2 3 4
billy | 16 | 2| 77 | 40 | 12071 |

The number of elementsin the array that we initialized within curly brackets{ } must match the length in
elements that we declared for the array enclosed within square brackets[] . For example, in the example of
the billy array we have declared that it had 5 elements and in the list of initial values within curly brackets

{ } wehave set 5 different values, one for each element.

Because this can be considered useless repetition, C++ includes the possibility of leaving the brackets empty
[] andthesize of the Array will be defined by the number of valuesincluded between curly brackets{ }:

int billy [] ={ 16, 2, 77, 40, 12071 };
Access to the values of an Array.

In any point of the program in which the array is visible we can access individually anyone of its values for
reading or modifying asif it was anormal variable. The format is the following:

name[i ndex]

Following the previous examples in which billy had 5 elements and each of those elements was of typei nt,
the name which we can use to refer to each element is the following:

billvy[0] billy[1l] billy[2] billy[3] billy[4]
billy | | | | | |

For example, to store the value 75 in the third element of billy a suitable sentence would be:

billy[2] = 75;

http://www.cplusplus.com/doc/tutorial/tut3-1.html (2 of 7)14-04-2004 18:36:31

C++ Tutoria: 3.1, Arrays

and, for example, to pass the value of the third element of billy to the variable a, we could write:
a =billy[2];
Therefore, for all purposes, the expression bi | | y[2] islike any other variable of typei nt .

Notice that the third element of bi | | y isspecifiedbi | | y[2] , sincefirstisbi | | y[0] , thesecond is

bi I I y[1], and therefore, thirdisbi | | y[2] . By thissame reason, itslast elementisbi | | y[4] . Sinceif
wewrotebi | | y[5] , wewould be acceding to the sixth element of billy and therefore exceeding the size of
the array.

In C++ it is perfectly valid to exceed the valid range of indices for an Array, which can create problems
since they do not cause compilation errors but they can cause unexpected results or serious errors during
execution. The reason why thisis allowed will be seen farther ahead when we begin to use pointers.

At this point it isimportant to be able to clearly distinguish between the two uses that brackets[] have
related to arrays. They perform two differt tasks: one is to set the size of arrays when declaring them; and
second is to specify indices for a concrete array element when referring to it. We must simply take care not
to confuse these two possible uses of brackets[] with arrays:

int billy[5]; /'l declaration of a new Array (begins
wth a type nane)
billy[2] = 75; /'l access to an elenment of the Array.

Other valid operations with arrays:

bi I'ly[0] a;

bi l'ly[a] 75;

b =nbilly [a+2];
billy[billy[a]]l] = billy[2] + 5;

/'l arrays exanpl e 12206
#i ncl ude <i ostream h>

int billy [] = {16, 2, 77, 40, 12071};
int n, result=0;

int min ()
{
for (n=0 ; n<5 ; n++)
{
result += billy[n];
}

cout << result;

http://www.cplusplus.com/doc/tutorial/tut3-1.html (3 of 7)14-04-2004 18:36:31

C++ Tutoria: 3.1, Arrays

return O;

Multidimensional Arrays

Multidimensional arrays can be described as arrays of arrays. For example, a bidimensional array can be
imagined as a bidimensional table of a uniform concrete data type.

Jjimmy

j 1 mmy represents a bidimensional array of 3 per 5 values of typei nt . The way to declare this array would
be:

int jimy [3][5];

and, for example, the way to reference the second element vertically and fourth horizontally in an expression

would be:
Jimy[1][3]
0 1 2 3 4

. 0

jimmy) "
2

¥

Jimmy [1] [3]

(remember that array indices aways begin by 0).
Multidimensional arrays are not limited to two indices (two dimensions). They can contain as many indices
as needed, although it israre to have to represent more than 3 dimensions. Just consider the amount of
memory that an array with many indices may need. For example:

char century [100][365][24][60][60];

assignsachar for each second contained in a century, that is more than 3 billion char s! Thiswould
consume about 3000 megabytes of RAM memory if we could declareit.

Multidimensional arrays are nothing more than an abstraction, since we can obtain the same results with a

http://www.cplusplus.com/doc/tutorial/tut3-1.html (4 of 7)14-04-2004 18:36:31

C++ Tutoria: 3.1, Arrays

simple array just by putting a factor between itsindices:

int jimry [3][5]; isequivaentto
int jimy [15]; (3*5=15)

with the only difference that the compiler remembers for us the depth of each imaginary dimension. Serve as
example these two pieces of code, with exactly the same result, one using bidimensional arrays and the other
using only simple arrays:

/1 multidimensional array /'l pseudo-mul tidi mensi onal array
#i ncl ude <i ostream h> #i ncl ude <i ostream h>
#define WDTH 5 #define WDTH 5
#define HEl GHT 3 #define HElI GHT 3
int jimy [HEl GAT] [WDTH] ; int jimy [HEIGAT * WDTH];
int n,m int n,m
int min () int min ()
{ {
for (n=0; n<HEl GHT; n++) for (n=0; n<HElI GHT; n++)
for (meO; kW DTH;, mt++) for (meO; kW DTH;, mt++)
{ {
jimy[n] [m =(n+1)*(m+l); jimy[n * WDTH + nj =(n+1)*(m-1);
} }
return O; return O;
} }

none of the programs above produce any output on the screen, but both assign values to the memory block
called j i nmry inthefollowing way:

0 1 2 3 i

. 0 1 2 3 3
Jimmy 1 2 4 = 2 10
2 3 = g9 12 15

We have used defined constants (#def i ne) to simplify possible future modifications of the program, for

example, in case that we decided to enlarge the array to aheight of 4 instead of 3 it could be done by
changing the line:

#defi ne HEl GHT 3

http://www.cplusplus.com/doc/tutorial/tut3-1.html (5 of 7)14-04-2004 18:36:31

C++ Tutoria: 3.1, Arrays

to
#defi ne HEI GHT 4

with no need to make any other modifications to the program.

Arrays as parameters

At some moment we may need to pass an array to afunction as a parameter. In C++ is not possible to pass
by value a complete block of memory as a parameter to afunction, eveniif it is ordered as an array, but it is
allowed to pass its address. This has amost the same practical effect and it is a much faster and more
efficient operation.

In order to admit arrays as parameters the only thing that we must do when declaring the function isto
specify in the argument the baset ype for the array, an identifier and a pair of void brackets|[] . For
example, the following function:

voi d procedure (int arg[])

admits a parameter of type"Array of i nt " called ar g. In order to pass to this function an array declared as:
int nmyarray [40];

it would be enough to write acall like this:
procedure (nyarray);

Here you have a complete example:

[l arrays as paraneters 5 10 15
#i ncl ude <i ostream h> 246 8 10

void printarray (int arg[], int length) {
for (int n=0; n<length; n++)
cout << arg[n] << " ";
cout << "\n";

}

int main ()

{
int firstarray[] = {5, 10, 15};
int secondarray[] = {2, 4, 6, 8, 10};
printarray (firstarray, 3);
printarray (secondarray,b5);

http://lwww.cplusplus.com/doc/tutorial/tut3-1.html (6 of 7)14-04-2004 18:36:31

C++ Tutoria: 3.1, Arrays

return O;

}

Asyou can see, thefirst argument (i nt ar g[]) admitsany array of typei nt , wathever itslength is. For
that reason we have included a second parameter that tells the function the length of each array that we pass
to it asthefirst parameter. Thisalowsthef or loop that prints out the array to know the range to check in
the passed array.

In afunction declaration is also possible to include multidimensiona arrays. The format for atridimensional
array is:

base type[][dept h][depth]
for example, afunction with a multidimensional array as argument could be:
void procedure (int nyarray[][3][4])

notice that the first brackets[] are void and the following ones are not. This must aways be thus because
the compiler must be able to determine within the function which is the depth of each additional dimension.

Arrays, both ssmple or multidimensional, passed as function parameters are a quite common source of errors
for less experienced programmers. | recommend the reading of chapter 3.3, Pointersfor a better
understanding of how arrays operate.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous: «- E » Next:

2-3. Functions (11). index 3-2. Strings of characters.

http://www.cplusplus.com/doc/tutorial/tut3-1.html (7 of 7)14-04-2004 18:36:31

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorid: 3.2, Strings of Characters.

Section 3.2
Strings of Characters.

In all programs seen until now, we have used only numerical variables, used to express numbers
exclusively. But in addition to numerical variables there also exist strings of characters, that
allow us to represent successions of characters, like words, sentences, names, texts, et cetera.
Until now we have only used them as constants, but we have never considered variables able to
contain them.

In C++ there is no specific elemental variable type to store strings of characters. In order to
fulfill thisfeature we can use arrays of type char , which are successions of char elements.
Remember that this data type (char) isthe one used to store a single character, for that reason
arrays of them are generally used to make strings of single characters.

For example, the following array (or string of characters):
char jenny [20];
can store a string up to 20 characterslong. Y ou may imagineit thus:

jenny

This maximum size of 20 charactersis not required to always be fully used. For example,

] enny could store at some moment in aprogram either the string of characters" Hel | 0" or
thestring" Merry chri st mas" . Therefore, since the array of characters can store shorter
strings than itstotal length, a convention has been reached to end the valid content of a string
with anull character, whose constant can be writtenO or ' \ 0" .

We could represent j enny (an array of 20 elements of type char) storing the strings of
characters" Hel | 0" and" Merry Chri st mas"” inthefollowing way:

jenny

H|le|l|1l]|o|x0

M| e |r|r |V Clh|r|i|(s|t|(m|a|s |%.0

http://www.cplusplus.com/doc/tutorial/tut3-2.html (1 of 8)14-04-2004 18:36:42

C++ Tutorid: 3.2, Strings of Characters.

Notice how after the valid content anull character (' \ 0') itisincluded in order to indicate the
end of the string. The panelsin gray color represent indeterminate values.

Initialization of strings

Because strings of characters are ordinary arrays they fulfill all their same rules. For example, if
we want to initialize a string of characters with predetermined values we can do it just like any
other array:

char nystring[] {'H, e, "I, "I, "o, "\0 };

In this case we would have declared a string of characters (array) of 6 elements of type char
initialized with the characters that compose Hel | o plusanull character ' \ 0" .

Nevertheless, strings of characters have an additional way to initialize their values: using
constant strings.

In the expressions we have used in examples in previous chapters constants that represented
entire strings of characters have already appeared several times. These are specified enclosed
between double quotes ("), for example:

“the result is:
Is a constant string that we have probably used on some occasion.

Unlike single quotes (*) which specify single character constants, double quotes (") are
constants that specify a succession of characters. Strings enclosed between double quotes
aways have anull character (' \ 0') automatically appended at the end.

Therefore we could initialize the string ny st r i ng with values by either of these two ways:

char nystring []
char nystring []

{'"H, e, "I, "I", "o, "\0" };
"Hel | 0o";

In both cases the array or string of charactersmy st r i ng is declared with a size of 6 characters
(elements of type char): the 5 characters that compose Hel | o plusafinal null character

(' \ 0") which specifies the end of the string and that, in the second case, when using double
guotes (") it isautomatically appended.

http://www.cplusplus.com/doc/tutorial/tut3-2.html (2 of 8)14-04-2004 18:36:42

C++ Tutorid: 3.2, Strings of Characters.

Before going further, notice that the assignation of multiple constants like double-quoted
constants (") to arrays are only valid when initializing the array, that is, at the moment when
declared. Expressions within the code like:

nystring = "Hello";
nmystring[] = "Hello";

are not valid for arrays, like neither would be:
nystring ={ 'H, ‘e, "', "I', "o, "\0 };

So remember: We can "assign” a multiple constant to an Array only at the moment of
initializing it. The reason will be more comprehensible when you know a bit more about
pointers, since then it will be clarified that an array is ssmply a constant pointer pointing to an
allocated block of memory. And because of this constantnes, the array itself can not be assigned
any value, but we can assing values to each of the elements of the array.

The moment of initializing an Array it isaspecial case, sinceit is not an assignation, although
the same equal sign (=) is used. Anyway, always have the rule previously underlined present.

Assigning values to strings

Since the lvalue of an assignation can only be an element of an array and not the entire array, it
would be valid to assign a string of charactersto an array of char using amethod like this:

nmystri ng[0]
nmystring[1]
nmystring[2]
nmystri ng[3]
nystring[4]
nmyst ri ng[5]

But as you may think, this does not seem to be a very practical method. Generally for assigning
valuesto an array, and more specifically to a string of characters, a series of functionslike

st rcpy are used. strecpy (string copy) isdefined inthecstri ng (stri ng. h) library and
can be called the following way:

strcpy (stringl, string2);

This does copy the content of st ri ng2 intost ri ngl.stri ng2 canbeeither an array, a

http://www.cplusplus.com/doc/tutorial/tut3-2.html (3 of 8)14-04-2004 18:36:42

C++ Tutorid: 3.2, Strings of Characters.

pointer, or a constant string, so the following line would be a valid way to assign the constant

string" Hel | 0" tonystri ng:
strcpy (nystring, "Hello");

For example:

/'l setting value to string J. Soulie
#i ncl ude <i ostream h>
#i ncl ude <string. h>

int min ()
{
char szMyNane [20];
strcpy (szMyNane,"J. Soulie");
cout << szMyNane;
return O,

Notice that we needed to include <st r i ng. h> header in order to be able to use function
strcpy.

Although we can always write a simple function like the following set st r i ng with the same

operation ascstring'sst r cpy:

/1l setting value to string J. Soulie
#1 ncl ude <i ostream h>

void setstring (char szQut [], char szln [])

{

I nt n=0;

do {

szQut[n] = szln[n];

} while (szln[n++] !'="\0");
}
int main ()
{

http://www.cplusplus.com/doc/tutorial/tut3-2.html (4 of 8)14-04-2004 18:36:42

C++ Tutorid: 3.2, Strings of Characters.

char szMyNane [20];

setstring (szMyNane,"J. Soulie");
cout << szMyNane;

return O,

Another frequently used method to assign values to an array is by directly using the input stream
(ci n). Inthis case the value of the string is assigned by the user during program execution.

When ci n isused with strings of charactersit isusually used withitsget | i ne method, that
can be called following this prototype:

cin.getline (char buffer[], int length, char
delimter ="' \n");

where buf f er isthe address of where to store the input (like an array, for example), | engt h
Is the maximum length of the buffer (the size of the array) and del i mi t er isthe character
used to determine the end of the user input, which by default - if we do not include that
parameter - will be the newline character (' \ n").

The following example repeats whatever you type on your keyboard. It is quite simple but
serves as an example of how you can useci n. get | i ne with strings:

/1l cin with strings What ' s your
#i ncl ude <i ostream h> nane? Juan
Hel | o Juan.
int main () VWi ch is your
{ favourite
char nybuffer [100]; tean? Inter
cout << "What's your nanme? "; M| an
cin.getline (nybuffer, 100); I like Inter
cout << "Hello " << nybuffer << ".\n"; M I an too.

cout << "Which is your favourite teanf? "
cin.getline (nmybuffer, 100);

cout << "l like " << nybuffer << " too.\n";
return O

http://www.cplusplus.com/doc/tutorial/tut3-2.html (5 of 8)14-04-2004 18:36:42

C++ Tutorid: 3.2, Strings of Characters.

Notice how in both callsto ci n. get | i ne we used the same string identifier (nybuf f er).
What the program does in the second call is simply step on the previous content of buf f er
with the new one that is introduced.

If you remember the section about communication through the console, you will remember that
we used the extraction operator (>>) to receive data directly from the standard input. This
method can also be used instead of ci n. get | i ne with strings of characters. For example, in
our program, when we requested an input from the user we could have written:

cin >> mybuffer;
this would work, but this method has the following limitations that ci n. get | i ne hasnot:

. It can only receive single words (no complete sentences) since this method uses as a
delimiter any occurrence of ablank character, including spaces, tabulators, newlines and
carriage returns.

. Itisnot allowed to specify asize for the buffer. That makes your program unstable in
case the user input is longer than the array that will host it.

For these reasons it is recommended that whenever you require strings of characters coming
fromci nyouuseci n. getlineinsteadof ci n >>.

Converting strings to other types

Dueto that a string may contain representations of other data types like numbers, it might be
useful to trandlate that content to avariable of a numeric type. For example, a string may
contain " 1977" , but thisis a sequence of 5 chars not so easily convertable to a single integer
datatype. Thecstdl i b (stdl i b. h) library provides three useful functions for this purpose:

. atoi: convertsstringtoi nt type.
. atol: convertsstringto | ong type.
. atof: convertsstringtof | oat type.

All of these functions admit one parameter and return a value of the requested type (i nt, | ong
or f | oat). These functions combined with get | i ne method of ci n are amore reliable way
to get the user input when requesting a number than the classic ci n>> method:

http://www.cplusplus.com/doc/tutorial/tut3-2.html (6 of 8)14-04-2004 18:36:42

C++ Tutorid: 3.2, Strings of Characters.

/1l cin and ato* functions Enter price:

#i ncl ude <i ostream h> 2.75

#i ncl ude <stdlib. h> Enter quantity:
21

int main () Total price:

{ 57.75

char nybuffer [100];

float price;

I nt quantity;

cout << "Enter price: ";
cin.getline (nmybuffer, 100);
price = atof (nybuffer);
cout << "Enter quantity: ";
cin.getline (nybuffer, 100);
gquantity = atoi (nybuffer);
cout << "Total price: " << price*quantity;
return O

Functions to manipulate strings

Thecstring library (st ri ng. h) defines many functions to perform manipulation operations

with C-like strings (like already explained strcpy). Here you have a brief look at the most usual:

strcat: char* strcat (char* dest, const char* src);
Appends src string at the end of dest string. Returns dest.

strcmp: int strcnp (const char* stringl, const char* string2);
Compares strings stringl and string2. Returns O is both strings are equal .

strecpy: char* strcpy (char* dest, const char* src);
Copies the content of src to dest. Returns dest.

strlen: size t strlen (const char* string);
Returns the length of string.

NOTE: char * isthesameaschar []

http://www.cplusplus.com/doc/tutorial/tut3-2.html (7 of 8)14-04-2004 18:36:42

http://www.cplusplus.com/ref/cstring/strcat.html
http://www.cplusplus.com/ref/cstring/strcmp.html
http://www.cplusplus.com/ref/cstring/strcpy.html
http://www.cplusplus.com/ref/cstring/strlen.html

C++ Tutorid: 3.2, Strings of Characters.

Check the C++ Reference for extended information about these and other functions of this
library.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous: = ’ Next:
3-1. Arrays index 3-3. Pointers

http://www.cplusplus.com/doc/tutorial/tut3-2.html (8 of 8)14-04-2004 18:36:42

http://www.cplusplus.com/ref/
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 3.3, Pointers.

Section 3.3 cpf;:rsggfms
) angFuage
Pointers ' 1uLt'urig:|I

main

We have already seen how variables are memory cells that we can access by an identifier. But these variables are stored
in concrete places of the computer memory. For our programs, the computer memory is only asuccession of 1 byte cells
(the minimum size for a datum), each one with a unique address.

A good simile for the computer memory can be a street in acity. On a street all houses are consecutively numbered with
an unigue identifier so if wetalk about 27th of Sesame Street we will be able to find that place without trouble, since
there must be only one house with that number and, in addition, we know that the house will be between houses 26 and
28.

In the same way in which houses in a street are numbered, the operating system organizes the memory with unique and

consecutive numbers, so if we talk about location 1776 in the memory, we know that there is only one location with that
address and also that is between addresses 1775 and 1777.

Address (dereference) operator (&).

At the moment in which we declare a variable it must be stored in a concrete location in this succession of cells (the
memory). We generally do not decide where the variable is to be placed - fortunately that is something automatically
done by the compiler and the operating system at runtime, but once the operating system has assigned an address there
are some cases in which we may be interested in knowing where the variable is stored.

This can be done by preceding the variable identifier by an ampersand sign (&), which literally means " address of" . For
example:

ted = &andy;

would assign to variable t ed the address of variable andy, since when preceding the name of the variable andy with
the ampersand (&) character we are no longer talking about the content of the variable, but about its address in memory.

We are going to suppose that andy has been placed in the memory address 1776 and that we write the following:

andy = 25;
fred = andy;
ted = &andy;

the result is shown in the following diagram:

andy
25
1775 1776 1777

' « N\

fred ted

25 1776

http://www.cplusplus.com/doc/tutorial/tut3-3.html (1 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

We have assigned to f r ed the content of variable andy as we have done in many other occasions in previous sections
of thistutorial, but tot ed we have assigned the address in memory where the operating system stores the value of
andy, that we have imagined was 1776 (it can be any address, | have just invented this one). The reason isthat in the
allocation of t ed we have preceded andy with an ampersand (&) character.

The variable that stores the address of another variable (liket ed in the previous example) is what we call apointer. In
C++ pointers have certain virtues and they are used very often. Farther ahead we will see how thistype of variableis
declared.

Reference operator (*)

Using a pointer we can directly access the value stored in the variable pointed by it just by preceding the pointer
identifier with the reference operator asterisk (*), that can be literally translated to " value pointed by" . Therefore,
following with the values of the previous example, if we write:

beth = *ted;

(that we could read as. "beth equal to value pointed by ted") bet h would take the value 25, sincet ed is1776, and the
value pointed by 1776 is 25.

ted

1776
|

1775 1776 1777
25

[memorv)

+
25
bheth

You must clearly differenciate that t ed stores 1776, but *t ed (with an asterisk * before) refersto the value stored in
the address 1776, that is 25. Notice the difference of including or not including the reference asterisk (I have included
an explanatory commentary of how each expression could be read):

bet h
bet h

t ed; /1l beth equal to ted (1776)
*ted; // beth equal to value pointed by ted (25)

Operator of addressor dereference (&)
It isused as avariable prefix and can be trandated as " address of", thus: &var i abl el can be read as "address of
vari abl e1"

Operator of reference (*)

It indicates that what has to be evaluated is the content pointed by the expression considered as an address. It can be
translated by " value pointed by" .

* nypoi nt er can be read as "value pointed by mypoi nt er ".

http://www.cplusplus.com/doc/tutorial/tut3-3.html (2 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

At this point, and following with the same example initiated above where:

andy = 25;
ted = &andy;

you should be able to clearly see that al the following expressions are true:

andy == 25
&andy == 1776
ted == 1776
*ted == 25

Thefirst expression is quite clear considering that its assignation was andy=25; . The second one uses the address (or
derefence) operator (&) that returns the address of the variable andy, that weimaginedto be 1776. The third oneis
guite obvious since the second was true and the assignation of t ed wast ed = &andy; . The fourth expression uses
the reference operator (*) that, as we have just seen, is equivalent to the value contained in the address pointed by t ed,
that is 25.

So, after all that, you may also infer that while the address pointed by t ed remains unchanged the following expression
will aso betrue:

*ted == andy
Declaring variables of type pointer

Due to the ability of apointer to directly reference the value that it point to, it becomes necessary to specify which data
type a pointer points to when declaring it. It is not the same to point toachar asitistopointtoani nt oraf | oat

type.
Therefore, the declaration of pointers follows this form:
type * pointer_nane;
wheret ype isthetype of data pointed, not the type of the pointer itself. For example:

int * nunber;
char * character;
float * greatnunber;

they are three declarations of pointers. Each one pointsto a different data type, but the three are pointers and in fact the
three occupy the same amount of space in memory (the size of a pointer depends on the operating system), but the data
to which they point do not occupy the same amount of space nor are of the same type, oneisi nt , another oneischar
and the other onef | oat .

| emphasize that the asterisk (*) that we use when declaring a pointer means only that it is a pointer, and should not be

confused with the reference operator that we have seen abit earlier which is also written with an asterisk (*). They are
simply two different tasks represented with the same sign.

http://www.cplusplus.com/doc/tutorial/tut3-3.html (3 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

/1l nmy first pointer val uel==10 /
#i ncl ude <i ostream h> val ue2==20
int main ()

{

int valuel = 5, value2 = 15;
int * nmypointer;

nmypoi nter = &val uel;

*nypoi nter = 10;

nypoi nter = &val uez;

*mypoi nter = 20;

cout << "valuel==" << valuel << "/ value2==" << val ue2;
return O,

Notice how the values of val uel and val ue2 have changed indirectly. First we have assigned to mypoi nt er the
address of val uel using the deference ampersand sign (&). Then we have assigned 10 to the value pointed by
mypoi nt er, whichis pointing to the address of val uel, so we have modified val uel indirectly.

In order that you can see that a pointer may take severa different values during the same program we have repeated the
process with val ue2 and the same pointer.

Here is an example a bit more complicated:

/1l nore pointers val uel==10 /
#i ncl ude <i ostream h> val ue2==20

int main ()

{
int valuel = 5, value2 = 15;
int *pl, *p2
pl = &val uel; /1 pl = address of val uel
p2 = &val ue2; /1l p2 = address of val ue2
*pl = 10; /1l value pointed by pl = 10
*p2 = *pl; /1 value pointed by p2 = val ue pointed by pl
pl = p2; /1 pl = p2 (value of pointer copied)
*pl = 20; /1l value pointed by pl = 20

n n

cout << "val uel==" << valuel << "/ val ue2==" << val ue2;

return O;

| have included as comments on each line how the code can be read: ampersand (&) as "address of* and asterisk (*) as
"value pointed by". Notice that there are expressions with pointers p1 and p2 with and without the asterisk. The
meaning of using or not using areference asterisk is very different: An asterisk (*) followed by the pointer refersto the

http://www.cplusplus.com/doc/tutorial/tut3-3.html (4 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

place pointed by the pointer, whereas a pointer without an asterisk (*) refersto the value of the pointer itself, that is, the
address of where it is pointing.

Another thing that can call your attention istheline:

int *pl, *p2;
that declares the two pointers of the previous example putting an asterisk (*) for each pointer. The reason is that the type
for all the declarations of the samelineisi nt (and noti nt *). The explanation is because of the level of precedence of

the reference operator asterisk (*) that is the same as the declaration of types, therefore, because they are associative
operators from the right, the asterisks are evaluated first than the type. We have talked about thisin section 1.3:

Operators, athough it is enough that you know clearly that -unless you include parenthesis- you will have to put an
asterisk (*) before each pointer that you declare.

Pointers and arrays

The concept of array isvery much bound to the one of pointer. In fact, the identifier of an array is equivalent to the
address of itsfirst element, like a pointer is equivalent to the address of the first element that it points to, so in fact they
are the same thing. For example, supposing these two declarations:

i nt nunbers [20];
int * p;

the following allocation would be valid:
p = nunbers;

At thispoint p and nunber s are equivalent and they have the same properties, the only differenceis that we could
assign another value to the pointer p whereas nunber s will always point to the first of the 20 integer numbers of type
i nt withwhich it was defined. So, unlike p, that is an ordinary variable pointer, nunber s isa constant pointer
(indeed an array name is a constant pointer). Therefore, although the previous expression was valid, the following
allocation is not:

nunbers = p;
because nunber s isan array (constant pointer), and no values can be assigned to constant identifiers.

Due to the character of variables all the expressions that include pointersin the following example are perfectly valid:

http://www.cplusplus.com/doc/tutorial/tut3-3.html (5 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

/1 nore pointers 10, 20, 30, 40, 50,
#i ncl ude <i ostream h>

int main ()
{
i nt nunbers[5];
int * p;
p = nunbers; *p = 10;
p++; *p = 20

p = &unbers[2]; *p = 30;
p = nunbers + 3; *p = 40;
p = nunbers; *(p+4) = 50;

for (int n=0; n<5; n++)
cout << nunbers[n] << ", ";
return O;

In chapter "Arrays' we used bracket signs[] severa timesin order to specify the index of the element of the Array to
which we wanted to refer. Well, the bracket signs operator [] are known as offset operators and they are equivalent to
adding the number within brackets to the address of a pointer. For example, both following expressions.

a[5] = 0; /'l a [offset of 5] =0
*(a+b) = 0; /'l pointed by (a+5) = 0

are equivalent and valid either if a isapointer or if itisan array.

Pointer initialization
When declaring pointers we may want to explicitly specify to which variable we want them to point,

i nt nunber;
int *tonmy = &nunber;

thisis equivalent to:

i nt nunber;
int *tonmy;
tonmy = &nunber;

When a pointer assignation takes place we are always assigning the address where it points to, never the value pointed.
Y ou must consider that at the moment of declaring a pointer, the asterisk (*) indicates only that it is apointer, it in no
case indicates the reference operator (*). Remember, they are two different operators, although they are written with the
same sign. Thus, we must take care not to confuse the previous with:

i nt nunber;

int *tommy;
*tommy = &nunber;

http://www.cplusplus.com/doc/tutorial/tut3-3.html (6 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

that anyway would not have much sense in this case.

Asin the case of arrays, the compiler allows the special case that we want to initialize the content at which the pointer
points with constants at the same moment as declaring the variable pointer:

char * terry = "hello0";
in this case static storage is reserved for containing " hel | 0" and a pointer to the first char of thismemory block (that

correspondsto 'h’) isassignedtot erry. If weimaginethat " hel | 0" isstored at addresses 1702 and following, the
previous declaration could be outlined thus:

| n [e [o | o [e | 0|
1702 1703 1704 1705 1706 17a7

terry | 1702

it isimportant to indicate that t er r y containsthevalue 1702 and not' h* nor " hel | 0", athough 1702 pointsto
these characters.

The pointer t er r y pointsto astring of characters and can be used exactly asif it was an Array (remember that an array
isjust a constant pointer). For example, if our temper changed and we wanted to replacethe’ o' by a'!' signinthe
content pointed by t er r y, we could do it by any of the following two ways:

terry[4] ="1";
*(terry+4) ="'1";

remember that to writet er r y[4] isjust the same asto write* (t er r y+4) , although the most usual expression isthe
first one. With either of those two expressions something like this would happen:

(v e [o[o [y o]
1702 1703 1704 1705 1706 1707

terry[4]

terry | 1702 *{terry+d)

Arithmetic of pointers

To conduct arithmetical operations on pointersis alittle different than to conduct them on other integer datatypes. To
begin with, only addition and subtraction operations are allowed to be conducted, the others make no sense in the world
of pointers. But both addition and subtraction have a different behavior with pointers according to the size of the data
type to which they point.

When we saw the different data types that exist, we saw that some occupy more or less space than others in the memory.
For example, in the case of integer numbers, char occupies 1 byte, short occupies 2 bytes and long occupies 4.

http://www.cplusplus.com/doc/tutorial/tut3-3.html (7 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

L et's suppose that we have 3 pointers:

char *nychar;
short *nyshort;

| ong *nyl ong;
and that we know that they point to memory locations 1000, 2000 and 3000 respectively.

So if wewrite:

nychar ++;
nyshort ++;

nyl ong++;

mychar , asyou may expect, would contain the value 1001. Nevertheless, nyshort would contain the value 2002,
and nyl ong would contain 3004. The reason is that when adding 1 to a pointer we are making it to point to the
following element of the same type with which it has been defined, and therefore the size in bytes of the type pointed is
added to the pointer.

1000 1001

F—
nqthﬂr——I++

2000 2001 2002 2003

R ——
nq%hnrt—————j++

3000 3001 3002 3003 3004 3005 3006 3007

mylong T++

Thisis applicable both when adding and subtracting any number to a pointer. It would happen exactly the sameif we
write:

mychar = nmychar + 1;
myshort = nyshort + 1;
nylong = nylong + 1;

It isimportant to warn you that both increase (++) and decrease (- -) operators have a greater priority than the reference
operator asterisk (*), therefore the following expressions may lead to confussion:

*pt++;
*p++ = *Qg++,

Thefirst oneisequivalent to* (p++) and what it doesisto increase p (the address where it points to - not the value that
contains).
In the second, because both increase operators (++) are after the expressions to be evaluated and not before, first the

http://www.cplusplus.com/doc/tutorial/tut3-3.html (8 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

value of * q isassigned to * p and then both q and p areincreased by one. It is equivalent to:

* p = * q;
p++;
q++;

Like always, | recommend you use parenthesis () in order to avoid unexpected results.

Pointers to pointers

C++ alowsthe use of pointersthat point to pointers, that these, initsturn, point to data. In order to do that we only need
to add an asterisk (*) for each level of reference:

char a;
char * b;
char ** c;
a .

b
c

z';
&a;
&b;

this, supposing the randomly chosen memory locations of 7230, 8092 and 10502, could be described thus:

a b C

'z'! |#—* 7230 [+—#* 3092
7230 g09z 1050z

(inside the cells there is the content of the variable; under the cells its location)

The new thing in this example is variable ¢, which we can talk about in three different ways, each one of them would
correspond to a different value:

c is a variable of type (char **) with a value of 8092
C is a variable of type (char) with a value of 7230
**c is a variable of type (char) with a val ue of'z'

void pointers

The type of pointer void is a special type of pointer. void pointers can point to any data type, from an integer value or a
float to astring of characters. Its sole limitation is that the pointed data cannot be referenced directly (we can not use
reference asterisk * operator on them), since its length is always undetermined, and for that reason we will aways have
to resort to type casting or assignations to turn our void pointer to a pointer of a concrete data type to which we can refer.

One of its utilities may be for passing generic parameters to a function:

http://www.cplusplus.com/doc/tutorial/tut3-3.html (9 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

/'l integer increaser 6, 10, 13
#i ncl ude <i ostream h>

void increase (void* data, int type)
{
switch (type)
{
case sizeof (char) (*((char*)data))++; break;
case sizeof (short): (*((short*)data))++; break;
case si zeof (1 ong) (*((long*)data)) ++; break;
}
}

int main ()
{
char a = 5;
short b = 9;
long ¢ = 12;
i ncrease (&a, sizeof(a));
i ncrease (&b, sizeof (b));
i ncrease (&c, sizeof(c));
cout << (int) a<<", " << b <", " <<
return 0O;

si zeof isan operator integrated in the C++ language that returns a constant value with the size in bytes of its
parameter, so, for example, si zeof (char) is1, because char typeis1 bytelong.

Pointers to functions

C++ allows operations with pointers to functions. The greatest use of thisisfor passing afunction as a parameter to

another function, since these cannot be passed dereferenced. In order to declare a pointer to afunction we must declare it

like the prototype of the function except the name of the function is enclosed between parenthesis () and a pointer
asterisk (*) isinserted before the name. It might not be avery handsome syntax, but that ishow it isdonein C++:

/1l pointer to functions 8
#i ncl ude <i ostream h>

int addition (int a, int b)
{ return (a+b); }

int subtraction (int a, int b)
{ return (a-b); }

int (*mnus)(int,int) = subtraction;
int operation (int x, int y, int (*functocall)(int,int))

{
int g;

http://www.cplusplus.com/doc/tutorial/tut3-3.html (10 of 11)14-04-2004 18:36:55

C++ Tutorial: 3.3, Pointers.

g = (*functocal l)(x,Yy);
return (g);

}

int main ()

{ .
int mn;
m = operation (7, 5, addition);
n = operation (20, m mnus);
cout <<n;
return O;

In the example, m nus isaglobal pointer to afunction that has two parameters of typei nt , it isimmediately assigned
to point to the function subt r act i on, al inasingleline:

int (* minus)(int,int) = subtraction;

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous. ‘ E ‘ Next:

3-2. Strings of characters. index 3-4. Dynamic memory.

http://www.cplusplus.com/doc/tutorial/tut3-3.html (11 of 11)14-04-2004 18:36:55

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 3.4, Dynamic memory.

Section 3.4 r:pfusgfus
language

Dynamic memory. " tutorial

Until now, in our programs, we have only had as much memory as we have requested in
declarations of variables, arrays and other objects that we included, having the size of all of them
fixed before the execution of the program. But, what if we need a variable amount of memory that
can only be determined during the program execution (runtime), for example, in case that we need
an user input to determine the necessary amount of space?

The answer is dynamic memory, for which C++ integrates the operators new and del ete.

C |[c++| Operators new and delete are exclusive of C++. Farther ahead in this section are
13-!- J shown the C equivalents for these operators.

Operatorsnew and new |

In order to request dynamic memory, the operator new exists. new is followed by a data type and
optionally the number of elements required within brackets|[] . It returns a pointer to the beginning
of the new block of assigned memory. Itsformis:

poi nt er new type
or

poi nter = new type [el enents]

The first expression is used to assign memory to contain one single element of type. The second one
isused to assign ablock (an array) of elements of type.
For example:

int * bobby;
bobby = new int [5];

in this case, the operating system has assigned space for 5 elements of typei nt inaheap and it has
returned a pointer to its beginning that has been assigned to bobby. Therefore, now, bobby points
to avalid block of memory with spacefor 5i nt elements.

http://www.cplusplus.com/doc/tutorial/tut3-4.html (1 of 5)14-04-2004 18:37:04

C++ Tutorial: 3.4, Dynamic memory.

int

&

bobby

Y ou could ask what is the difference between declaring a normal array and assigning memory to a
pointer as we have just done. The most important one is that the size of an array must be a constant
value, which limitsits size to what we decide at the moment of designing the program before its
execution, whereas the dynamic memory allocation allows assigning memory during the execution
of the program using any variable, constant or combination of both as size.

The dynamic memory is generally managed by the operating system, and in multitask interfaces it
can be shared between several applications, so there is a possibility that the memory exhausts. If
this happens and the operating system cannot assign the memory that we request with the operator
new, anull pointer will be returned. For that reason it is recommended to always check to seeif the
returned pointer is null after acall to new.

int * bobby;
bobby = new int [5];
i f (bobby == NULL) {
/'l error assigning nenory. Take neasures.

H

Operator delete.

Since the necessity of dynamic memory is usually limited to concrete moments within a program,
once it isno longer needed it should be freed so that it becomes available for future requests of
dynamic memory. The operator del et e existsfor this purpose, whose formis:

del ete pointer;
or
delete [] pointer;

Thefirst expression should be used to delete memory alloccated for a single element, and the
second one for memory allocated for multiple elements (arrays). In most compilers both
expressions are equivalent and can be used without distinction, although indeed they are two
different operators and so must be considered for operator overloading (we will see that on section

4.2).

http://www.cplusplus.com/doc/tutorial/tut3-4.html (2 of 5)14-04-2004 18:37:04

C++ Tutorid:

3.4, Dynamic memory.

/'l remenb-o-matic How many
#i ncl ude <i ostream h> nunber s
#i ncl ude <stdlib. h> do you
want to
int main () type in?
{ 5
char input [100]; Ent er
int i,n; nunber
long * |; 75
cout << "How many nunbers do you want to type in? "; Enter
cin.getline (input,100); i=atoi (input); nunber
| = new long[i]; 436
if (I == NULL) exit (1); Ent er
for (n=0; n<i; n++) nunber
{ 1067
cout << "Enter nunber: "; Ent er
cin.getline (input,100); I[n]=atol (input); nunber
} 8
cout << "You have entered: "; Ent er
for (n=0; n<i; n++) nunber
cout << |[n] << ", ", 32
delete[] |; You have
return O; ent er ed:
} 75, 436,
1067, 8,
32,

This simple example that memorizes numbers does not have alimited amount of numbers that can
be introduced, thanks to us requesting to the system to provide as much space as is necessary to
store al the numbers that the user wishes to introduce.

NULL isaconstant value defined in manyfold C++ libraries specially designed to indicate null
pointers. In case that this constant is not defined you can do it yourself by defining it to O:

#define NULL O

It isindifferent to put O or NULL when checking pointers, but the use of NULL with pointersis
widely extended and it is recommended for greater legibility. The reason isthat a pointer israrely
compared or set directly to anumerical literal constant except precisely number 0, and this way this
action is symbolically masked.

http://www.cplusplus.com/doc/tutorial/tut3-4.html (3 of 5)14-04-2004 18:37:04

C++ Tutorial: 3.4, Dynamic memory.

Dynamic memory in ANSI-C

Operators new and delete are exclusive of C++ and they are not available in C language. In C
language, in order to assign dynamic memory we have to resort to the library st dl i b. h. We are
going to see them, since they are also valid in C++ and they are used in some existing programs.

The function malloc
It is the generic function to assign dynamic memory to pointers. Its prototypeis:

void * malloc (size_t nbytes);

where nbyt es isthe number of bytes that we want to be assigned to the pointer. The function
returns a pointer of typevoi d*, which is the reason why we have to type cast the value to the type
of the destination pointer, for example:

char * ronny;
ronny = (char *) malloc (10);

Thisassignsto r onny apointer to an usable block of 10 bytes. When we want to assign a block of
data of a different type other than char (different from 1 byte) we must multiply the number of
elements desired by the size of each element. Luckyly we have at our disposition the operator

si zeof , that returns the size of the type of a concrete datum.

int * bobby;
bobby = (int *) malloc (5 * sizeof(int));

This piece of code assignsto bobby a pointer to ablock of 5 integers of type int, this size can be
equal to 2, 4 or more bytes according to the system where the program is compiled.

The function calloc.
cal | oc isvery similar tomal | oc initsoperation, its main differenceisin its prototype:

void * calloc (size_t nelenents, size_t size);

since it admits 2 parameters instead of one. These two parameters are multiplied to obtain the total
size of the memory block to be assigned. Usually the first parameter (nel enent s) isthe number
of elements and the second one (si ze) serves to specify the size of each element. For example, we
could define bobby with cal | oc thus:

int * bobby;
bobby = (int *) calloc (5, sizeof(int));

http://www.cplusplus.com/doc/tutorial/tut3-4.html (4 of 5)14-04-2004 18:37:04

C++ Tutorial: 3.4, Dynamic memory.

Another difference between mal | oc andcal | oc isthat cal | oc initidlizates al its e ementsto
0.

Thefunction realloc.
It changes the size of a block of memory already assigned to a pointer.

void * realloc (void * pointer, size t size);

poi nt er parameter receives a pointer to an already assigned memory block or anull pointer, and
Si ze specifies the new size that the memory block shall have. The function assigns si ze bytes of
memory to the pointer. The function may need to change the location of the memory block so that
the new size can fit, in that case the present content of the block is copied to the new oneto
guarantee that the existing datais not lost. The new pointer is returned by the function. If it has not
been posible to assign the memory block with the new size it returns a null pointer but the

poi nt er specified as parameter and its content remains unchanged.

Thefunction free.
It releases a block of dynamic memory previously assigned usingmal | oc,cal | oc orreal | oc.

void free (void * pointer);

This function must only be used to release memory assigned with functionsmal | oc, cal | oc and
real | oc.

Y ou may obtain more information about these functionsin the C++ reference for cstdlib.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous: = ’ Next:
3-3. Pointers index 3-5. Structures.

http://www.cplusplus.com/doc/tutorial/tut3-4.html (5 of 5)14-04-2004 18:37:04

http://www.cplusplus.com/ref/cstdlib/
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 3.5, Structures.

Section 3.5 cpfusggyms
lane
Structures /anguage

Data structures.

A datastructure is a set of diverse types of datathat may have different lengths grouped
together under a unique declaration. Its form is the following:

struct nodel nane {
typel el enment 1,
type2 el enent 2;
type3 el enent 3;

} obj ect nane;

where nodel _nane isaname for the model of the structure type and the optional
parameter obj ect _nane isavalid identifier (or identifiers) for structure object
Instantiations. Within curly brackets{ } they arethe types and their sub-identifiers
corresponding to the elements that compose the structure.

If the structure definition includes the parameter nodel _nane (optional), that parameter
becomes a valid type name equivalent to the structure. For example:

struct products {
char nane [30];
float price;

b

products appl e;
products orange, melon;

We have first defined the structure model pr oduct s with two fields: nane and pri ce,
each of adifferent type. We have then used the name of the structure type (pr oduct s) to
declare three objects of that type: appl e, or ange and nel on.

Once declared, pr oduct s has become a new valid type name like the fundamental ones

http://ww.cplusplus.com/doc/tutorial /tut3-5.html (1 of 8)14-04-2004 18:37:11

C++ Tutorial: 3.5, Structures.

int, char or short and we are able to declare objects (variables) of that type.

The optional field obj ect _nane that can go at the end of the structure declaration serves
to directly declare objects of the structure type. For example, we can also declare the
structure objects appl e, or ange and nel on thisway:

struct products {
char nane [30];
float price;
} appl e, orange, nelon;

Moreover, in cases like the last one in which we took advantage of the declaration of the
structure model to declare objects of it, the parameter nodel _nane (in this case

pr oduct s) becomes optional. Although if nodel _nane isnot included it will not be
possible to declare more objects of this same model |ater.

It isimportant to clearly differentiate between what is a structure model, and what is a
structure object. Using the terms we used with variables, the model is the type, and the object
Isthe variable. We can instantiate many objects (variables) from a single model (type).

Once we have declared our three objects of a determined structure model (appl e, or ange
and el on) we can operate with the fields that form them. To do that we have to use a point
(.) inserted between the object name and the field name. For example, we could operate
with any of these elements asif they were standard variables of their respective types:

appl e. nane
appl e. price
or ange. nane
or ange. price
mel on. nane
nmel on. price

each one being of its corresponding data type: appl e. nane, or ange. nane and nel on.
name areof typechar [30] ,andappl e. pri ce,orange. pri ce andnel on. price
are of typef | oat .

We are going to leave apples, oranges and melons and go with an example about movies:

http://ww.cplusplus.com/doc/tutorial /tut3-5.html (2 of 8)14-04-2004 18:37:11

C++ Tutorial: 3.5, Structures.

/| exanpl e about structures
#i ncl ude <i ostream h>

#i ncl ude <string. h>

#i ncl ude <stdlib. h>

struct novies_ t {
char title [50];
I nt year;

} mne, yours;

void printnovie (novies_t novie),;

int main ()

{
char buffer [50];

strcpy (mne.title, "2001 A Space (Qdyssey");
m ne. year = 1968;

cout << "Enter title: ";
cin.getline (yours.title,50);
cout << "Enter year: ";

cin.getline (buffer, 50);

yours.year = atoi (buffer);

cout << "My favourite novie is:\n ";
printnovie (mne);

cout << "And yours:\n ";
printnovie (yours);

return O;
}
void printnovie (novies_t novie)
{

cout << novie.title;
cout << " (" << npvie.year << ")\n";

http://ww.cplusplus.com/doc/tutorial /tut3-5.html (3 of 8)14-04-2004 18:37:11

Ent er

title: Alien
Enter year:
1979

M

favourite
novi e is:
2001 A
Space
Qdyssey
(1968)
And yours:
Alien
(1979)

C++ Tutorial: 3.5, Structures.

The example shows how we can use the elements of a structure and the structure itself as
normal variables. For example, your s. year isavalid variable of typei nt , and m ne.
titleisavalidarray of 50 chars.

Noticethat m ne and your s are also treated as valid variables of type novi es_t when
being passed to the function pr i nt novi e() . Therefore, one of the most important
advantages of structuresisthat we can refer either to their elementsindividually or to the
entire structure as a block.

Structures are a feature used very often to build data bases, specialy if we consider the
possibility of building arrays of them.

/'l array of structures Ent er
#i ncl ude <i ostream h> title:
#i ncl ude <stdlib. h> Alien
Ent er
#define N_MOVIES 5 year: 1979
Ent er
struct novies_t { title:

char title [50]; Bl ade

I nt year, Runner

} films [N_MOVIES]; Ent er
year: 1982

void printnovie (novies_t novie); Ent er
title:

int main () Mat ri x

{ Ent er

char buffer [50]; year: 1999

I nt n; Ent er

for (n=0; n<N_MOVIES; n++) title:

{ Rear W ndow
cout << "Enter title: "; Ent er
cin.getline (films[n].title, 50); year: 1954
cout << "Enter year: "; Ent er
cin.getline (buffer,50); title:
films[n].year = atoi (buffer); Taxi Driver

} Ent er

cout << "\nYou have entered these novies:\n"; year: 1975

http://ww.cplusplus.com/doc/tutorial /tut3-5.html (4 of 8)14-04-2004 18:37:11

C++ Tutorial: 3.5, Structures.

for (n=0; n<N_MOVIES; n++)
printnmovie (filnms[n]); You have
return O; ent er ed
} t hese
novi es:
void printnovie (novies_t novie) Alien
{ (1979)
cout << novie.title; Bl ade
cout << " (" << novie.year << ")\n"; Runner
} (1982)
Mat ri x
(1999)
Rear
W ndow
(1954)
Taxi
Driver
(1975)

Pointers to structures

Like any other type, structures can be pointed by pointers. The rules are the same as for any
fundamental datatype: The pointer must be declared as a pointer to the structure:

struct novies_t {
char title [50];
I nt year,

b

novi es_t anovi e;
novies_t * pnovi e,

Hereanovi e isan object of struct type novi es_t and pnovi e isapointer to point to
objects of struct type novi es_t . So, the following, as with fundamental types, would also
be valid:

pnovi e = &anovi e;

http://ww.cplusplus.com/doc/tutorial /tut3-5.html (5 of 8)14-04-2004 18:37:11

C++ Tutorial: 3.5, Structures.

Ok, we will now go with another example, that will serve to introduce a new operator:

/'l pointers to structures Enter title:

#i ncl ude <i ostream h> Matri x

#i ncl ude <stdlib. h> Enter year: 1999

struct novies_ t { You have entered:
char title [50]; Matri x (1999)
I nt year;

b

int main ()

{

char buffer[50];

novi es_t anovi e;
novies_t * pnovi e;
prnovie = & anovi e;

cout << "Enter title: ";

cin.getline (pnovie->title, 50);
cout << "Enter year: ",
cin.getline (buffer, 50);

prnovi e- >year = atoi (buffer);

cout << "\nYou have entered:\n";

cout << pnovie->title;

cout << " (" << pnovie->year << ")\n";

return O;

The previous code includes an important introduction: operator - >. Thisis areference
operator that is used exclusively with pointers to structures and pointersto classes. It allows

http://www.cplusplus.com/doc/tutorial/tut3-5.html (6 of 8)14-04-2004 18:37:11

C++ Tutorial: 3.5, Structures.

us not to have to use parenthesis on each reference to a structure member. In the example we
used:

prnovi e->title
that could be trand ated to:

(*provie).title
both expressionspnovi e->titl eand(*pnovi e).titl e arevaidand mean that we
areevaluating theelement t i t | e of the structure pointed by pnovi e. You must
distinguish it clearly from:

*pnovie.title
that is equivaent to

*(provie.title)

and that would serve to evaluate the value pointed by element t i t | e of structure novi es,
that in this case (where title is not a pointer) it would not make much sense. The following
panel summarizes possible combinations of pointers and structures:

Expression Description Equivalent

Elementti t | e of structure

provie.title :
prmovi e

Elementti t | e of structure
pointed by pnovi e

Value pointed by element
titl e of structurepnovi e

prnovie->title (*provie).title

*pnovie.title *(provie.title)

Nesting structures

Structures can also be nested so that avalid element of a structure can also be another
structure.

http://ww.cplusplus.com/doc/tutorial /tut3-5.html (7 of 8)14-04-2004 18:37:11

C++ Tutorial: 3.5, Structures.

struct novies_t {
char title [50];
I nt year;

}

struct friends_t {
char nanme [50];
char email [50];
novi es_t favourite_novie;
} charlie, maria;

friends_t * pfriends = &charli e;
Therefore, after the previous declaration we could use the following expressions:

charlie. nane

maria.favourite novie.title
charlie.favourite novie.year
pfriends->favourite novie.year

(where, by the way, the last two expressions are equivalent).

The concept of structures that has been discussed in this section isthe sameasused in C
language, nevertheless, in C++, the structure concept has been extended up to the same
functionality of aclass with the peculiarity that al of its elements are considered public. But
you will have more details about this topic on section 4.1, Classes.

© The C++ Resources Network, 2000-2001 - All rights reserved

.M

ex 3-6. User defined data types.

Previous:
3-4. Dynamic memory in

Q.

http://ww.cplusplus.com/doc/tutorial /tut3-5.html (8 of 8)14-04-2004 18:37:11

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 3.6, User defined data types.

Section 3.6 Epfus;_rfus
langunage

User defined datatypes | | tutorial

We have already seen a data type that is defined by the user (programmer): the structures.
But in addition to these there are other kinds of user defined data types:

Definition of own types (t ypedef).

C++ allows us to define our own types based on other existing data types. In order to do that
we shall use keywordt ypedef , whoseformis:

t ypedef exi sting_type new_type_nane ;

whereexi st i ng_t ype isaC++ fundamental or any other defined type and
new_t ype_nane isthe name that the new type we are going to define will receive. For
example:

t ypedef char C

t ypedef unsigned int WORD;
t ypedef char * string_t;

t ypedef char field [50];

In this case we have defined four new datatypes. C, WORD, string_t andfi el das
char,unsi gned i nt,char* andchar[50] respectively, that we could perfectly use
later as valid types:

C achar, anotherchar, *ptcharl;
WORD nywor d;

string_t ptchar?2;

field nane;

t ypedef can be useful to define atype that is repeatedly used within aprogram and it is
possible that we will need to changeit in alater version, or if atype you want to use has too
long a name and you want it to be shorter.

Unions

http://ww.cplusplus.com/doc/tutorial /tut3-6.html (1 of 5)14-04-2004 18:37:26

C++ Tutorial: 3.6, User defined data types.

Unions allow a portion of memory to be accessed as different data types, since all of them
are in fact the same location in memory. Its declaration and use is similar to the one of
structures but its functionality istotally different:

uni on nodel nane {
typel el enent1;
type2 el enent 2;
type3 el enent 3;

} object nane;

All the elements of the union declaration occupy the same space of memory. Itssizeisthe
one of the greatest element of the declaration. For example:

uni on nytypes_t {
char c;
int i;
float f;
} nytypes;

defines three e ements:

nytypes. c
nmyt ypes. i
nytypes. f

each one of adifferent datatype. Since al of them are referring to a same location in
memory, the modification of one of the elements will afect the value of all of them.

One of the uses a union may have isto unite an elementary type with an array or structures
of smaller elements. For example,

uni on m x_t{
l ong |;
struct {

short hi;
short | o;

http://ww.cplusplus.com/doc/tutorial /tut3-6.html (2 of 5)14-04-2004 18:37:26

C++ Tutorial: 3.6, User defined data types.

} s
char c[4];
} mx;

defines three names that allow us to access the same group of 4 bytes: m x. | , m x. s and
m x. ¢ and which we can use according to how we want to accessit, as| ong, short or
char respectively. | have mixed types, arrays and structures in the union so that you can see
the different ways that we can access the data:

mix

mix.=.hi ! mx.s.lo

mx.c[0] = mx.c[1] = mx.c[2] = mx.c[3]

Anonymous unions

-+ | astructure without any object name (the one that goes after the curly brackets
{ }) theunion will be anonymous and we will be able to access the elements
directly by its name. For example, ook at the difference between these two declarations:

[T} [HI;J In C++ we have the option that unions be anonymous. If weinclude aunionin

union anonymous union
struct { struct {
char title[50]; char title[50];
char aut hor[50]; char aut hor[50];
uni on { uni on {
fl oat dollars; fl oat dollars;
I nt yens; I nt yens;
} price; }i
} book; } book;

The only difference between the two pieces of code isthat in the first one we gave a name to
the union (pr i ce) and in the second we did not. The difference is when accessing members

http://ww.cplusplus.com/doc/tutorial /tut3-6.html (3 of 5)14-04-2004 18:37:26

C++ Tutorial: 3.6, User defined data types.

dol | ar s and yens of an object. In the first case it would be:

book. price. dol |l ars
book. pri ce. yens

whereas in the second it would be:

book. dol | ars
book. yens

Once again | remind you that because it isaunion, thefieldsdol | ar s and yens occupy
the same space in the memory so they cannot be used to store two different values. That
means that you can include a price in dollars or yens, but not both.

Enumerations (enum

Enumerations serve to create data types to contain something different that is not limited to
either numerical or character constants nor to the constantst r ue and f al se. Itsform isthe
following:

enum nodel nane {
val uel,
val ue2,
val ue3,

} obj ect nane;

For example, we could create a new type of variable called col or to store colors with the
following declaration:

enum col ors_t {black, blue, green, cyan, red,
purple, yellow white};

Notice that we do not include any fundamental datatype in the declaration. To say it another
way, we have created a new data type without it being based on any existing one: the type
col or _t, whose possible values are the colors that we have enclosed within curly brackets
{} . For example, once declared thecol or s_t enumeration in the following expressions

http://ww.cplusplus.com/doc/tutorial /tut3-6.html (4 of 5)14-04-2004 18:37:26

C++ Tutorial: 3.6, User defined data types.

will be valid:

colors_t nycol or;

mycol or = Dbl ue;
i f (nmycol or == green) nycol or = red,

In fact our enumerated data type is compiled as an integer and its possible values are any
type of integer constant specified. If it is not specified, the integer value equivalent to the
first possible value is 0 and the following ones follow a +1 progression. Thus, in our data
typecol or s_t that we defined before, bl ack would be equivalent to 0, bl ue would be
equivalentto 1, gr een to 2 and so on.

If we explicitly specify an integer value for some of the possible values of our enumerated
type (for example the first one) the following values will be the increases of this, for
example:

enum nonths_t { january=1, february, march, april,
may, june, july, august,
sept enber, october, novenber,
decenber} y2k;

In this case, variable y 2k of the enumerated type nont hs_t can contain any of the 12
possible values that go from j anuar y to decenber and that are equivalent to values
between 1 and 12, not between O and 11 since we have made anuary equal to 1.

© The C++ Resources Network, 2000-2001 - All rights reserved

’M

ex 4-1. Classes.

Previous:
3-5. Structures in

o

http://ww.cplusplus.com/doc/tutorial /tut3-6.html (5 of 5)14-04-2004 18:37:26

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorid: 4.1, Classes

Section 4.1 cpfusggyms
lang
Classes (" tutorial

A classisalogica method to organize data and functions in the same structure. They are
declared using keyword cl ass, whose functionality is similar to that of the C keyword
st ruct , but with the possibility of including functions as members, instead of only data.

Itsformis;

cl ass class_nane {
perm ssion_| abel 1:
menber 1;
perm ssion_| abel 2:
menber 2;

} obj ect nane;

wherecl ass_nane isaname for the class (user defined type) and the optional field

obj ect _nane isone, or severa, valid object identifiers. The body of the declaration can
contain menber s, that can be either data or function declarations, and optionally

per m ssi on | abel s, that can be any of these three keywords: pri vat e: , publi c:
or pr ot ect ed: . They make reference to the permission which the following members
acquire:

. privat e membersof aclass are accessible only from other members of their same
class or from their "friend" classes.

. prot ect ed members are accessible from members of their same class and friend
classes, and also from members of their derived classes.

. Finaly, publ i ¢ members are accessible from anywhere the classisvisible.

If we declare members of a class before including any permission label, the members are
considered pri vat e, sinceit is the default permission that the members of a class declared
with the cl ass keyword acquire.

For example:

cl ass CRectangl e {

http://ww.cplusplus.com/doc/tutorial /tut4-1.html (1 of 12)14-04-2004 18:37:33

C++ Tutorid: 4.1, Classes

Int X, Vy;

public:
void set_values (int,int);
I nt area (void);

} rect;

Declares class CRect angl e and an object called r ect of thisclass (type). This class
contains four members:. two variables of typei nt (x andy) inthepri vat e section
(because private is the default permission) and two functionsin the publ i ¢ section:
set _val ues() andar ea(), of which we have only included the prototype.

Notice the difference between class name and object name: In the previous example,

CRect angl e wasthe class name (i.e., the user-defined type), whereasr ect was an object
of type CRect angl e. Isthe same differencethat i nt and a have in the following
declaration:

I nt a;
I nt isthe class name (type) and a is the object name (variable).

On successive instructions in the body of the program we can refer to any of the public
members of the object r ect asif they were normal functions or variables, just by putting
the object's name followed by a point and then the class member (like we did with C

st ruct s). For example:

rect.set _value (3,4);
myarea = rect.area();

but we will not be ableto refer to x or y since they are private members of the class and they
could only be referred from other members of that same class. Confused? Here is the
complete example of classCRect angl e:

http://ww.cplusplus.com/doc/tutorial /tut4-1.html (2 of 12)14-04-2004 18:37:33

C++ Tutorid: 4.1, Classes

/'l classes exanple area: 12
#i ncl ude <i ostream h>

cl ass CRectangl e {
Int X, vy;
public:
void set _values (int,int);
int area (void) {return (x*y);}

b

voi d CRectangl e::set _values (int a, int b) {
X = a;
y =b;

}

int min () {
CRect angl e rect;
rect.set _values (3,4);
cout << "area: " << rect.area();

The new thing in this code is the operator : : of scope included in the definition of

set val ues() . Itisusedto declare amember of aclass outside it. Notice that we have
defined the behavior of function ar ea() within the definition of the CRect angl e class-
given its extreme simplicity. Whereasset _val ues() hasonly its protype declared within
the class but its definition is outside. In this outside declaration we must use the operator of
scope: : .

The scope operator (: :) specifies the class to which the member being declared belongs,
granting exactly the same scope properties asif it was directly defined within the class. For
example, inthefunctionset _val ues() of the previous code, we have referred to the
variablesx and y, that are members of class CRect angl e and that are only visible inside it
and its members (since they arepri vat e).

The only difference between defining a class member function completely within its class
and to include only the prototype, is that in the first case the function will automatically be
considered inline by the compiler, whilein the second it will be anormal (not-inline) class

http://ww.cplusplus.com/doc/tutorial /tut4-1.html (3 of 12)14-04-2004 18:37:33

C++ Tutorid: 4.1, Classes

member function.

The reason why we have made x andy pri vat e members (remember that if nothing else
Issaid all members of a class defined with keyword class have pri vat e access) it is
because we have already defined a function to introduce those values in the object

(set _val ues()) and therefore the rest of the program does not have away to directly
access them. Perhaps in a so simple example as this you do not see agreat utility protecting
those two variables, but in greater projectsit may be very important that values cannot be
modified in an unexpected way (unexpected from the point of view of the object).

One of the greater advantages of a classisthat we can declare several different objects from
it. For example, following with the previous example of class CRect angl e, we could have

declared the object r ect b in addition to the object r ect :

/'l class exanple
#i ncl ude <i ostream h>

cl ass CRectangl e {
Int x, vy,
public:
void set _values (int,int);
int area (void) {return (x*y);}

b

voi d CRectangl e::set_values (int a, int b) {
X = a;
y = b;

}

int min () {
CRect angl e rect, rectb;
rect.set _values (3,4);
rectb. set _val ues (5, 6);
cout << "rect area: " << rect.area() << endl;
cout << "rectb area: " << rectb.area() << endl;

http://ww.cplusplus.com/doc/tutorial /tut4-1.html (4 of 12)14-04-2004 18:37:33

rect
area. 12
rectb
area. 30

C++ Tutorid: 4.1, Classes

Noticethat thecal tor ect . ar ea() doesnot givethe sameresult asthecall tor ect b.
ar ea() . Thisis because each object of class CRect angl e hasitsown variablesx andy,
and itsown functionsset _val ue() andarea() .

On that is based the concept of object and object-oriented programming. In that data and
functions are properties of the object, instead of the usual view of objects as function
parameters in structured programming. In this and the following sections we will discuss
advantages of this methodology.

In this concrete case, the class (type of object) to which we were talking about is
CRect angl e, of which there are two instances, or objects. r ect andr ect b, each one
with its own member variables and member functions.

Constructors and destructors

Objects generally need to initialize variables or assign dynamic memory during their process
of creation to become totally operative and to avoid returning unexpected values during their
execution. For example, what would happen if in the previous example we called the
function ar ea() before having called function set _val ues? Probably an indetermined
result since the members x and y would have never been assigned avalue.

In order to avoid that, a class can include a specia function: a constructor, which can be
declared by naming a member function with the same name as the class. This constructor
function will be called automatically when a new instance of the classis created (when
declaring a new object or allocating an object of that class) and only then. We are going to
implement CRect angl e including a constructor:

http://ww.cplusplus.com/doc/tutorial /tut4-1.html (5 of 12)14-04-2004 18:37:33

C++ Tutorid: 4.1, Classes

/'l classes exanple rect
#i ncl ude <i ostream h> area: 12
rectb
cl ass CRectangl e { area: 30
I nt width, height;
public:

CRectangle (int,int);
int area (void) {return (w dth*height);}
b

CRectangl e: : CRectangle (int a, int b) {
width = a;
hei ght = b;

}

int min () {
CRectangle rect (3,4);
CRectangle rectb (5, 6);
cout << "rect area: " << rect.area() << endl;
cout << "rectb area: " << rectb.area() << endl;

Asyou can see, the result of thisexampleisidentical to the previous one. In this case we
have only replaced the function set _val ues, that no longer exists, by a class constructor.
Notice the way in which the parameters are passed to the constructor at the moment at which
the instances of the class are created:

CRectangle rect (3,4);
CRectangle rectb (5, 6);

Y ou can also see how neither the prototype nor the later constructor declaration includes a
return value, not even voi d type. This must aways be thus. A constructor never returns a
value nor doesthe voi d have to be specified, as we have shown in the previous example.

The Destructor fulfills the opposite functionality. It is automatically called when an object
Is released from the memory, either because its scope of existence has finished (for example,
If it was defined as alocal object within afunction and the function ends) or becauseit isan

http://ww.cplusplus.com/doc/tutorial /tut4-1.html (6 of 12)14-04-2004 18:37:33

C++ Tutorid: 4.1, Classes

object dynamically assigned and it is released using operator del et e.

The destructor must have the same name as the class with atilde (~) as prefix and it must
return no value.

The use of destructorsis specially suitable when an object assigns dynamic memory during
its life and at the moment of being destroyed we want to release the memory that it has used.

/'l exanple on constructors and destructors rect
#i ncl ude <i ostream h> area: 12
rectb
cl ass CRectangl e { area: 30
int *width, *height;
public:

CRectangle (int,int);

~CRectangl e ();

int area (void) {return (*wdth * *height);}
b

CRectangl e: : CRectangle (int a, int b) {
wi dth = new int;

hei ght = new int;
*Width = a;
*hei ght = b;

}

CRect angl e: : ~CRectangle () {
del ete w dt h;
del et e hei ght;

}

int min () {
CRectangle rect (3,4), rectb (5,6);
cout << "rect area: " << rect.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
return O;

http://ww.cplusplus.com/doc/tutorial /tut4-1.html (7 of 12)14-04-2004 18:37:33

C++ Tutorid: 4.1, Classes

Overloading Constructors

Like any other function, a constructor can also be overloaded with several functions that
have the same name but different types or numbers of parameters. Remember that the
compiler will execute the one that matches at the moment at which a function with that name
Iscalled (Section 2.3, Functions-11). In this case, at the moment at which aclass object is

declared.

In fact, in the cases where we declare a class and we do not specify any constructor the
compiler automatically assumes two overloaded constructors ("default constructor" and
"copy constructor™). For example, for the class:

cl ass CExanpl e {

public:
int a,b,c;
void multiply (int n, int m { a=n; b=m
c=a*b; };
b

with no constructors, the compiler automatically assumes that it has the following
constructor member functions:

. Empty constructor
It is a constructor with no parameters defined as nop (empty block of instructions). It
does nothing.

CExanpl e: : CExanple () { };
. Copy constructor

It is a constructor with only one parameter of its same type that assignsto every
nonstatic class member variable of the object a copy of the passed object.

CExanpl e: : CExanpl e (const CExanple& rv) {
a=rv.a; b=rv.b; c=rv.c;

}

It is important to realize that both default constructors: the empty construction and the copy
constructor exist only if no other constructor is explicitly declared. In case that any

http://ww.cplusplus.com/doc/tutorial /tut4-1.html (8 of 12)14-04-2004 18:37:33

C++ Tutorid: 4.1, Classes

constructor with any number of parameters is declared, none of these two default
constructors will exist. So if you want them to be there, you must define your own ones.

Of course, you can aso overload the class constructor providing different constructors for
when you pass parameters between parenthesis and when you do not (empty):

/'l overl oadi ng class constructors rect
#i ncl ude <i ostream h> area: 12
rectb
cl ass CRectangl e { area: 25
int width, height;
publ i c:

CRectangle ();

CRectangle (int,int);

int area (void) {return (w dth*height);}
}

CRect angl e: : CRectangl e () {
wi dth = 5;
hei ght = 5;

}

CRect angl e: : CRectangle (int a, int b) {
wi dth = a;
hei ght = b;

}

int main () {
CRectangle rect (3,4);
CRect angl e rectb;
cout << "rect area:
cout << "rectb area:

<< rect.area() << endl;
<< rectb.area() << endl;

Inthiscaser ect b was declared without parameters, so it has been initialized with the
constructor that has no parameters, which declares bothwi dt h and hei ght with avalue
of 5.

http://ww.cplusplus.com/doc/tutorial /tut4-1.html (9 of 12)14-04-2004 18:37:33

C++ Tutorid: 4.1, Classes

Notice that if we declare a new object and we do not want to pass parameters to it we do not
include parentheses () :

CRect angl e rectb; /'l right
CRectangl e rectb(); // wong!

Pointers to classes

It is perfectly valid to create pointers pointing to classes, in order to do that we must simply
consider that once declared, the class becomes avalid type, so use the class name as the type
for the pointer. For example:

CRectangl e * prect;

IS a pointer to an object of class CRect angl e.

As it happens with data structures, to refer directly to a member of an object pointed by a
pointer you should use operator - >. Here is an example with some possible combinations:

/'l pointer to classes exanple a area: 2
#i ncl ude <i ostream h> *b area: 12
*c area: 2
cl ass CRectangl e { d[0] area:
I nt width, height; 30
public: d[1] area:
void set _values (int, int); 56
int area (void) {return (width * height);}
b
voi d CRectangle::set _values (int a, int b) {
wi dth = a;
hei ght = b;
}

int min () {
CRectangle a, *b, *c;
CRectangle * d = new CRect angl e[2] ;
b= new CRect angl e;

http://www.cplusplus.com/doc/tutorial /tut4-1.html (10 of 12)14-04-2004 18:37:33

C++ Tutorid: 4.1, Classes

c= &a;

a.set _values (1, 2);

b- >set val ues (3, 4);
d- >set _val ues (5, 6);
d[1] . set _val ues (7,8);

cout << "a area: " << a.area() << endl;

cout << "*b area: " << b->area() << endl;
cout << "*c area: " << c->area() << endl;
cout << "d[0] area: " << d[0].area() << endl;
cout << "d[1] area: " << d[1].area() << endl;
return O;

Next you have a summary on how can you read some pointer and class operators (*,

& ., ->, [])that appear inthe previous example:
* X can be read: pointed by x
&X can be read: address of x
X.y can be read: nenber y of object x

(*x).y can be read: nenber y of object pointed by x
X- >y can be read: nenber y of object pointed by x
(equivalent to the previ ous one)

x[0] can be read: first object pointed by x

x[1] can be read: second object pointed by x

X[n] can be read: (n+1)th obj ect pointed by x

Be sure you understand the logic of all of these before going on. If you have doubts, read
again this section and/or consult sections " 3.3, Pointers" and "3.5, Structures”.

Classes defined with keyword st r uct

C++ language has extended the C keyword st r uct to the same functionality of the C++
cl ass keyword except that its members are publ i ¢ by default instead of being
private.

Anyway, because both cl ass and st r uct have amost the same functionality in C++,
st ruct isusualy used for data-only structures and cl ass for classes that have procedures

http://www.cplusplus.com/doc/tutorial /tut4-1.html (11 of 12)14-04-2004 18:37:33

C++ Tutorid: 4.1, Classes

and member functions.

© The C++ Resources Network, 2000 - All rights reserved

’m

4-2. Overloading oper ators. this.
Static members.

Previous: =
3-6. User defined data types. index

http://www.cplusplus.com/doc/tutorial /tut4-1.html (12 of 12)14-04-2004 18:37:33

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutoria: 4.2, Overloading operators

Section 4.2 Epfus;_rfus
langunage

Overloading operators " tutorial

C++ incorporates the option to use language standard operators between classes in addition
to between fundamental types. For example:

Is perfectly valid, since the different variables of the addition are all fundamental types.
Nevertheless, is not so obvious that we can perform the following operation (in fact it is
Incorrect):

struct { char product [50]; float price; } a, b, c;
a=>b+ c

The assignation of aclass (or st r uct) to another one of the same typeis allowed (default
copy constructor). What would produce an error would be the addition operation, that in
principleis not valid between non-fundamental types.

But thanks to the C++ ability to overload operators, we can get to do that. Objects derived
from composed types such as the previous one can accept operators which would not be
accepted otherwise, and we can even modify the effect of operators that they already admit.
Hereisalist of al the operators that can be overloaded:

+ - * / = < > += -= * = /
= << >>

<<= >>= == | = <= >= ++ - % &

= & "= = & || % [l () new
del ete

To overload an operator we only need to write a class member function whose nameis
oper at or followed by the operator sign that we want to overload, following this
prototype:

type operator sign (paraneters);

http://ww.cplusplus.com/doc/tutorial /tut4-2.html (1 of 8)14-04-2004 18:37:37

C++ Tutoria: 4.2, Overloading operators

Here you have an example that includes the operator +. We are going to sum the
bidimensional vectorsa(3, 1) andb(1, 2) . The addition of two bidimensional vectorsis
an operation as simple as adding the two x coordinates to obtain the resulting x coordinate
and adding the two y coordinates to obtain the resulting y. In this case the result will be (3
+1, 1+2) = (4,3).

/'l vectors: overl oadi ng operators exanpl e 4,3
#i ncl ude <i ostream h>

cl ass CVector {
publ i c:
int X,Vy;
Cvector () {};
CVector (int,int),;
CVect or operator + (CVector);

¥

CVector::CVector (int a, int b) {
X = a;
y = b;

}

CVector CVector::operator+ (CVector param {
CVector tenp;
tenp.x = X + param X;
tenp.y =y + paramy;
return (tenp);
}

int min () {
CVector a (3,1);
CVector b (1, 2);
CVector c;
cC =a + b
cout << c.x << "," << c.Yy;
return O;

http://ww.cplusplus.com/doc/tutorial /tut4-2.html (2 of 8)14-04-2004 18:37:37

C++ Tutoria: 4.2, Overloading operators

If you are baffled seeing CVect or so many times, consider that some of them make
reference to the class name CVect or and others are functions with that name. Do not

confuse them:
CVector (int, int); /'l function nane
CVector (constructor)
CVector operator+ (CVector); /1 function operator+

that returns CVector type

The function oper at or + of class CVect or istheonethat isin charge of overloading the
arithmetic operator +. This one can be called by any of these two ways.

c = a + b;
c = a.operator+ (b);

Notice also that we have incuded the empty constructor (without parameters) and we have
defined it with a no-op block of instructions:

CVector () { };
thisis necessary, since there already exists another constructor,
CVector (int, int);

so none of the default constructors will exist in CVect or if we do not explicitly declare
one as we have done. Otherwise the declaration

CVector c;
included in mai n() would not be valid.

Anyway, | have to warn you that a no-op block is not a recommended implementation for
aconstructor, since it does not fulfill the minimum functionality that a constructor should
have, which isthe initialization of all the variablesin the class. In our case this constructor
leaves variables x and y undefined. Therefore, a more advisable declaration would have
been something similar to this:

http://www.cplusplus.com/doc/tutorial/tut4-2.html (3 of 8)14-04-2004 18:37:37

C++ Tutoria: 4.2, Overloading operators

CVector () { x=0; y=0; };

that for simplicity | have not included in the code.

Aswell as aclassincludes by deafult an empty and a copy constructor, it also includes a
default definition for the assignation operator (=) between two classes of the same type.
This copies the whole content of the non-static data members of the parameter object (the
one at theright side of the sign) to the one at the left side. Of course, you can redefineit to
any other functionality that you want for this operator, like for example, copy only certain
class members.

The overload of operators does not force its operation to bear arelation to the mathematical
or usual meaning of the operator, although it is recommended. For example, it isnot very
logical to use operator + to subtract two classes or operator == to fill with zeros a class,
although it is perfectly possible to do so.

Although the prototype of afunction oper at or + can seem obvious since it takes the right
side of the operator as the parameter for the function oper at or + of the left side object,
other operators are not so clear. Here you have atable with a summary on how the different
operator functions must be declared (replace @by the operator in each case):

Expression | Operator (@ | Function member Global function
+ - *
@ & ! ~ ++ |A :operator@) operator @A)
N A.:operator@ | operator @A,
2@ i (i nt) i nt)
+ - * |/
%" & |
== |
a@ z Z: o A . operator @B) [operator @A, B)
<< >> &&

http://www.cplusplus.com/doc/tutorial /tut4-2.html (4 of 8)14-04-2004 18:37:37

C++ Tutoria: 4.2, Overloading operators

= 4= -=
*= /= %
a@ A= &= | = |A :operator@B) -
<<= >>=
[]
a(b, 0) A : operator() i
C...) (B, C..)
a->b -> A :operator->() -
* where a isan object of class A, b isan object of class B and ¢ is an object of
classC.

Y ou can seein this panel that there are two ways to overload some class operators. as
member function and as global function. Its useisindistinct, nevertheless | remind you that
functions that are not members of a class cannot accessthepri vat e or pr ot ect ed
members of the class unless the global functionisf r i end of the class (friend is explained
later).

The keyword t hi s

The keywordt hi s represents within a class the address in memory of the object of that
class that is being executed. It is a pointer whose value is always the address of the object.

It can be used to check if a parameter passed to a member function of an object is the object
itself. For example,

[l this yes, & is b
#i ncl ude <i ostream h>

cl ass CDumy {
publi c:
int isitme (CDumy& param;
¥

i nt CDumy::isitnme (CDummyé& param
{

I f (&aram == this) return 1;
el se return O;

http://www.cplusplus.com/doc/tutorial /tut4-2.html (5 of 8)14-04-2004 18:37:37

C++ Tutoria: 4.2, Overloading operators

}

int main () {
CDummy a,
CDumy* b = &a;
If (b->isitne(a))
cout << "yes, &a is b";
return O;

It isalso frequenty used in oper at or = member functions that return objects by reference
(avoiding the use of temporary objects). Following with the vector's examples seen before
we could have written an oper at or = function like this:

CVector & CVector::operator= (const CVector& param
{

X=par am X;
y=paramy;
return *this;

}

In fact thisis a probable default code generated for the classif we include no oper at or =
member function.

Static members

A class can contain static members, either data or functions.

Static data members of a class are also known as "class variables', because their content
does not depend on any object. There is only one unique value for all the objects of that
same class.

For example, it may be used for a variable within a class that can contain the number of
objects of that class that have been declared, asin the following example:

http://www.cplusplus.com/doc/tutorial /tut4-2.html (6 of 8)14-04-2004 18:37:37

C++ Tutoria: 4.2, Overloading operators

/]l static nenbers in classes 7
#i ncl ude <i ostream h>

(o)}

cl ass CDumy {
public:
static int n;
Coummy () { n++ };
} ~Chumy () { n--; };

I nt CDummy: : n=0;

int min () {
CDummy a,;
CDunmy b[5] ;
CDummy * ¢ = new CDumy;
cout << a.n << endl;
del ete c;
cout << CDumy::n << endl;
return O;

In fact, static members have the same properties as global variables but they enjoy class
scope. For that reason, and to avoid that they may be declared several times, according to
ANSI-C++ standard, we can only include the protype (declaration) in the class declaration
but not the definition (initialization). In order to initialize a static data-member we must
include aformal definition outside the class, in the global scope, asin the previous example.

Because it isaunique variable for al the objects of the same class, it can be referred to asa
member of any object of that class or even directly by the class name (of course thisisonly
valid for static members):

cout << a.n;
cout << CDummy: :n;

These two calls included in the previous example are referring to the same variable: the
static variable n within class CDummy .

http://www.cplusplus.com/doc/tutorial /tut4-2.html (7 of 8)14-04-2004 18:37:37

C++ Tutoria: 4.2, Overloading operators

Once again, | remind you that in fact it isa global variable. The only differenceisits name
outside the class.

Just as we may include static data within a class, we can also include static functions. They
represent the same: they are global functions that are called as if they were object members
of agiven class. They can only refer to static data, in no case to nonstatic members of the
class, aswell asthey do not allow the use of the keyword t hi s, since it makes reference to
an object pointer and these functionsin fact are not members of any object but direct
members of the class.

© The C++ Resources Network, 2000-2001 - All rights reserved

.M

4-3. Relationships between
classes. I nheritance.

Previous: ‘
[

4-1. Classes.

1
2

naex

http://ww.cplusplus.com/doc/tutorial /tut4-2.html (8 of 8)14-04-2004 18:37:37

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorid: 4.3, Relationships between Classes

Section 4.3 Epfus;_rfus
langunage

Relationships between classes " tutorial

Friend functions (fri end keyword)

In the previous section we have seen that there were three levels of internal protection for the
different members of aclass. public, protected and private. In the case of members
protected and private, these could not be accessed from outside the same class at which they
are declared. Nevertheless, this rule can be transgressed with the use of thef ri end
keyword in aclass, so we can allow an external function to gain accessto the pr ot ect ed
and pr i vat e members of aclass.

In order to allow an external function to have accessto the pri vat e and pr ot ect ed
members of a class we have to declare the prototye of the external function that will gain
access preceded by the keyword f r i end within the class declaration that shares its
members. In the following example we declare the friend function dupl i cat e:

[/ friend functions 24
#i ncl ude <i ostream h>

cl ass CRectangl e {
I nt width, height;
public:
void set _values (int, int);
int area (void) {return (width * height);}
friend CRectangl e duplicate (CRectangle);

b
voi d CRectangl e::set_values (int a, int b) {
wi dth = a;
hei ght = b;
}
CRect angl e duplicate (CRectangle rectparam
{

CRect angl e rectres;
rectres.w dth = rectparam w dt h*2;

http://www.cplusplus.com/doc/tutorial /tut4-3.html (1 of 10)14-04-2004 18:37:44

C++ Tutorid: 4.3, Relationships between Classes

rectres. hei ght = rectparam hei ght *2;
return (rectres);

}

int min () {
CRect angl e rect, rectb;
rect.set _values (2,3);
rectb = duplicate (rect);
cout << rectb.area();

From withinthedupl i cat e function, that isafriend of CRect angl e, we have been able
to access the memberswi dt h and hei ght of different objects of type CRect angl e.
Notice that neither in the declaration of dupl i cat e() norinitslater useinmai n() have
we considered dupl i cat e asamember of class CRect angl e. Itisn't.

The friend functions can serve, for example, to conduct operations between two different
classes. Generally the use of friend functions is out of an object-oriented programming
methodology, so whenever possible it is better to use members of the same class to make the
process. Such asin the previous example, it would have been shorter to integrate

dupl i cat e() withinthe class CRect angl e.

Friend classes (fri end)

Just as we have the possibility to define a friend function, we can aso define aclass as friend
of another one, allowing that the second one accessto the pr ot ect ed and pri vat e
members of the first one.

http://www.cplusplus.com/doc/tutorial /tut4-3.html (2 of 10)14-04-2004 18:37:44

C++ Tutoria: 4.3, Relationships between Classes

/] friend class 16
#i ncl ude <i ostream h>

cl ass CSquar e;

cl ass CRectangl e {
I nt width, height;
public:
I nt area (void)
{return (wdth * height);}
voi d convert (CSquare a);

};

cl ass CSquare {
private:
I nt side;
public:
void set_side (int a)
{side=a;}
friend cl ass CRectangl e;

};

voi d CRectangl e::convert (CSquare a) {
w dth = a. side;
hei ght = a. si de;

}

int min () {
CSquar e sqr;
CRect angl e rect;
sqr.set _side(4);
rect.convert(sqr);
cout << rect.area();
return O;

In this example we have declared CRect angl e asafriend of CSquar e so that
CRect angl e can accessthe pr ot ect ed and pr i vat e members of CSquar e, more

http://www.cplusplus.com/doc/tutorial/tut4-3.html (3 of 10)14-04-2004 18:37:44

C++ Tutorid: 4.3, Relationships between Classes

concretely CSquar e: : si de, that defines the square side width.

Y ou may also see something new in the first instruction of the program, that is the empty
prototype of class CSquar e. Thisis necessary because within the declaration of

CRect angl e werefer to CSquar e (asaparameter inconvert ()). The definition of
CSquar e isincluded later, so if we did not include a previous definition for CSquar e this
class would not be visible from within the definition of CRect angl e.

Consider that friendships are not corresponded if we do not explicitly specify it. In our
CSquar e example CRect angl e isconsidered asaclass friend, but CRect angl e does
not do the proper thing with CSquar e, so CRect angl e can accessto the pr ot ect ed
and pr i vat e members of CSquar e but not the reverse way. Although nothing prevents us
from declaring CSquar e asafriend of CRect angl e.

Inheritance between classes

An important feature of classesisinheritance. This allows us to create an object derived
from another one, so that it may include some of the other's members plusits own. For
example, we are going to suppose that we want to declare a series of classes that describe
polygons like our CRect angl e, or CTri angl e. They have certain common features,
such as both can be described by means of only two sides. height and base.

This could be represented in the world of classes with a class CPol ygon from which we
would derive the two referred ones, CRect angl e and CTr i angl e.

P =— =
CPolygon !
L L L -l
CRectangle
CTriangle

The class CPol ygon would contain members that are common for all polygons. In our
case: W dt h and hei ght . And CRect angl e and CTr i angl e would beits derived
classes.

http://www.cplusplus.com/doc/tutorial /tut4-3.html (4 of 10)14-04-2004 18:37:44

C++ Tutorid: 4.3, Relationships between Classes

Classes derived from others inherit all the visible members of the base class. That means that
if abase class includes a member A and we derive it to another class with another member
caled B, the derived class will contain both A and B.

In order to derive a class from another, we must use the operator : (colon) in the declaration
of the derived classin the following way:

cl ass derived class _nane: public base class nane;

whereder i ved cl ass_nane isthe name of the derived classand base cl ass_nane
Isthe name of the class on which it is based. publ i ¢ may be replaced by any of the other
access specifiers pr ot ect ed or pri vat e, and describes the access for the inherited
members, as we will seeright after this example:

[/ derived cl asses 20
#i ncl ude <i ostream h> 10

cl ass CPol ygon {
pr ot ect ed:
int wdth, height;
publ i c:
void set _values (int a, int b)
{ width=a; height=b;}
}s

cl ass CRectangl e: public CPol ygon {
publ i c:
I nt area (void)
{ return (wdth * height); }
}

cl ass CTriangl e: public CPol ygon {
publ i c:
I nt area (void)
{ return (wdth * height / 2); }
}s

int min () {
CRect angl e rect;

http://www.cplusplus.com/doc/tutorial /tut4-3.html (5 of 10)14-04-2004 18:37:44

C++ Tutorid: 4.3, Relationships between Classes

Clriangle trgl,;

rect.set values (4,5);
trgl.set _values (4,5);

cout << rect.area() << endl;
cout << trgl.area() << endl;
return O;

Asyou may see, objects of classes CRect angl e and CTr i angl e each contain members
of CPol ygon, that are: wi dt h, hei ght andset val ues().

The pr ot ect ed specifierissimilar to pri vat e, itsonly difference occurs when deriving
classes. When we derive aclass, pr ot ect ed members of the base class can be used by
other members of the derived class, neverthelesspr i vat e member cannot. Since we
wanted wi dt h and hei ght to have the ability to be manipulated by members of the
derived classes CRect angl e and CTr i angl e and not only by members of CPol ygon,
we have used pr ot ect ed accessinstead of pri vat e.

We can summarize the different access types according to whom can access them in the
following way:

Access public |protected|private
members of thesameclass | yes yes yes
members of derived classes| yes yes no
not-members yes no no

where "not-members" represent any reference from outside the class, such asfrom mai n() ,
from another class or from any function, either global or local.

In our example, the members inherited by CRect angl e and CTr i angl e follow with the
same access permission as in the base class CPol ygon:

CPol ygon: :wi dth /| protected access
CRectangl e: :w dt h /| protected access
CPol ygon: : set _val ues() /'l public access

http://www.cplusplus.com/doc/tutorial /tut4-3.html (6 of 10)14-04-2004 18:37:44

C++ Tutorid: 4.3, Relationships between Classes

CRect angl e: : set _values() // public access
Thisis because we have derived a class from the other as publ i ¢, remember:
cl ass CRectangl e: public CPol ygon;

thispubl i ¢ keyword represents the minimum level of protection that the inherited
members of the base class (CPol ygon) must acquire in the new class (CRect angl e). The
minimum access level for the inherited members can be changed by specifying pr ot ect ed
or pri vat e instead of publ i c. For example, daught er isaclassderived from not her
that we defined thus:

cl ass daughter: protected nother;

thiswould establish pr ot ect ed as the minimum access level for the members of
daught er that it inherited from not her . That is, all membersthat werepubl i c in
not her would become pr ot ect ed indaught er, that would be the minimum level at
which they can be inherited. Of course, thiswould not restrict that daught er could have
itsown publ i ¢ members. The minimum level would only be established for the inherited
members of not her .

The most common use of an inheritance level different from publ i c ispri vat e that
serves to completely encapsulate the base class, since, in that case, nobody except its own
classwill be able to access the members of the base class from which it is derived. Anyway,
INn most cases classes are derived as publ i c.

If no access level isexplicitly written pri vat e isassumed for classes created with the
cl ass keyword and publ i ¢ for those created with st r uct .

What is inherited from the base class?

In principle every member of abase classisinherited by a derived class except:

. Constructor and destructor
. operator=() member
. friends

Although the constructor and destructor of the base class are not inherited, the default

http://www.cplusplus.com/doc/tutorial /tut4-3.html (7 of 10)14-04-2004 18:37:44

C++ Tutorid: 4.3, Relationships between Classes

constructor (i.e. constructor with no parameters) and the destructor of the base class are
always called when a new object of aderived classis created or destroyed.

If the base class has no default constructor or you want that an overloaded constructor is
called when a new derived object is created, you can specify it in each constructor definition
of the derived class:

derived class _nane (paraneters) : base class _nane
(paraneters) {}

For example
/'l constructors and derivated cl asses not her :
#i ncl ude <i ostream h> no
par anet ers
cl ass not her { daught er:
publ i c: I nt
not her () par anet er
{ cout << "nother: no paraneters\n"; }
not her (int a) not her :
{ cout << "nother: int paraneter\n"; } I nt
}i par anet er
son: int
cl ass daughter : public nother { par anet er
publ i c:

daughter (int a)
{ cout << "daughter: int paraneter\n\n"; }

Hi

class son : public nother {
publ i c:
son (int a) : nother (a)
{ cout << "son: int paraneter\n\n"; }
}
int min () {

daughter cynthia (1);
son daniel (1);

http://www.cplusplus.com/doc/tutorial /tut4-3.html (8 of 10)14-04-2004 18:37:44

C++ Tutorid: 4.3, Relationships between Classes

return O;

}

Observe the difference between which mother's constructor is called when a new
daught er object is created and which when it isason object. The difference is because

the constructor declaration of daught er and son:

daughter (int a) /'l nothing specified: call

defaul t constructor
son (int a) : nother (a) // constructor specified:

call this one

Multiple inheritance

In C++ it is perfectly possible that a class inherits fields and methods from more than one
class simply by separating the different base classes with commas in the declaration of the
derived class. For example, if we had a specific classto print on screen (CQut put) and we
wanted that our classes CRect angl e and CTr i angl e also inherit its membersin addition
to those of CPol ygon we could write:

cl ass CRectangl e: public CPol ygon, public CQutput {
class CTriangle: public CPolygon, public CQutput {

here is the complete example:

/1 multiple inheritance 20
#i ncl ude <i ostream h> 10

cl ass CPol ygon {
pr ot ect ed:
int wdth, height;
publ i c:
void set _values (int a, int b)
{ width=a; height=b;}
¥

http://www.cplusplus.com/doc/tutorial /tut4-3.html (9 of 10)14-04-2004 18:37:44

C++ Tutorid: 4.3, Relationships between Classes

cl ass CQut put {
public:
void output (int i);
}s

void CQutput::output (int i) {
cout << i << endl;

}

cl ass CRectangl e: public CPol ygon, public CQutput {
public:
I nt area (void)
{ return (wdth * height); }
¥

cl ass CTriangl e: public CPol ygon, public CQutput {
publ i c:
I nt area (void)
{ return (wdth * height / 2); }
¥

int main () {
CRect angl e rect;
Clriangle trgl;
rect.set _values (4,5);
trgl.set_values (4,5),;
rect.output (rect.area());
trgl.output (trgl.area());
return O;

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous: .’,N@¢
4-2. Overloading operators. this. 4-4. Virtual members.
Static members. Abstraction. Polymor phism.

Q.

index

http://www.cplusplus.com/doc/tutorial /tut4-3.html (10 of 10)14-04-2004 18:37:44

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 4.4, Polymorphism

Section 4.4
Polymor phism

For a suitable understanding of this section you should clearly know how to use pointersand
inheritance between classes. | recommend that if some of these expressions seem strange to you,
you review the indicated sections:

int a::b(c) {}; /| Classes (Section 4.1)
a->b /'l pointers and objects (Section 4.2)
class a: public b; // Relationships between classes (Section 4.3)

Pointers to base class

One of the greater advantages of deriving classesisthat a pointer to a derived classistype-
compatible with a pointer to its base class. This section is fully dedicated to taking advantage of this
powerful C++ feature. For example, we are going to rewrite our program about the rectangle and the
triangle of the previous section considering this property:

/'l pointers to base cl ass 20
#i ncl ude <i ostream h> 10

cl ass CPol ygon {
pr ot ect ed:
I nt width, height;
public:
void set _values (int a, int b)
{ width=a; height=b; }

}
cl ass CRectangl e: public CPol ygon {
publi c:
Int area (void)
{ return (wwdth * height); }
b
cl ass CTriangl e: public CPol ygon {
public:

i nt area (void)

http://www.cplusplus.com/doc/tutorial /tut4-4.html (1 of 7)14-04-2004 18:37:50

C++ Tutorial: 4.4, Polymorphism

{ return (wdth * height / 2); }
¥

int main () {
CRect angl e rect;
CTriangle trgl;
CPol ygon * ppol y1l ▭
CPol ygon * ppol y2 &rgl;
ppol y1->set val ues (4,5);
ppol y2- >set val ues (4,5);
cout << rect.area() << endl;
cout << trgl.area() << endl;
return O;

The function mai n creates two pointers that point to objects of class CPol ygon, that are * ppol y1
and * ppol y2. These are assigned to the addressesof r ect andt r gl , and because they are objects
of classes derived from CPol ygon they are valid assignations.

The only limitation of using * ppol y1 and * ppol y2 instead of r ect andt r gl isthat both

*ppol y1 and * ppol y2 are of type CPol ygon* and therefore we can only refer to the members
that CRect angl e and CTr i angl e inherit from CPol ygon. For that reason when calling the ar ea
() members we have not been able to use the pointers * ppol y1 and * ppol y2.

To make it possible for the pointersto classCPol ygon to admit area() as a valid
menber, this should al so have been declared in the base class and
not only in its derived ones. (see the follow ng section).

Virtual members

In order to declare an elenent of a class which we are going to
redefine in derived classes we nust precede it with the keyword
virtual so that the use of pointers to objects of that class can be
sui t abl e.

Take a | ook at the foll ow ng exanpl e:

http://www.cplusplus.com/doc/tutorial /tut4-4.html (2 of 7)14-04-2004 18:37:50

C++ Tutorial: 4.4, Polymorphism

[l virtual nmenbers
#i ncl ude <i ostream h>

cl ass CPol ygon {
pr ot ect ed:
int width, height;
publi c:
void set _values (int a, int b)
{ width=a; height=b; }
virtual int area (void)
{ return (0); }
b

cl ass CRectangl e: public CPol ygon {
publi c:
int area (void)
{ return (wdth * height); }

1
cl ass CTriangl e: public CPol ygon {
public:
int area (void)
{ return (wwdth * height / 2); }
b

int min () {
CRect angl e rect;
CTriangle trgl;
CPol ygon pol vy;

CPol ygon * ppolyl = ▭
CPol ygon * ppoly2 = &rgl;
CPol ygon * ppol y3 = &pol y;

ppol y1- >set val ues (4,5);

ppol y2- >set _val ues (4,5);

ppol y3->set val ues (4,5);

cout << ppol yl->area() << endl;
cout << ppoly2->area() << endl;
cout << ppoly3->area() << endl;
return O,

Now t he three cl asses (CPol ygon, CRectangle and CTriangl e) have the

http://www.cplusplus.com/doc/tutorial /tut4-4.html (3 of 7)14-04-2004 18:37:50

C++ Tutorial: 4.4, Polymorphism

sanme nenbers: w dth, height, set_values() and area().

area() has been defined as virtual because it is later redefined in
derived classes. You can verify if you want that if you renove this
word (virtual) fromthe code and then you execute the programthe
result will be O for the three polygons instead of 20,10,0. That is
because instead of calling the corresponding area() function for

each object (CRectangle::area(), CTriangle::area() and CPol ygon:: area
(), respectively), CPolygon::area() will be called for all of them
since the calls are via a pointer to CPol ygon.

Therefore what the word virtual does is to allow that a nenber of a
derived class with the same nane as one in the base class be
suitably called when a pointer to it is used, as in the above
exanpl e.

Note that in spite of its virtuality we have al so been able to
decl are an object of type CPolygon and to call its area() function,
that always returns 0 as the result.

Abstract base classes

Basi ¢ abstract classes are sonething very simlar to the class

CPol ygon of our previous exanple. The only difference is that in our
previ ous exanple we have defined a valid area() function for objects
that were of class CPolygon (like object poly), whereas in an
abstract base class we could have sinply left without defining this
function by appending =0 (equal to zero) to the function

decl arati on.

The cl ass CPol ygon coul d have been thus:

/| abstract class CPol ygon
cl ass CPol ygon {
pr ot ect ed:
int width, height;
publ i c:
void set _values (int a, int b)
{ width=a; height=b; }
virtual int area (void) =0;

}i

Noti ce how we have appended =0 to virtual int area (void) instead of

http://www.cplusplus.com/doc/tutorial /tut4-4.html (4 of 7)14-04-2004 18:37:50

C++ Tutorial: 4.4, Polymorphism

specifying an inplenentation for the function. This type of function
is called a pure virtual function, and all classes that contain a
pure virtual function are considered abstract base cl asses.

The greatest difference of an abstract base class is that instances
(objects) of it cannot be created, but we can create pointers to
them Therefore a declaration |ike:

CPol ygon pol y;

woul d be incorrect for the abstract base cl ass decl ared above.
Nevert hel ess the pointers:

CPol ygon * ppol y1;
CPol ygon * ppol y2

are be perfectly valid. This is because the pure virtual function
that it includes is not defined and it is inpossible to create an
object if it does not have all its nenbers defined. Nevertheless a
poi nter that points to an object of a derived class where this
function has been defined is perfectly valid.

Here you have the conpl ete exanpl e:

/] virtual nenbers 20
#i ncl ude <i ostream h> 10

cl ass CPol ygon {
pr ot ect ed:
i nt width, height;
public:
void set_values (int a, int b)
{ wi dth=a; height=b; }
virtual int area (void) =0;

}i

cl ass CRectangl e: public CPol ygon {
public:
I nt area (void)
{ return (wwdth * height); }
3

http://www.cplusplus.com/doc/tutorial /tut4-4.html (5 of 7)14-04-2004 18:37:50

C++ Tutorial: 4.4, Polymorphism

cl ass CTriangle: public CPol ygon {
public:
int area (void)
{ return (wdth * height / 2); }

Hi

int min () {

CRect angl e rect;

Clriangle trgl;

CPol ygon * ppol yl ▭

CPol ygon * ppol y2 &rgl;

ppol y1- >set _val ues (4,5);

ppol y2- >set _val ues (4,5);

cout << ppolyl->area() << endl;
cout << ppoly2->area() << endl;

return O
}
If you review the programyou wll notice that we can refer to
objects of different classes using a unique type of pointer
(CPol ygon*). This can be trenendously useful. |nmagi ne, now we can

create a function nenber of CPolygon that is able to print on screen
the result of the area() function independently of what the derived
cl asses are.

/] virtual nenbers 20
#i ncl ude <i ostream h> 10

cl ass CPol ygon {
pr ot ect ed:
i nt width, height;
public:
void set_values (int a, int b)
{ wi dth=a; height=b; }
virtual int area (void) =0;
void printarea (void)
{ cout << this->area() << endl; }

}
cl ass CRectangl e: public CPol ygon {
public:

i nt area (void)
{ return (width * height); }

http://www.cplusplus.com/doc/tutorial /tut4-4.html (6 of 7)14-04-2004 18:37:50

C++ Tutorial: 4.4, Polymorphism

b

cl ass CTriangle: public CPolygon {
publi c:
I nt area (void)
{ return (wwdth * height / 2); }
3

int min () {
CRect angl e rect;
Clriangle trgl;
CPol ygon * ppolyl ▭
CPol ygon * ppol y2 &rgl;
ppol y1->set val ues (4,5);
ppol y2- >set val ues (4,5);
ppol y1->printarea();
ppol y2->printarea();
return O;

Renenber that this represents a pointer to the object whose code is
bei ng execut ed.

Abstract classes and virtual nenbers grant to C++ the pol ynorphic
characteristics that nake object-oriented programi ng such a usefu
instrunent. O course we have seen the sinplest way to use these
features, but imagine these features applied to arrays of objects or
obj ects assigned through dynam c nenory.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous: ‘ ’ Next:

4-3. Relationships between classes. in_dex 5-1. Templates.

http://www.cplusplus.com/doc/tutorial /tut4-4.html (7 of 7)14-04-2004 18:37:50

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutoria: 5.1, Templates

Section 5.1 Epfus;_rfus
langunage

Templates 1 tutorial

aMg| Templates are a new feature introduced by ANSI-C++ standard. If you use a C++
C++ | compiler that is not adapted to this standard it is possible that you cannot use them.

Function templates

Templates allow to create generic functions that admit any data type as parameters and
return a value without having to overload the function with all the possible data types. Until
certain point they fulfill the functionality of a macro. Its prototype is any of the two
following ones:

tenpl ate <class identifier> function_decl arati on;
tenpl ate <typenane identifier> function_decl arati on;

the only difference between both prototypesisthe use of keyword cl ass or t ypenane, its
use isindistinct since both expressions have exactly the same meaning and behave exactly
the same way.

For example, to create a template function that returns the greater one of two objects we
could use:

tenpl ate <cl ass Generi cType>
Generi cType Get Max (CenericType a, CenericType b) {
return (a>b?a:b);

}

Asthefirst line specifies, we have created a template for a generic data type that we have
called Generi cType. Thereforein the function that follows, Gener i cType becomes a
valid datatype and it is used as the type for its two parameters a and b and as the return type
for the function Get Max.

Generi cType still does not represent any concrete data type; when the function Get Max
will be called we will be able to call it with any valid datatype. This datatype will serveasa
pattern and will replace Gener i cType inthe function. The way to call atemplate class

http://ww.cplusplus.com/doc/tutorial /tut5-1.html (1 of 10)14-04-2004 18:37:57

C++ Tutoria: 5.1, Templates

with atype pattern is the following:
function <pattern> (paraneters);

Thus, for example, to call Get Max and to compare two integer values of typei nt we can
write:

int X,Vy;
Get Max <int> (X,Y);

so Get Max will be called asif each appearance of Gener i cType wasreplaced by ani nt
expression.

Here is the complete example:

/1l function tenplate 6
#i ncl ude <i ostream h> 10

tenpl ate <cl ass T>

T GetMax (T a, T b) {
T resul t;
result = (a>b)? a : b;
return (result);

}

int min () {
int 1=5 |]=6, k;
| ong | =10, n¥5, n;
k=CGet Max<i nt>(i,]);
n=CGet Max<I| ong>(Il, m;
cout << k << endl;
cout << n << endl;
return O;

(In this case we have called the generic type T instead of Gener i cType becauseitis
shorter and in addition is one of the most usual identifiers used for templates, although it is

http://ww.cplusplus.com/doc/tutorial /tut5-1.html (2 of 10)14-04-2004 18:37:57

C++ Tutoria: 5.1, Templates

valid to use any valid identifier).

In the example above we used the same function Get Max () with arguments of typei nt
and | ong having written a single implementation of the function. That is to say, we have
written afunction template and called it with two different patterns.

Asyou can see, within our Get Max () template function thetype T can be used to declare
new objects:

T resul t;:

resul t isanobject of type T, likea and b, that isto say, of the type that we enclose
between angle-brackets <> when calling our template function.

In this concrete case where the generic T typeis used as a parameter for function Get Max
the compiler can find out automatically which datatype is passed to it without having to
specify it with patterns <i nt > or <l ong>. So we could have written:

int i,j;
Get Max (i,]);

sincebothi andj areof typei nt the compiler would assume automatically that the wished
functionisfor typei nt . Thisimplicit method is more usual and would produce the same

result:
/1l function tenplate I 6
#i ncl ude <i ostream h> 10

tenpl ate <class T>
T GetMax (T a, T b) {
return (a>b?a:b);

}

int min () {
int i=5 |]=6, k;
| ong | =10, n¥5, n;
k=CGet Max(i,]);
n=CGet Max(l, m;

http://ww.cplusplus.com/doc/tutorial /tut5-1.html (3 of 10)14-04-2004 18:37:57

C++ Tutoria: 5.1, Templates

cout << k << endl;
cout << n << endl;
return O;

Notice how in this case, within function mai n() we called our template function Get Max
() without explicitly specifying the type between angle-brackets <>. The compiler
automatically determines what type is needed on each call.

Because our template function includes only one datatype (cl ass T) and both arguments
it admits are both of that same type, we cannot call our template function with two objects of
different types as parameters.

int i;
| ong | ;
k = Get Max (i,|);

Thiswould be incorrect, since our function waits for two arguments of the same type (or
class).

We can also make template-functions that admit more than one generic class or data type.
For example:

tenplate <class T, class U>

T GtMn (T a, Ub) {
return (a<b?a:b);

}

In this case, our template function Get M n() admitstwo parameters of different types and
returns an object of the same type as the first parameter (T) that is passed. For example, after
that declaration we could call the function by writing:

int i,j;

l ong |;

I = GtMn<int,long> (j,!);

or smply

http://ww.cplusplus.com/doc/tutorial /tut5-1.html (4 of 10)14-04-2004 18:37:57

C++ Tutoria: 5.1, Templates

i = GetMn (j,1);

eventhoughj and| are of different types.

Class templates

We also have the possibility to write class templates, so that a class can have members based
on generic types that do not need to be defined at the moment of creating the class or whose
members use these generic types. For example:

tenpl ate <cl ass T>
class pair {
T val ues [2];

public:
pair (T first, T second)
{
val ues[0] =first; val ues[1] =second;
}

};

The class that we have just defined serves to store two elements of any valid type. For
example, if we wanted to declare an object of this classto store two integer values of type
I nt with thevalues115 and 36 we would write:

pair<i nt> nyobject (115, 36);
this same class would aso serve to create an object to store any other type:
pai r<fl oat> nyfloats (3.0, 2.18);

The only member function has been defined inline within the class declaration. If we define
afunction member outside the declaration we must always precede the definition with the
prefixtenpl ate <... >.

http://ww.cplusplus.com/doc/tutorial /tut5-1.html (5 of 10)14-04-2004 18:37:57

C++ Tutoria: 5.1, Templates

/'l class tenpl ates 100
#1 ncl ude <i ostream h>

tenpl ate <class T>
class pair {
T val uel, val uez;
public:
pair (T first, T second)
{val uel=first; val ue2=second;}
T getmax ();

};

tenpl ate <class T>
T pair<T>::getmax ()

T retval ;
retval = val uel>val ue2? val uel : val ue2;
return retval;

int min () {
pair <int> myobject (100, 75);
cout << nyobject. get max();
return O;

}

notice how the definition of member function get max begins:

tenpl ate <cl ass T>
T pair<T>::getmax ()

All Tsthat appear are necessary because whenever you declare member functions you have
to follow aformat similar to this (the second T makes reference to the type returned by the
function, so this may vary).

Template specialization

A template specialization allows a template to make specific implementations when the

http://ww.cplusplus.com/doc/tutorial /tut5-1.html (6 of 10)14-04-2004 18:37:57

C++ Tutoria: 5.1, Templates

pattern is of a determined type. For example, suppose that our class template pai r included
afunction to return the result of the module operation between the objects contained in it,
but we only want it to work when the contained typeisi nt . For the rest of the typeswe
want this function to return 0. This can be done the following way:

/'l Tenpl ate specialization
#i ncl ude <i ostream h>

tenpl ate <class T>
class pair {
T val uel, val uez;
public:
pair (T first, T second)

{val uel=first; val ue2=second,}

T module () {return O;}
}s

tenplate <>
class pair <int> {
i nt val uel, val ueZ2;
public:
pair (int first, int second)

{val uel=first; val ue2=second,}

int nodule ();

};

tenplate <>
I nt pair<int>::nodul e() {
return val uel%al ue2;

}

int main () {
pair <int> nyints (100, 75);

pair <float> nyfloats (100.0, 75.0);
cout << nyints.nodule() << '\n';
cout << nyfloats.nmodule() << '\n';
return O;

http://www.cplusplus.com/doc/tutorial/tut5-1.html (7 of 10)14-04-2004 18:37:57

25
0

C++ Tutoria: 5.1, Templates

Asyou can see in the code the specialization is defined this way:
tenpl ate <> class class_nane <type>

The specialization is part of atemplate, for that reason we must begin the declaration with
t enpl at e <>. Andindeed because it is a specialization for a concrete type, the generic
type cannot be used in it and the first angle-brackets <> must appear empty. After the class

name we must include the type that is being specialized enclosed between angle-brackets
<>,

When we specialize atype of atemplate we must also define al the members equating them
to the specialization (if one pays attention, in the example above we have had to include its
own constructor, although it isidentical to the one in the generic template). The reason is
that no member is "inherited" from the generic template to the specialized one.

Parameter values for templates

Besides the template arguments preceded by thecl ass ort ypenane keywords that
represent atype, function templates and class templates can include other parameters that are
not types whenever they are also constant values, like for example values of fundamental
types. As an example see this class template that serves to store arrays:

/1l array tenplate 100
#i ncl ude <i ostream h> 3.1416

tenplate <class T, int N>
class array {
T menbl ock [N ;
publ i c:
voi d setnenber (int x, T value);
T get menber (int x);
}

tenplate <class T, int N>
array<T, N>: :setnenber (int x, T value) {
menbl ock[x] =val ue;

}

http://ww.cplusplus.com/doc/tutorial /tut5-1.html (8 of 10)14-04-2004 18:37:57

C++ Tutoria: 5.1, Templates

tenplate <class T, int N>
T array<T, N>: : get nenber (int x) {
return nmenbl ock[x] ;

}

int main () {
array <int,5> nyints;
array <float, 5> nyfl oats;
nyi nts. set nenber (0, 100);
nyfl oats. set nenber (3, 3.1416),;
cout << nyints.getnenber(0) << '\n';
cout << nyfloats.getnenber(3) << '\n';
return O;

It is also possible to set default values for any template parameter just asit is done with
function parameters.

Some possible template examples seen above:

tenpl ate <class T> /'l The nost usual:
one cl ass paraneter.

tenplate <class T, class U> /1 Two cl ass

par anet ers.

tenplate <class T, int N> /'l A class and an
I nt eger.

tenplate <class T = char> /1l Wth a default
val ue.

tenplate <int Tfunc (int)> /1 A function as
par anet er .

Templates and multiple-file projects

From the point of view of the compiler, templates are not normal functions or classes. They
are compiled on demand, meaning that the code of atemplate function is not compiled until
an instantiation is required. At that moment, when an instantiation is required, the compiler

http://ww.cplusplus.com/doc/tutorial /tut5-1.html (9 of 10)14-04-2004 18:37:57

C++ Tutoria: 5.1, Templates

generates afunction specifically for that type from the template.

When projects grow it is usual to split the code of a program in different sourcefiles. In
these cases, generally the interface and implementation are separated. Taking alibrary of
functions as example, the interface generally consists of the prototypes of all the functions
that can be called. These are generally declared in a"header file" with . h extension, and the
implementation (the definition of these functions) isin an independent file of c++ code.

The macro-like functionality of templates, forces arestriction for multi-file projects: the
implementation (definition) of atemplate class or function must be in the same file as the
declaration. That means we cannot separate the interface in a separate header file and we
must include both interface and implementation in any file that uses the templates.

Going back to the library of functions, if we wanted to make alibrary of function templates,
instead of creating a header file (. h) we should create a "template file" with both the
interface and implementation of the function templates (there is no convention on the
extension for this type of file other than there be no extension at all or to keep the .h). The
inclusion more than once of the same template file with both declarations and definitionsin a
project doesn't generate linkage errors, since they are compiled on demand and compilers
that allow templates should be prepared to not generate duplicate code in these cases.

© The C++ Resources Network, 2000-2001 - All rights reserved

.M

X 5-2. Namespaces.

Previous:
4-4. Polymor phism. in

1
2

http://www.cplusplus.com/doc/tutorial /tut5-1.html (10 of 10)14-04-2004 18:37:57

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutoria: 5.2, Namespaces

Section 5.2 Epfus;_rfus
langunage

Namespaces 1 tutorial

Namespaces allow usto group a set of global classes, objects and/or functions under a name.
To say it another way, they serve to split the global scope in sub-scopes known as
namespaces.

The form to use namespacesis:

nanespace identifier

{

namespace- body

}

Wherei denti fi er isany valid identifier and nanespace- body isthe set of classes,
objects and functions that are included within the namespace. For example:

nanmespace gener al

{

int a, b;

}

In this case, a and b are normal variables integrated within the gener al namespace. In order
to access these variables from outside the namespace we have to use the scope operator : : .
For example, to access the previous variables we would have to put:

general ::a
general :: b

The functionality of namespaces is specially useful in case there is a possibility that a global

object or function has the same name as another one, causing a redefinition error. For
example:

http://ww.cplusplus.com/doc/tutorial /tut5-2.html (1 of 6)14-04-2004 18:38:03

C++ Tutoria: 5.2, Namespaces

/'l nanmespaces 5
#1 ncl ude <i ostream h> 3.1416

nanmespace first

{
int var = 5;
}
nanespace second
{
doubl e var = 3. 1416;
}

int min () {
cout << first::var << endl;
cout << second::var << endl;
return O;

}

In this case two global variables with the var name exist, one defined within namespace
first and another onein second. No redefinition errors thanks to namespaces.

using namespace

Theusi ng directive followed by nanmespace servesto associate the present nesting level
with a certain namespace so that the objects and functions of that namespace can be
accesible directly asif they were defined in the global scope. Its utilization follows this
prototype:

usi ng nanmespace identifier;

Thus, for example:

http://ww.cplusplus.com/doc/tutorial /tut5-2.html (2 of 6)14-04-2004 18:38:03

C++ Tutoria: 5.2, Namespaces

/'l using nanespace exanpl e 3.1416
#i ncl ude <i ostream h> 6. 2832

nanmespace first

{
int var = 5;
}
nanespace second
{
doubl e var = 3. 1416;
}

int min () {
usi ng namespace second;
cout << var << endl;
cout << (var*2) << endl;
return O;

In this case we have been able to use var without having to precede it with any scope
operator.

Y ou have to consider that the sentence usi ng nanespace hasvalidity only in the block
inwhich it is declared (understanding as a block the group of instructions within key
brackets{}) or inall the codeif it is used in the global scope. For example, if we had
intention to first use the objects of a namespace and then those of another one we could do
something similar to:

http://ww.cplusplus.com/doc/tutorial /tut5-2.html (3 of 6)14-04-2004 18:38:03

C++ Tutoria: 5.2, Namespaces

/'l using nanespace exanpl e
#i ncl ude <i ostream h>

nanmespace first

{
int var = b5;
}
nanespace second
{ doubl e var = 3. 1416;
}
int min () {
{
usi ng nanespace first;
cout << var << endl;
}
{
usi ng nanmespace second;
cout << var << endl;
}
return O,
}

alias definition

We have the possibility to define alternative names for namespaces that already exist. The
formtodoitis:

nanespace new _name = current_nane ;

Namespace std

One of the best examples that we can find about namespaces is the standard C++ library
itself. As defined in the ANSI C++ standard, all the classes, objects and functions of the

http://www.cplusplus.com/doc/tutorial/tut5-2.html (4 of 6)14-04-2004 18:38:03

C++ Tutoria: 5.2, Namespaces

standard C++ library are defined within namespace st d.

Y ou may have noticed that we have ignored thisrule al through thistutorial. I've decided to
do so since thisrule is almost as recent as the ANSI standard itself (1997) and many older
compilers do not comply with this rule.

Almost all compilers, even those complying with ANSI standard, allow the use of the
traditional header files (likei ost r eam h, st dl i b. h, etc), the ones we have used
througout thistutorial. Nevertheless, the ANSI standard has completely redesigned these
libraries taking advantage of the templates feature and following the rule to declare all the
functions and variables under the namespace st d.

The standard has specified new names for these "header" files, basically using the same
name for C++ specific files, but without the ending . h. For example, i ost ream h
becomesi ost r eam

If we use the ANSI-C++ compliant include files we have to bear in mind that all the
functions, classes and objects will be declared under the st d namespace. For example:

/'l ANSI - C++ conpliant hello world Hello world in
#1 ncl ude <i ostreant ANSI - C++

int main () {
std::cout << "Hello world in ANSI-C++\n";
return O;

}

Although it ismore usual to use usi ng nanespace and save usto have to use the scope
operator : : before all the references to standard objects:

http://ww.cplusplus.com/doc/tutorial /tut5-2.html (5 of 6)14-04-2004 18:38:03

C++ Tutoria: 5.2, Namespaces

/'l ANSI - C++ conpliant hello world (Il) 'Hello world i n ANSI -
#i ncl ude <i ostreanr C++
usi ng namespace std;

int min () {
cout << "Hello world in ANSI-C++\n";
return O;

The name for the C files has also suffered some changes. Y ou can find more information on
the new names for the standard header files in the document Standard header files.

The use of the ANSI-compliant way to include the standard libraries, apart for the ANSI-
compliance itself, is highly recommended for STL users.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous: ‘ ‘ Next:

5-1. Templates. in 5-3. Exception handling.

1
2

http://www.cplusplus.com/doc/tutorial /tut5-2.html (6 of 6)14-04-2004 18:38:03

http://www.cplusplus.com/doc/ansi/hfiles.html
http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutoria: 5.3, Exception handling

Section 5.3 cpf:rsggan‘;’s
Exception handling /Canguage

niain

angy| Exception handling explained in this section is a new feature introduced by ANSI-C++ standard.
C++ | If you use a C++ compiler that is not adapted to this standard it is possible that you cannot use
this feature.

During the development of a program, there may be some cases where we do not have the certainty that a
piece of the code is going to work right, either because it accesses resources that do not exist or because it
gets out of an expected range, etc...

These types of anomalous situations are included in what we consider exceptions and C++ has recently
incorporated three new operators to help us handle these situations: try, throw and catch.

Their form of use isthe following:

try {
/] code to be tried

t hrow excepti on;

}
catch (type exception)
{
/1l code to be executed in case of exception
}

And its operation:

- The code withinthet r y block is executed normally. In case that an exception takes place, this code
must use thet hr ow keyword and a parameter to throw an exception. The type of the parameter details
the exception and can be of any valid type.

- If an exception has taken place, that isto say, if it has executed at hr owinstruction withinthet ry
block, the cat ch block is executed receiving as parameter the exception passed by t hr ow.

For example:

http://www.cplusplus.com/doc/tutorial /tut5-3.html (1 of 6)14-04-2004 18:38:09

C++ Tutoria: 5.3, Exception handling

/| exceptions Exception: Qut of range
#i ncl ude <i ostream h>

int min () {
char nyarray[10];

try
{
for (int n=0; n<=10; n++)
{
if (n>9) throw "Qut of range";
myarray[n]="'z";
}
}
catch (char * str)
{
cout << "Exception: " << str << endl;
}
return O;

}

In this example, if within the n loop, n gets to be more than 9 an exception isthrown, since myar r ay
[n] wouldinthat case point to a non-trustworthy memory address. Whent hr owis executed, thet ry
block finalizes right away and every object created within thet r y block is destroyed. After that, the
control is passed to the corresponding cat ch block (that is only executed in these cases). Finally the
program continues right after the cat ch block, inthiscase: ret urn 0; .

The syntax used by t hr owis similar to that of r et ur n: Only the parameter does not need to be
enclosed between parenthesis.

The cat ch block must go right after thet r y block without including any code line between them. The
parameter that cat ch accepts can be of any valid type. Even more, cat ch can be overloaded so that it
can accept different types as parameters. In that case the cat ch block executed is the one that matches

the type of the exception sent (the parameter of t hr ow):

http://www.cplusplus.com/doc/tutorial /tut5-3.html (2 of 6)14-04-2004 18:38:09

C++ Tutoria: 5.3, Exception handling

/| exceptions: multiple catch bl ocks Excepti on:
#i ncl ude <i ostream h> i ndex 10
is out of
int min () { range
try
{

char * nystring;

mystring = new char [10];

if (nystring == NULL) throw "Allocation failure";
for (int n=0; n<=100; n++)

{
if (n>9) throw n;
nmystring[n]="2";
}
}
catch (int i)
{
cout << "Exception: ";
cout << "index " << i << " is out of range" << endl;
}
catch (char * str)
{
cout << "Exception: " << str << endl;
}
return O;

In this case there is apossibility that at |east two different exceptions could happen:

1. That therequired block of 10 characters cannot be assigned (something rare, but possible): in this
case an exception is thrown that will be caught by cat ch (char * str).
2. That the maximum index for myst r i ng is exceeded: in this case the exception thrown will be

caught by cat ch (i nt i), sincethe parameter isan integer number.

We can also defineacat ch block that captures all the exceptions independently of the type used in the
call tot hr ow. For that we have to write three points instead of the parameter type and name accepted by

cat ch:

try {
/] code here
}

catch (...) {

http://www.cplusplus.com/doc/tutorial /tut5-3.html (3 of 6)14-04-2004 18:38:09

C++ Tutoria: 5.3, Exception handling

cout << "Exception occurred’;

}

Itisalso possibletonestt r y- cat ch blocks within more external t r y blocks. In these cases, we have
the possibility that an internal cat ch block forwards the exception received to the external level, for that
the expression t hr ow; with no argumentsis used. For example:

try {
try {
[/ code here
}
catch (int n) {
t hr ow;
}
}

catch (...) {
cout << "Exception occurred”;

}
Exceptions not caught

If an exception is not caught by any cat ch statement because there is no catch statement with a
matching type, the specia functiont er m nat e will be called.

Thisfunction is generally defined so that it terminates the current process immediately showing an
"Abnormal termination” error message. Itsformat is:

void term nate();

Standard exceptions

Some functions of the standard C++ language library send exceptions that can be captured if we include
them within at r y block. These exceptions are sent with aclass derived from st d: : excepti on as
type. Thisclass (st d: : except i on) isdefined in the C++ standard header file <except i on> and
serves as a pattern for the standard hierarchy of exceptions:

exception
--bad_al | oc (thrown by new)

(thrown by dynam c_cast when fails with
------ bad cast

a referenced type)

(thrown when an exception doesn't match
any catch)

~-bad_typeid (thrown by typeid)

--bad_exception

http://www.cplusplus.com/doc/tutorial /tut5-3.html (4 of 6)14-04-2004 18:38:09

C++ Tutoria: 5.3, Exception handling

-l ogic_error
.~ domai n_error
~-invalid_argument
-l ength_error
. -out_of _range
~runtime_error
. -overflow error
--range_error
. ‘~underflow error
.ios_base::failure (thrown by ios::clear)

Because thisisaclass hierarchy, if you include acat ch block to capture any of the exceptions of this
hierarchy using the argument by reference (i.e. adding an ampersand & after the type) you will also
capture all the derived ones (rules of inheritance in C++).

The following example catches an exception of typebad_t ypei d (derived fromexcept i on) that is
generated when requesting information about the type pointed by anull pointer:

/| standard exceptions Exception: Attenpted typeid
of NULL poi nter

#i ncl ude <i ostream h>

#i ncl ude <excepti on>

#i ncl ude <typei nf o>

class A {virtual f() {}; };

int min () {

try {
A * a = NULL;
typeid (*a);
}
catch (std::exception& e)
{
cout << "Exception: " << e.what();
}
return O;

}

Y ou can use the classes of standard hierarchy of exceptions to throw your exceptions or derive new
classes from them.

© The C++ Resources Network, 2000-2001 - All rights reserved

http://www.cplusplus.com/doc/tutorial /tut5-3.html (5 of 6)14-04-2004 18:38:09

C++ Tutoria: 5.3, Exception handling

Previous: « E » Next:

5-2. Namespaces. index 5-4. Advanced classes type-cast.

http://www.cplusplus.com/doc/tutorial /tut5-3.html (6 of 6)14-04-2004 18:38:09

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorial: 5.4: Advanced Class Type-casting

Section 5.4 cpfus;_rgyms
language

Advanced Class Type-casting " tutorial

Until now, in order to type-cast a simple object to another we have used the traditional type
casting operator. For example, to cast a floating point number of type doubl e to an integer
of typei nt we have used:

int i;
doubl e d;
I = (int) d;

or aso
I =int (d);

Thisis quite good for basic types that have standard defined conversions, however this
operators can also be indiscriminately applied on classes and pointers to classes. So, it is
perfectly valid to write things like:

/'l class type-casting
#i ncl ude <i ostream h>

cl ass CDummy {
int i;

b

cl ass CAddition {
Int X,Yy;
publ i c:
CAddition (int a, int b) { x=a; y=b; }
int result() { return x+y;}

Hi

int main () {
CDummy d;
CAddi ti on * padd;
padd = (CAddition*) &d;

http://www.cplusplus.com/doc/tutorial/tut5-4.html (1 of 6)14-04-2004 18:38:14

C++ Tutorial: 5.4: Advanced Class Type-casting

cout << padd->result();
return O;

}

Although the previous program in sintactically correct in C++ (in fact it will compile with no
warnings on most compilers) it is code with not much sense since we use functionr esul t,
that isamember of CAddi t i on, without having declared an object of that class. padd is
not an object, it isonly a pointer which we have assigned the address of a non related object.
When accessing itsr esul t member it will produce arun-time error or, at best, just an
unexpected result.

In order to control these types of conversions between classes, ANSI-C++ standard has
defined four new casting operators. r ei nt er pret _cast,stati c_cast,
dynam c_cast andconst _cast . All of them have the same format when used:

rei nterpret _cast <new type> (expression)
dynam c_cast <new_type> (expression)
static_cast <new_type> (expression)
const _cast <new_type> (expression)

Wherenew _t ype isthe destination type to which expr essi on hasto be casted. To make
an easlly understandable parallelism with traditional type-casting operators these expression
mean:

(new_type) expression
new type (expression)

but with their own special characteristics.

reinterpret_cast

rei nt erpret cast castsapointer to any other type of pointer. It also allows casting
from a pointer to an integer type and vice versa.

This operator can cast pointers between non-related classed. The operation resultsisasimple
binary copy of the value from one pointer to the other. The content pointed does not pass any
kind of check nor transformation between types.

http://www.cplusplus.com/doc/tutorial/tut5-4.html (2 of 6)14-04-2004 18:38:14

C++ Tutorial: 5.4: Advanced Class Type-casting

In the case that the copy is performed from a pointer to an integer, the interpretation of its
content is system dependent and therefore any implementation is non portable. A pointer
casted to an integer large enough to fully contain it can be casted back to avalid pointer.

class A {};

class B {};

A* a = new A

B* b =reinterpret_cast<B*>(a);

rei nterpret cast treatsall pointers exactly as traditional type-casting operators do.

static_cast

stati c_cast performsany casting that can be implicitly performed as well as the inverse
cast (even if thisis not allowed implicitly).

Applied to pointersto classes, that isto say that it allowsto cast a pointer of aderived classto
its base class (thisis avalid conversion that can be implicitly performed) and it can also
perform the inverse: cast a base classto its derivated class.

In this last case the base class that is being casted is not checked to determine wether thisisa
complete class of the destination type or not.

cl ass Base {};

cl ass Derived: public Base {};

Base * a = new Base;

Derived * b = static_cast<Derived*>(a);

stati c_cast, asde from manipulating pointersto classes, can aso be used to perform
conversions explicitly defined in classes, as well as to perform standard conversions between
fundamental types:

doubl e d=3.14159265;
int i = static_cast<int>(d);

dynamic_cast

http://www.cplusplus.com/doc/tutorial /tut5-4.html (3 of 6)14-04-2004 18:38:14

C++ Tutorial: 5.4: Advanced Class Type-casting

dynam c_cast isexclusively used with pointers and references to objects. It allows any
type-casting that can be implicitly performed as well as the inverse one when used with
polymorphic classes, however, unlikest ati c_cast,dynam c_cast checks, inthislast
case, if the operationisvalid. That isto say, it checksif the casting is going to return avalid
compl ete object of the requested type.

Checking is performed during run-time execution. If the pointer being casted is not a pointer
to avalid complete object of the requested type, the value returned isa NULL pointer.

class Base { virtual dummy(){}; };
class Derived : public Base { };

Base* bl = new Deri ved;

Base* b2 = new Base;

Derived* dl1 = dynam c_cast<Deri ved*>(bl); /1
succeeds

Derived* d2 = dynam c_cast <Deri ved*>(b2); /1]
fails: returns NULL

If the type-casting is performed to areference type and this casting is not possible an
exception of typebad_cast isthrown:

class Base { virtual dumy(){}; };
cl ass Derived : public Base { };

Base* bl = new Deri ved;

Base* b2 = new Base;

Derived dl1 = dynam c_cast <Deri ved&* >(bl); /1l
succeeds

Derived d2 = dynam c_cast <Deri ved&* >(b2); /1]
fails: exception thrown

const _cast

Thistype of casting manipulates the const attribute of the passed object, either to be set or
removed:

class C {};
const C* a = new C

http://www.cplusplus.com/doc/tutorial/tut5-4.html (4 of 6)14-04-2004 18:38:14

C++ Tutorial: 5.4: Advanced Class Type-casting

C* b = const_cast<C'> (a);

Neither of the other three new cast operators can modify the constness of an object.
typeid

ANSI-C++ also defines anew operator caledt ypei d that alows checking the type of an
expression:

typei d (expression)

this operator returns arefernece to a constant object of typet ype i nf o that isdefined in
the standard header file <t ypei nf 0>. Thisreturned value can be compared with another
using operators == and ! = or can serve to obtain a string of characters representing the data
type or class name by using itsnane() method.

/[l typeid, typeinfo a and b
#i ncl ude <i ostream h> are of
#i ncl ude <typei nfo> di fferent
types:
class Coumy { }; ais:
cl ass
int main () { CDumry *
CDummy* a, b; b is:
if (typeid(a) !'= typeid(b)) cl ass
{ CDunmmy
cout << "a and b are of different types:\n";
cout << "ais: " << typeid(a).nanme() << '\n';
cout << "b is: " << typeid(b).nanme() << '\n';
}
return O
}

© The C++ Resources Network, 2000-2001 - All rights reserved

http://www.cplusplus.com/doc/tutorial/tut5-4.html (5 of 6)14-04-2004 18:38:14

C++ Tutorial: 5.4: Advanced Class Type-casting

Previous. = ’ Next:
5-3. Exception handling. index 5-5. Preprocessor directives.

http://www.cplusplus.com/doc/tutorial /tut5-4.html (6 of 6)14-04-2004 18:38:14

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutoria: 5.5, Preprocessor directives

Section 5.5 Epfus;_rfus
langunage

Preprocessor directives *tutorial

Preprocessor directives are orders that we include within the code of our programs that are
not instructions for the program itself but for the preprocessor. The preprocessor is executed
automatically by the compiler when we compile a program in C++ and isin charge of
making the first verifications and digestions of the program's code.

All these directives must be specified in asingle line of code and they do not have to include
an ending semicolon ; .

#define

At the beginning of this tutorial we have already spoken about a preprocessor directive:
#def i ne, that servesto generate what we called defined constantants or macros and whose
form isthe following:

#defi ne nane val ue

Its function is to define a macro called name that whenever it isfound in some point of the
code is replaced by value. For example:

#def i ne MAX_W DTH 100
char str1][MAX W DTH] ;
char str2[MAX W DTH] ;

It defines two strings to store up to 100 characters.

#def i ne can aso be used to generate macro functions:
#defi ne getmax(a, b) a>b?a:b
I nt x=5, v;

y = getmax(x,2);

after the execution of thiscodey would contain 5.

http://ww.cplusplus.com/doc/tutorial /tut5-5.html (1 of 5)14-04-2004 18:38:20

C++ Tutoria: 5.5, Preprocessor directives

#undef

#undef fulfillstheinverse functionality of #def i ne. It eliminates from thelist of defined
constants the one that has the name passed as a parameter to #undef :

#defi ne MAX W DTH 100
char str1[MAX W DTH] ;
#undef MAX_ W DTH

#defi ne MAX W DTH 200
char str2[MAX W DTH] ;

#ifdef, #ifndef, #if, #endif, #else and #elif

These directives alow to discard part of the code of a program if a certain condition is not
fulfilled.

#i f def alowsthat a section of a program is compiled only if the defined constant that is
specified as the parameter has been defined, independently of its value. Its operation is:

#i fdef nane
/! code here
#endi f

For example:

#i f def MAX_W DTH
char str[MAX_ W DTH] ;
#endi f

Inthis case, thelinechar str[MAX W DTH] ; isonly considered by the compiler if the
defined constant MAX_W DTH has been previously defined, independently of its value. If it
has not been defined, that line will not be included in the program.

#i f ndef servesfor the opposite: the code between the #i f ndef directive and the

#endi f directiveisonly compiled if the constant name that is specified has not been
defined previously. For example:

#i f ndef MAX_W DTH

http://ww.cplusplus.com/doc/tutorial /tut5-5.html (2 of 5)14-04-2004 18:38:20

C++ Tutoria: 5.5, Preprocessor directives

#defi ne MAX W DTH 100
#endi f
char str[MAX_ W DTH] ;

In this case, if when arriving at this piece of code the defined constant MAX_W DTH has not
yet been defined it would be defined with avalue of 100. If it already existed it would
maintain the value that it had (because the #def i ne statement won't be executed).

The#i f,#el se and#el i T (elif = elseif) directives serve so that the portion of code that
follows is compiled only if the specified condition is met. The condition can only serve to
evaluate constant expressions. For example:

#i f MAX_W DTH>200
#undef MAX_ W DTH
#defi ne MAX_W DTH 200

#el sif MAX W DTH<50
#undef MAX W DTH
#define MAX W DTH 50

#el se

#undef MAX W DTH
#defi ne MAX W DTH 100
#endi f

char str[MAX W DTH] ;

Notice how the structure of chained directives#i f , #el si f and #el se finisheswith
#endi f .

#line

When we compile a program and errors happen during the compiling process, the compiler
shows the error that happened preceded by the name of the file and the line within the file
where it has taken place.

The#l i ne directive allows us to control both things, the line numbers within the code files
as well asthe file name that we want to appear when an error takes place. Itsform isthe
following one:

http://ww.cplusplus.com/doc/tutorial /tut5-5.html (3 of 5)14-04-2004 18:38:20

C++ Tutoria: 5.5, Preprocessor directives

#l i ne nunmber "fil enanme”

Where nunber isthe new line number that will be assigned to the next code line. The line
number of successive lineswill be increased one by one from this.

fil ename isan optional parameter that serves to replace the file name that will be shown
in case of error from this directive until another one changes it again or the end of thefileis
reached. For example:

#line 1 "assigning variable"
I nt a?,

This code will generate an error that will be shown aserror infile" assi gni ng
vari abl e",linel.

#Herror

This directive aborts the compilation process when it is found returning the error that is
specified as the parameter:

#i f ndef __ cpl uspl us
#error A C++ conpiler is required
#endi f

This example aborts the compilation process if the defined constant __ cpl uspl us isnot
defined.

#include

This directive has also been used assiduously in other sections of this tutorial. When the
preprocessor finds an #i ncl ude directive it replacesit by the whole content of the
specified file. There are two ways to specify afile to be included:

#i nclude "file"
#i ncl ude <file>

The only difference between both expressions is the directories in which the compiler is

http://ww.cplusplus.com/doc/tutorial /tut5-5.html (4 of 5)14-04-2004 18:38:20

C++ Tutoria: 5.5, Preprocessor directives

going to look for the file. In the first case where the file is specified between quotes, the file
is looked for in the same directory that includes the file containing the directive. In case that
it is not there, the compiler looks for the file in the default directories where it is configured
to look for the standard header files.

If the file name is enclosed between angle-brackets <> the file is looked for directly where
the compiler is configured to look for the standard header files.

#pragma

Thisdirective is used to specify diverse options to the compiler. These options are specific
for the platform and the compiler you use. Consult the manual or the reference of your
compiler for more information on the possible parameters that you can define with
#pragnma.

© The C++ Resources Network, 2000-2001 - All rights reserved

Previous: ‘

5-4. Advances classestype
casting.

.M

ndlex 6-1. Input/Output with files.

http://ww.cplusplus.com/doc/tutorial /tut5-5.html (5 of 5)14-04-2004 18:38:20

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ tutorial: 6.1, Input/Output with files

Section 6.1
| nput/Output with files

C++ has support both for input and output with files through the following classes:

. of stream Fileclassfor writing operations (derived from ost r eam
. 1 fstream Fileclassfor reading operations (derived fromi st r eam
. fstream Fileclassfor both reading and writing operations (derived fromi ost r eam

Open afile

Thefirst operation generally done on an object of one of these classesisto associate it to areal file, that
isto say, to open afile. The open fileis represented within the program by a stream object (an
instantiation of one of these classes) and any input or output performed on this stream object will be
applied to the physical file.

In order to open afile with a stream object we use its member function open() :
voi d open (const char * fil enane, opennode node);

wheref i | enane isastring of characters representing the name of the file to be opened and node isa
combination of the following flags:

los::in Open filefor reading
| 0S:: out Open file for writing
los::ate Initial position: end of file

| 0S:: app Every output is appended at the end of file
i os::trunc |If thefileaready existed it iserased
I 0s:: bi nary |Binary mode

These flags can be combined using bitwise operator OR: | . For example, if we want to open thefile
"example.bin" in binary mode to add data we could do it by the following call to function-member
open:

of stream fil e;
file.open ("exanple.bin", ios::out | ios::app | io0s::
bi nary);

All of the member functionsopen of classesof st ream i f st r eamand f st r eaminclude a default

http://www.cplusplus.com/doc/tutorial /tut6-1.html (1 of 8)14-04-2004 18:38:27

C++ tutorial: 6.1, Input/Output with files

mode when opening files that varies from one to the other:

class default mode to parameter

of stream|ios::out | ios::trunc

i fstream|lios::in

fstream |ios::in | io0s::out

The default valueis only applied if the function is called without specifying anode parameter. If the
function is called with any value in that parameter the default mode is stepped on, not combined.

Since the first task that is performed on an object of classesof st reami f st reamandf st r eamis
frequently to open afile, these three classes include a constructor that directly calls the open member
function and has the same parameters as this. Thisway, we could also have declared the previous object
and conducted the same opening operation just by writing:

ofstreamfile ("exanple.bin", ios::out | ios::app | io0s::
bi nary) ;

Both formsto open afile are valid.
Y ou can check if afile has been correctly opened by calling the member functioni s_open() :
bool is_open();

that returnsabool typevalueindicatingt r ue in case that indeed the object has been correctly
associated with an open fileor f al se otherwise.

Closing a file

When reading, writing or consulting operations on afile are complete we must close it so that it
becomes available again. In order to do that we shall call the member function cl ose() , thatisin
charge of flushing the buffers and closing the file. Itsform is quite simple:

void close ();

Once this member function is called, the stream object can be used to open another file, and thefileis
available again to be opened by other processes.

In case that an object is destructed while still associated with an open file, the destructor automatically
calls the member function cl ose.

http://www.cplusplus.com/doc/tutorial/tut6-1.html (2 of 8)14-04-2004 18:38:27

C++ tutorial: 6.1, Input/Output with files

Text mode files

Classesof stream i f st reamand f st r eamare derived fromost r eam i st r eamand
I ost r eamrespectively. That's why fstream objects can use the members of these parent classesto
access data.

Generaly, when using text files we shall use the same members of these classes that we used in
communication with the console (ci n and cout). Asin the following example, where we use the
overloaded insertion operator <<:

[l witing on a text file

' file exanple.txt
#i ncl ude <fstream h>

This is a line.

int min () { This i s anot her
of stream exanpl efile ("exanple.txt"); line.
i f (exanplefile.is _open())
{

exanplefile << "This is a line.\n";
exanplefile << "This is another line.\n";
exanpl efile.close();

}

return O;

}

Datainput from file can also be performed in the same way that we did with ci n:

/1 reading a text file This is a line.
#i ncl ude <i ostream h> This i s anot her
#i ncl ude <fstream h> i ne.

#i ncl ude <stdlib. h>

int main () {
char buffer[256];
i fstream exanplefile ("exanple.txt");
if (! exanplefile.is_open())
{ cout << "Error opening file"; exit (1); }

while (! examplefile.eof ())

{
exampl efile.getline (buffer, 100);

cout << buffer << endl;

http://www.cplusplus.com/doc/tutorial /tut6-1.html (3 of 8)14-04-2004 18:38:27

C++ tutorial: 6.1, Input/Output with files

}

return O;

}

This last example reads a text file and prints out its content on the screen. Notice how we have used a
new member function, called eof thati f st r eaminherits from classi os and that returnst r ue in
case that the end of the file has been reached.

Verification of state flags

In addition to eof () , other member functions exist to verify the state of the stream (all of them return a
bool value):

bad()
Returnst r ue if afailure occurs in areading or writing operation. For example in case we try to
write to afile that is not open for writing or if the device where we try to write has no space |eft.
fail ()
Returnst r ue inthe same casesasbad() plusin casethat aformat error happens, astrying to
read an integer number and an alphabetical character is received.
eof ()
Returnst r ue if afile opened for reading has reached the end.
good()
It isthe most generic: returnsf al se in the same cases in which calling any of the previous
functionswould returnt r ue.

In order to reset the state flags checked by the previous member functions you can use member function
cl ear (), with no parameters.

get and put stream pointers
All i/o streams objects have, at least, one stream pointer:

. i fstreamlikei st ream hasapointer known as get pointer that points to the next element to
be read.

. of streamlikeost r eam hasapointer put pointer that points to the location where the next
element has to be written.

. Finaly f streamlikei ost r eam inherits both: get and put

These stream pointers that point to the reading or writing locations within a stream can be read and/or
mani pulated using the following member functions:

http://www.cplusplus.com/doc/tutorial /tut6-1.html (4 of 8)14-04-2004 18:38:27

C++ tutorial: 6.1, Input/Output with files

tellg() andtel | p()

These two member functions admit no parameters and return avalue of typepos_t ype
(according ANSI-C++ standard) that is an integer data type representing the current position of
get stream pointer (in caseof t el | g) or put stream pointer (in caseof t el | p).

seekg() andseekp()

This pair of functions serve respectively to change the position of stream pointers get and put.
Both functions are overloaded with two different prototypes:

seekg (pos_type position);

seekp (pos_type position);
Using this prototype the stream pointer is changed to an absolute position from the
beginning of the file. The type required is the same as that returned by functionst el | g

andtellp.

seekg (off _type offset, seekdir direction);

seekp (off _type offset, seekdir direction);
Using this prototype, an offset from a concrete point determined by parameter direction
can be specified. It can be:

| 0S: : beg

offset specified from the beginning of the stream

| 0S::cur

offset specified from the current position of the stream pointer

i 0s::end

offset specified from the end of the stream

The values of both stream pointers get and put are counted in different ways for text files than for binary
files, since in text mode files some modifications to the appearance of some special characters can
occur. For that reason it is advisable to use only the first prototype of seekg and seekp with files
opened in text mode and always use non-modified valuesreturned by t el | g ort el | p. With binary
files, you can freely use al the implementations for these functions. They should not have any

unexpected behavior.

The following example uses the member functions just seen to obtain the size of abinary file:

http://www.cplusplus.com/doc/tutorial /tut6-1.html (5 of 8)14-04-2004 18:38:27

C++ tutorial: 6.1, Input/Output with files

/1l obtaining file size si ze of exanpl e.
#i ncl ude <i ostream h> txt is 40 bytes.
#i ncl ude <fstream h>

const char * filenanme = "exanple.txt";

int main () {

long I, m
ifstreamfile (filenane, ios::in|ios::binary);
Il =file.tellg();

file.seekg (0, ios::end);
m=file.tellg();

file.close();

cout << "sjize of " << filenane;

cout << " is " << (ml) << " bytes.\n";
return O,

Binary files

In binary filesinputting and outputting data with operators like << and >> and functions like
get | i ne, does not make too much sense, although they are perfectly valid.

File streams include two member functions specially designed for input and output of data sequentially:
write and read. Thefirst one (write) isamember function of ost r eam also inherited by of st r eam
And read is member function of i st r eamand itisinherited by i f st r eam Objects of class

f st r eamhave both. Their prototypes are:

wite (char * buffer, streansize size);
read (char * buffer, streansize size);

Where buf f er isthe address of a memory block where the read data are stored or from where the data
to be written are taken. The si ze parameter is an integer value that specifies the number of characters
to be read/written from/to the buffer.

http://www.cplusplus.com/doc/tutorial /tut6-1.html (6 of 8)14-04-2004 18:38:27

C++ tutorial: 6.1, Input/Output with files

/1l reading binary file t he

#i ncl ude <i ostream h> conpl ete

#i ncl ude <fstream h> fileis
in a

const char * filenane = "exanple.txt"; buf f er

int main () {
char * buffer;
| ong si ze;
ifstreamfile (filename, io0s::in|lios::binary|ios::ate);
size = file.tellg();
file.seekg (0, ios::beg);
buf fer = new char [size];
file.read (buffer, size);
file.close();

cout << "the conplete file is in a buffer”;

del ete[] buffer;
return O;

Buffers and Synchronization

When we operate with file streams, these are associated to a buffer of type st r eanbuf . This buffer is
amemory block that acts as an intermediary between the stream and the physical file. For example, with
an out stream, each time the member function put (write asingle character) is called, the character is
not written directly to the physical file with which the stream is associated. Instead of that, the character
isinserted in the buffer for that stream.

When the buffer is flushed, all datathat it containsis written to the physic media (if it isan out stream)
or smply erased (if it isan in stream). This processis called synchronization and it takes place under
any of the following circumstances:

. When thefileisclosed: before closing afile al buffers that have not yet been completely
written or read are synchronized.

. When the buffer isfull: Buffers have a certain size. When the buffer isfull it is automatically
synchronized.

. Explicitly with manipulators. When certain manipulators are used on streams a
synchronization takes place. These manipulatorsare: f | ush and endl .

. Explicitly with function sync() : Calling member function sync() (no parameters) causes

http://www.cplusplus.com/doc/tutorial /tut6-1.html (7 of 8)14-04-2004 18:38:27

C++ tutorial: 6.1, Input/Output with files

an immediate syncronization. Thisfunction returnsani nt value equal to - 1 if the stream has
no associated buffer or in case of failure.

© The C++ Resources Network, 2000 - All rights reserved

Previous: ‘ =
5-5. Preprocessor directives. index

http://www.cplusplus.com/doc/tutorial /tut6-1.html (8 of 8)14-04-2004 18:38:27

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

C++ Tutorid: Authoring.

The C++ Language Tutorial cp f:’ﬂ? s
The Author (" tutorial

Hi,

My nameis Juan Soulié, I'm a self-taught programmer born in 1977 in the Mediterranean
island of Mallorca belonging to the Kingdom of Spain.

Before bumping into C and subsequently C++ | used to program in Pascal and when | was a
child with Basic in my Spectrum and M SX-16kB machines. | also have some respect for
unix shell scripting and nowadays Perl. Right now I'm specialized in Windows' API
Programming and internet-related technol ogies.

The aim that pushed me to write this tutorial was to share with everyone interested in
learning this amazing and versatile programming language what |'ve learnt here and there
throughout the years using what seems to me simple and understandable explanations and
avoiding useless (or dlightly useful) theory. I've tried to explain what you can do with C++
instead on emphasizing what you should do (I'm not saying that that is not important, it is
simply not covered in this tutorial).

Finally, | want to thank these people that have found some typos in previous versions of the
tutorial: Mike H, Proto, Anderson Fabiano, Alex Hoover, Jose Castaneda , namel ess person,
Scott A. Fanjoy, Mr. Venom, Weilan W Wu, Vern Hamberg, Brian Agbay, Thomas Texier,
Cory Wheeler, Jay, Hugo Lavalle, Joshua Smith, Jaime Tenorio, sassi, Bruce Bertrand,
Nikolai Shevchuk, Devrim Ersanli, Guillermo, Luke Kurach, Nick Malden, Hans Verbrugge,
mikeg, Chouputra, Anna Grishkan, Patrick Seafield, Fede, Samuel Schultz, Mitchell Markin,
and some others whose names were not disclosed in their messages.

There are probably some other errorsto find. If you find one please use the contact form to
notify me. Please notice that | don't know all about everything related to C++ and that | am
not a volunteer programming consultant, so if you have a particular programming question
you will probably get a better result posting your question in a programming forum, mailing
list or newsgroup rather than sending it to me.

Regards,
Juan Soulié

http://www.cplusplus.com/doc/tutorial /tutO-2.html (1 of 2)14-04-2004 18:38:52

http://www.cplusplus.com/contact.html

C++ Tutoria: Authoring.

© The C++ Resources Network, 2001 - All rights reserved

S
0]
X

http://ww.cplusplus.com/doc/tutorial /tutO-2.html (2 of 2)14-04-2004 18:38:52

http://www.cplusplus.com/doc/tutorial/index.html
http://www.cplusplus.com/doc/tutorial/index.html

	cplusplus.com
	C++ language tutorial
	C++ Tutorial: Introduction, Instructions for use.
	C++ Tutorial: 1.1, Structure of a program
	C++ Tutorial: 1.2, Variables. Data types. Constants.
	C++ tutorial: 1.3, Operators.
	C++ Tutorial: 1.4, Communication through console.
	C++ Tutorial: 2.1, Control Structures.
	C++ Tutorial: 2.2, Functions (I).
	C++ Tutorial: 2.3, Functions (II).
	C++ Tutorial: 3.1, Arrays
	C++ Tutorial: 3.2, Strings of Characters.
	C++ Tutorial: 3.3, Pointers.
	C++ Tutorial: 3.4, Dynamic memory.
	C++ Tutorial: 3.5, Structures.
	C++ Tutorial: 3.6, User defined data types.
	C++ Tutorial: 4.1, Classes
	C++ Tutorial: 4.2, Overloading operators
	C++ Tutorial: 4.3, Relationships between Classes
	C++ Tutorial: 4.4, Polymorphism
	C++ Tutorial: 5.1, Templates
	C++ Tutorial: 5.2, Namespaces
	C++ Tutorial: 5.3, Exception handling
	C++ Tutorial: 5.4: Advanced Class Type-casting
	C++ Tutorial: 5.5, Preprocessor directives
	C++ tutorial: 6.1, Input/Output with files
	C++ Tutorial: Authoring.

