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Abstract—Gliomas are brain tumor types that have a high
mortality rate which means early and accurate diagnosis is
important for therapeutic intervention for the tumors. Tradi-
tionally, however, assessing Magnetic Resonance Imaging (MRI)
has been a labor intensive process and prone to human error and
ultimately provides limited value of information for tumors. To
address this difficulty, the proposed research will develop a hybrid
deep learning model which integrates U-Net based segmentation
and a hybrid DenseNet-VGG classification network with multi-
head attention and spatial-channel attention capabilities. The
segmentation model will precisely demarcate the tumors in a
3D volume of MRI data guided by spatial and contextual
information. The classification network which combines a branch
of both DenseNet and VGG, will incorporate the demarcated
tumor on which features with attention mechanisms would be
focused on clinically relevant features.

The primary goals aim to establish a suitable system for glioma
detection and grading that minimizes manual diagnostic errors
and inspection time as well as optimizes the model to find the
rapid clinical outcome. High-dimensional 3D MRI data could
successfully be utilized in the model through preprocessing steps
which are normalization, resampling, and data augmentation.
Through a variety of measures the framework is evaluated:
measures of performance in segmentation are Dice coefficient
and Mean Intersection over Union (IoU) and measures of
performance in classification are accuracy precision, recall, and
F1-score.

The hybrid framework that has been proposed has demon-
strated through physical testing that it has the capability of
obtaining a Dice coefficient of 98% in tumor segmentation, and
99% on classification accuracy, outperforming traditional CNN
models and attention-free methods. Utilizing multi-head attention
mechanisms enhances notions of priority in aspects of the tumor
that are clinically significant, and enhances interpretability and
accuracy. The results suggest a great potential of the framework
in facilitating the timely and reliable diagnosis and grading of
glioma by clinicians is promising, allowing for better planning of
patient treatment.

Index Terms—Glioma Grading, Magnetic Resonance Imaging,
Multi task learning.

I. INTRODUCTION

Gliomas are the most frequently occurring primary malig-
nant brain tumors. They constitute about 81% of all malignant
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intracranial tumors and are a significant public health burden
with high clinical and socioeconomic value. These aggressive
tumors arise from glial cells within the central nervous system,
primarily the brain, and exhibit a high degree of heterogeneity
with respect to histological, growth, and clinical characteris-
tics. The World Health Organization (WHO) classifies gliomas
into grades I to IV based on histological characteristics and
malignant behavior. High-Grade Gliomas (HGMs) defined
by WHO grade III and IV exhibit aggressive biological
behavior characterized by high cellular proliferation, nuclear
atypia, and increased mitotic activity, collectively resulting in
markedly shorter survival than Low-Grade Gliomas (LGMs).
It is important for the accurate diagnosis and grading of
gliomas for clinical management since grading can have direct
consequences for surgical planning, selection of chemotherapy,
radiotherapy planning, and prognostication. A brief overview
pipeline of the system is shown in Fig. 1.
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Fig. 1. Research Methodology Process Diagram

The purpose of this research is to devise a trustworthy
glioma detection and grading system that reduces manual
errors and time for inspection, while still optimizing for
quick clinical outcomes. High dimensional 3D MRI data are
efficiently employed through preprocessing methods such as
normalization, resampling, and data augmentation. Established
metrics are used to evaluate framework performance: Dice
coefficient and mean Intersection over Union (IoU) for seg-
mentation performance, and accuracy, precision, recall, and
F1-score for classification accuracy. These metrics ultimately
enable a higher level of assessment of the robustness and
clinical relevance of the framework.

Recent developments in deep learning and machine learning
have transformed medical image analysis, which has provided
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the opportunity to develop advanced automated diagnostic
systems that can recognize patterns, extract features, or de-
velop predictive models based on high-dimensional imag-
ing data. Various deep learning architecture approaches have
been proposed for glioma analysis: Two-dimensional Con-
volutional Neural Networks (2D CNN) with VGG19 archi-
tecture reached 91.38% accuracy; three-dimensional Multi-
scale CNN approaches achieved 90.64% accuracy; 3D-based
model techniques advanced to 95.31% accuracy; and three-
dimensional Multi-Attention CNN methods achieved the best
performance at 95.86% accuracy. However, none of these
prior approaches fully explored the benefits of complementary
architectural strengths or leveraged multimodal MRI data with
a sophisticated attention methodology approach to provide
additional adaptive recalibration of features.

The U-Net model was originally presented in 2015 for the
purpose of biomedeical image segmentation, and has proven
to be an architecturally very successful model in medical
imaging use cases due to its encoder-decoder architecture with
skip connections that allows spatial detail to be identified
for localization while simultaneously capturing multi-scale
contextual features. DenseNet, a year later in 2017, funda-
mentally altered the design of convolutional neural networks
by developing a scheme of dense connectivity for feature
reuse and improved gradient propagation enabling the training
of very deep networks with fewer overall parameters. VGG
networks, in contrast, have a significant depth while maintain-
ing comparatively smaller receptive fields which allow them
to hierarchically create increasingly more abstract features
from many successive transformations. Multi-head attention,
now found in the transformer family of architectures, allowed
the model to attend to multiple aspects of multiple different
features and multiple different spatial regions, which could
be adapted to the model focusing on tumor features that are
determined to be clinically relevant.

This study introduces a new hybrid deep learning model
which integrates tumor segmentation using a 3D U-Net with a
dual-branch hybrid DenseNet-VGG classification model with
multiple heads and spatial-channel attention. The framework
integrates multi-modal 3D MRI data within a pipeline model:
the 3D U-Net segmented the anatomy from volumetric MRI
data while ensuring the spatial context was maintained and
output the segmented anatomy to the hybrid classification
model, where complementary DenseNet and VGG branches,
enhanced by attention mechanisms, learn to extract deferential
tumor features and pay attention to proximal anatomy associ-
ated clinically. This combination of structures exploits com-
plementarity, and integrates an attention model, is expected to
achieve better performance.

Three-dimensional volumetric analysis diverges from the
more conventional two-dimensional slice-by-slice study, as
features of the tumor such as the morphology, spatial re-
lationships, and volumetric traits are fully captured in 3D
processing, whereas those elements may be absent or distorted
in 2D representation. Moreover, This formulated newer 3D
visualization work allows a more complete characterization

of tumors including volume methods, shape descriptors, and
distances between tumor subcomponents; which, although less
measurable, are still relevant for surgical procedure deliv-
erables, and assessment of clinical treatment. BraTS2019 is
a publicly available database consisting of 335 annotated
multimodal 3D MRI scans with 5 expert annotations for each
patient (259 high grade glioma, and 76 low grade glioma).
As applied, the frameworks performance is measured quan-
titively via metrics accepted in scientific and medical imaging
research communities. For example, segment performance is
measured via the Dice coefficient and mean Intersection over
Union (mloU) results. Classification accuracy is represented
with additional performance metrics such as accuracy, pre-
cision, recall, specificity, Fl-score, etc. The proposed work
achieves an overall Dice coefficient higher than 98% for
segmentation accuracy and over 99% classification accuracy
for glioma grade while significantly outperforming stated of
the art segmentation methods. This work reinforces the idea
of using both deep learning architecture combinations with an
advanced attention mechanism to analyze medical images.
This research adds to the literature through: (1) a novel hy-
brid structure of U-Net, DenseNet, and VGG that incorporates
a variety of attention mechanisms; (2) extensive analyses of 3D
MRI, using an extensive collection of multivariate volumetric
data; (3) best in class performance that demonstrates signif-
icant advantages over previously published results; (4) thor-
ough evaluations that use established metrics common among
medical imaging; and (5) thorough, potentially reproducible
and translatable approaches. The framework acts on essential
clinical gaps by enabling a fast, automated, objective glioma
detection and grading route that helps to decrease diagnostic
error rates, expediting and improving clinical workflow, and
enhancing outcomes with quick accurate treatment planning.

II. LITERATURE REVIEW

Among brain tumours, gliomas are some of the most deadly
tumours; thus, early-emergent detection and proper grading are
significant factors for their treatment. The previous literature
discusses using deep learning approaches to improve the
segmentation and classification of gliomas derived from MRI.

Tripathi and Bag’s [1] study introduced an attention-guided
CNN model that utilized a multi-task learning approach with
spatial and channel attention blocks to segment gliomas and
classify them as low/high grade, 1p/19q, and IDH status. Their
model segmented the tumor and used that segmented tumour
for the classification to achieve better accuracy than existing
methods or pipelines, yet the glioma grading was not based
on the robust increase from the 1p/19q status.

Some studies propose deep learning pipelines that will apply
preprocessing techniques prior to segmentation techniques. As
an example, Dang et al. [3] segmented the glioma using U-
Net and classified the glioma using either VGG or GoogleNet,
achieving over 97.44% accuracy. Vinaya and Mara [9] ap-
plied transfer learning using EfficientNet for classification and
SegNet for segmentation, achieving 97% accuracy or Dice
coefficient of 0.81, but only for low-grade gliomas. Naser



and Deen [2] combination of U-Net segmentation and transfer
learning using VGG16 for the lower-grade gliomas achieved
0.84 mean DSC and 0.89 image level accuracy, although fine-
tuning was required for optimal accuracy.

Multiple articles examine multimodal 3D MRI segmenta-
tion. Trivedi et al. [6] proposed NDNN-based U-Net for volu-
metric segmentation, with Dice scores of up to 90.02%. Ilyas
et al. [5] demonstrated Hybrid-DANet, a network based on
multi-dilated attention and hybrid weight alignment building
upon the advantages of segmented attention as a method to
improve segmentation accuracy at higher computational cost
than previously developed models. Hapsari et al. proposed
a DNN framework with minimal texture features on feature
extraction (GLCM, GLRLM, GLSZM) to classify and evaluate
tumours compared to SVM, though careful training of the
DNN state depends on adaptation. Semi-supervised multi-
task learning approaches to genomic subtyping that predicted
genomic tumor markers such as IDH, MGMT, and 1p/19q
were proposed by Tupe-Waghmare et al. [7], achieving approx-
imately 82.35% accuracy compared to moderate Dice scores.

Previous studies have examined deep learning based seg-
mentation and classification with unique preprocessing and
feature techniques. Ozkaya and Sigiroglu [4] identified an
improvement of 15% Dice score employing adaptive histogram
thresholding for tumour segmentation. Ghassemi et al. pro-
posed a GAN based methodology for classification pretraining.
Oinar and Yildirim modified ResNet-50 for binary detection
of glioma. Several studies address limited datasets, binary
classification, coarse spatial grading of tumors, findings were
developed by Mohsen et al., Sajid et al., Irmak, and Ayadi et
al.

In general, deep learning methodologies for glioma detec-
tion and grading have progressed considerably due to attention
mechanisms, transfer learning, and hybrid models. However,
the challenges of small datasets, high computational cost, and
limited use of multimodal and genetic data remain. Credibly,
the hybrid 3D CNN U-Net framework for accurate segmenta-
tion and multi-level classification, represents an exciting future
direction of possible work.

A. Research Objectives

To develop a glioma detection model for Segmentation and
classification of 3D MRI. Reduce inspection time & manual
error in diagnosis using the Al Attention mechanism. Optimize
the system for real-time usage and increase accuracy.

B. Research Challenges

The project major challenge is designing glioma detector
from 3D MRI’s, a deep learning model particularly made for
glioma segmentation and grading. The working of the pro-
posed system will be evaluated with the helping metrics such
as segmentation accuracy, Dice similarity coefficient, grading
accuracy etc., which is supposed to be more. Complicated
dataset of 3D MRI scans of glioma patients will be collected
and used for training plus validation purposes.

ITI. PROPOSED ARCHITECTURE

The primary research strategy implemented is to classify
and compare the glioma and decide its grade for medical
treatment. The training of the model-3D MRI images is
necessary and fundamental. The data set is collected from an
open source, and we use freely accessible data sets. Proposed
architecture is shown in Fig. 2.
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Fig. 2. Architecture of System.

BRATS2019 dataset. All images in data set is divided
into training & testing data. Glioma in the high defined 3D
MRI image is spotted using the U-net deep learning model.
Then, we downsampling the images for clear identification
of encoder path. Similarly, upsampling them highlights the
decoder path. This process leads to pixel wise classification
making sure that image input and output sizes are consistent.
The encoder is incharge of “WHAT” is displayed within the
image and the decoder is incharge of “WHERE” is glioma
area pinpointed. After collecting the dataset, images undergo
preprocessing and segmentation that too into different classes.
Besides training, gliomas region is highlighted and utilised
for classification. Finally we use different metrics to compare
performance of the model. The flow chart in Figure 1 outlines
the proposed system working from beginning to conclusion.

IV. METHODOLOGY
A. Research Method Overview

This study proposes a comprehensive hybrid deep learning
framework specifically for automated glioma segmentation and
classification of 3D MRI volumes. The proposed approach
integrates a tailored segmentation model with a sophisticated
hybrid classification model, resulting in a streamlined end-to-
end workflow for processing raw medical imaging data into
clinically relevant tumor grade predictions. The framework
processes high dimensional 3D MRI data using a five-step
sequential process which consists of: (1) acquiring and fully



Algorithm 1 Hybrid CNN-Attention Model for Glioma Clas-
sification
Require: Segmented 3D brain MRI volumes X, ground truth
labels Y
Ensure: Resulting trained model M
1: Input: Preprocessed and segmented MRI scans of glioma
regions.
2: Base Model Initialization: Load weights of U-Net back-
bone for feature extraction.
3: Dense Block Construction: Each layer receives output
from all previous layers concatenated together:

S F1))

4: Batch Normalization: Normalization of activations for
training stability.

Fy = H([Fo, F1, ..

X—p
M

where 1 and o is the mean and variance across the batch,
respectively, and -y, § are learnable.

5: Pooling and Transition: Downsample feature map size
while retaining important features in the representation:

Ny +2p— k
Nout(+p >+1
S

6: Attention Module: The attention on channel and spatial
dimensions is generated with:

Attention;, = softmax (

QhK;T;)
va. )"

7: Global Average Pooling (3D): Aggregate the spatial infor-
mation across depth, height, and width as:

1 H W
GAP. = —— WZZXW

i=1 j=1

8: Fully Connected Layer: Combine the high-level learned
features for the classification task:

Output = Dense(njasses, activation=softmax) (GAP3D(x))

9: Loss Function: Categorical cross-entropy is calculated as:
Ly, §) =—> vilog(i)s)

10: Optimization: Parameters are updated using Adam as:
my
UVt + €

11: return Trained hybrid CNN-attention model M*

9t+1 =0, -1

characterizing the dataset, (2) preprocessing and normalizing
the data consistently, (3) segmenting the tumor using a 3D
U-Net model with added attention, (4) classifying the MRI
through a features-based approach using a hybrid DenseNet-
VGG model with multi-head and spatial-channel attention,
and (5) quantitatively evaluate the models using established

medical imaging evaluation metrics.

In terms of the research approach, a supervised learning
approach was used to train both the segmentation and classifi-
cation models on annotated data with ground truth labels. This
approach was motivated by four objectives: (i) minimizing
error and time taken by the radiologist during MRI assessment,
(ii) taking advantage of complementary capabilities of multiple
deep learning architectures through a hybridized model, (iii)
using attention-enhanced models to increase model learning on
clinically accepted tumor features, and (iv) establishing state-
of-the-art performance on benchmark datasets with a broader
audience for clinical utility. Methodology of the system is

shown in Fig. 3.
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Fig. 3. Research Methodology Process Diagram

B. Dataset Description and Preparation

1) BraTS2019 Dataset Characteristics: The BraTS2019
dataset is a widely used public resource featuring 335 multi-
modal 3D MRI scans from various clinical centers. Each
scan includes five imaging types: FLAIR, T1-weighted, T1-
weighted with gadolinium contrast (T1ce), T2-weighted, and
a manual tumor segmentation mask. Of these 335 scans, 259
are from patients with aggressive High-Grade Gliomas (HGG),
and 76 are from patients with less aggressive Low-Grade
Gliomas (LGG), representing the typical clinical ratio.

Each MRI modality highlights different aspects of the
tumor. FLAIR highlights swelling and abnormal tissues by
suppressing fluid signal, while T1 provides detailed anatomical
structure. Tlce reflects tumor regions with active blood-brain
barrier disruption through contrast enhancement. T2 shows
non-enhancing and cystic tumor areas. The segmentation
masks, expertly annotated by radiologists, distinguish tumor



presence versus healthy brain tissue. Fig. 4 shows a sample of
the Dataset:

9980826 404 P “ 9980626, 6.44 9960626, 7.04
‘ E 708
7 . E o 736

T2 seg

P S
F; ; N

. -,
\ - 4
€ 2 7
< e <>

s
T

FLAIR Tice

Fig. 4. Dataset

2) Data Preprocessing Strategy: The raw MRI volumes
in BraTS2019 have 155 consecutive axial slices, each with
spatial dimensions of 240 x 240 pixels and isotropic voxel
spacing of 1 mm?. To enable viewing and utilizing diagnostic
material on a GPU with limited graphics memory, all volumes
are preprocessed to standardize formatting.

Volume Resampling: All 3D MRI volumes are resampled
to 128 x 128 x 1 voxels using trilinear interpolation, rather
than using all 155 slices. In preprocessing, the pipeline selects
the central 64 consecutive slices in which the maximum
tumor burden appears by automated analysis of ground truth
masks to produce a smaller reformatted volumetric image that
saves memory while also including the slices most pertinent
to analyzing the tumor. This oversampled volumetric image
reduces memory requirements by nearly 58% over processing
a full volume image.

Intensity Normalization: Raw magnetic resonance imaging
(MRI) intensities can be quite variable across differing scan-
ning protocols, scanner vendors, and acquisition parameters,
which creates distribution shift that confounds convergence for
neural networks to train. A normalization of z-scores is applied
on a per-subject, per-modality basis, for example,

Leaw (2,9, 2) — 1 (1
o+ €
where I, (z,y,2) denotes raw intensity at voxel location
(z,y,2), u and o represent mean and standard deviation
computed exclusively within the brain mask (excluding back-
ground), and € = 1 X 10~% avoids numerical instability. This

IHOl’m(m7 y’ Z) =

normalization centers each modality distribution to a zero
mean and unit variance, allowing for robust cross-subject and
cross-scanner comparisons while maintaining enough dynamic
range in the distribution for feature learning.

Label Binarization: While BraTS2019 does have fine-
grained tumor subregion annotations (enhancing core, necrotic
center, edema), the study will only conduct a binary classifi-
cation (presence vs. absence of tumor). As a result, all ground
truth labels will be binarized:

1 if Loriginal(xv Y, Z) >0
0 otherwise

Lbina.ry(xa Y, Z) = { (2)

Data Augmentation: To enhance model robustness on
limited training data (335 total subjects), comprehensive aug-
mentation is applied exclusively to training data during each
epoch:

« Spatial Augmentation: Random 3D rotations (4-15) and
translations (£10 voxels) account for natural anatomical
variations and scanner positioning differences

o Elastic Deformation: B-spline-based spatial deforma-
tions simulate morphological variations in tumor presen-
tation

« Intensity Augmentation: Random multiplicative scaling
(0.95-1.05) and additive Gaussian noise (¢ = 0.02)
simulate scanner variability

o Contrast Stretching: Random contrast enhancement
simulates different reconstruction algorithms

The entirety of the dataset is divided into training (75%,
n = 251 patients) and validation (25%, n = 84 patient)
sets via stratified random sampling at the level of the patient.
Notably, all the MRI slices associated with a single patient
will reside either in the training or validation set ensuring
that there is no information leakage that would overly inflate
performance estimates. Stratification maintains the equivalent
class distributions between partitions.

C. Tumor Segmentation Architecture

1) 3D U-Net Foundation: The segmentation of tumors uses
a 3D U-Net model with two components of the U-Net design.
There are 23 convolutions sequenced as an encoder-decoder
network. The encoder module gradually reduces the size of 3D
feature representations in a pyramidal fashion over 5 levels.
Each level consists of 2 sequential convolutional layers with
kernels of size 3x3x3. Each convolutional layer is followed
by a ReLU and a max-pooling layer with a stride of 2. The
downward spatial reduction of 3D feature representations, for
example, describes information multi scaly-dependent context
which is key to or serves as an indication of possible tumor
boundaries. The decoder has a corresponding structure to the
encoder part of the U-Net, and the decoder will progressively
up-sample next feature maps through transposed convolutions
with a stride of 2.

The inclusion of skip connections is another architectural
characteristic of U-Net features that takes the encoder features
(down-sampled) and concatenates them prior to up-sampling



with the corresponding features in the decoding branch of
the U-Net model. Skip connections will preserve spatial in-
formation lost during the down-sampling process and will
allow for voxel-level tumor boundary detection. This building
block of design is important for medical imaging and medical
imaging segmentation in practice, especially when boundaries
delineating the tumor are clinically relevant to attain during
diagnosis and treatment strategies. A prediction of test image
of the system is illustrated in Fig. 5.

Testing Image Testing Label Prediction on test image
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Fig. 5. U-Net Model.

2) Soft Additive Attention Integration: The Standard U-
Net operates on all spatial locations with equal importance.
To allocate network capacity for tumor-relevant areas while
suppressing background information, soft additive attention is
added to the segmentation pipeline is shown in Fig. 6:
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Fig. 6. Attention Mechanism.
Asofl(x) == U(W : f(l’)) (3)

where o(-) denotes sigmoid activation constraining outputs
to [0,1], W is a learnable weight matrix, and f(x) repre-
sents feature activations at spatial location x. The computed
attention mask Ay exhibits higher values for tumor regions
and lower values for background, enabling adaptive feature
recalibration:

fatlended (QL‘) = Asoft(x) © f(m) 4)

where ® denotes element-wise multiplication. This mecha-
nism effectively reweights spatial locations, directing network
focus toward clinically informative tumor regions while sup-
pressing irrelevant background noise.

3) Segmentation Training and Loss: The segmentation net-
work output applies sigmoid activation, generating pixel-wise
tumor probability estimates p(x,y, z) € [0,1]:

_ 1
1+ exp(—Q)

Binary cross-entropy loss optimizes the segmentation net-
work:

Sigmoid(Q) 5)

| X
Loce = — > lyilog(pi) + (1 — i) log(1 —p)]  (6)
i=1

where N denotes total voxel count, y; € {0,1} is ground
truth label, and p; is model prediction. This logarithmic
formulation applies higher penalty to confident misclassifica-
tions, naturally addressing class imbalance (background voxels
vastly outnumber tumor voxels).

The segmentation network is trained using the Adam opti-
mizer with learning rate o = 0.001, batch size 16, and up to
100 epochs. Early stopping based on validation loss prevents
overfitting.

4) Segmentation Evaluation Metrics: Segmentation quality
is quantitatively assessed using complementary metrics:

Dice Coefficient: Measures spatial overlap between pre-
dicted segmentation P and ground truth Q:

_ 2[PNQ)
1Pl +1Q
Dice ranges from O (no overlap) to 1 (perfect agreement).

In clinical applications, Dice > 0.90 represents excellent

segmentation quality. This metric is robust to class imbalance

common in medical imaging.

Mean Intersection over Union (mloU): Computes the
intersection-over-union metric, emphasizing prediction preci-
sion:

Dice @)

PnQl _ PNQ)
[PUQl  |PI+]QI-[PNQ|

mloU is particularly sensitive to false positive predictions,
providing stricter evaluation than Dice coefficient and better
reflecting clinical utility where false positives can trigger
unnecessary clinical interventions.

mloU =

®)

D. Hybrid Classification Architecture

1) Architectural Design Rationale: After tumor segmen-
tation, the segmented regions of the tumor are classified
using a novel hybrid network based on DenseNet and VGG
architectures. This hybrid architecture exploits their architec-
tural strengths: DenseNet’s efficient feature reuse and gradient
propagation, and VGG’s depth to extract hierarchical features
at a finer scale.

DenseNet Component: DenseNet implements dense con-
nectivity where each layer receives concatenated outputs from
all preceding layers:

X, = H([Xo, X1,...,X1-1]) 9)



where [Xo, X1, ..., X;—1] denotes concatenation of outputs
from layers O through [ — 1, and H; Denotes the composition
function (batch normalization — ReLU — convolution). The
advantages of a denser connectivity network is: (i) that it
enables training of very deep networks by improving gradient
flow through the many short paths; (ii) reusing features across
layers provides parameter efficiency; (iii) reusing features
provides implicit regularization which can dampen overfitting.
Accordingly, DenseNet is able to improve features and distin-
guish among glioma subtypes.

VGG Component: VGG networks employ deeper architec-
tures with small 3 x 3 receptive fields:

fhierarchical(z) = fL(fL—l(' e fl(x) e ))

where L refers to network depth. VGG’s progressive in-
crease in network depth allows the extraction of increasingly
abstract hierarchical features, with the early layers capturing
low-level features (edges, textures) and the deeper layers
capturing higher level semantic features (i.e., shape, patterns
of intensity). Although VGG requires more parameters than
DenseNet, the depth of VGG helps to discriminate subtle
features that are crucial for distinguishing glioma grades.

Hybrid Integration: The designed architecture uses
DenseNet and VGG as two separate, distinct branches that
process segmented features of the tumors. Each branch extracts
valuable complementary feature hierarchies that represent dif-
ferent components of the tumor. After deriving branch outputs,
we concatenate the outputs and input them into multiple layers
to promote fusion of these complementary representations
before making the final classification.

2) Multi-Head Attention Mechanism: Multi-head attention
enables simultaneous attention to multiple feature aspects
through parallel computation across diverse representation
subspaces:

(10)

MultiHeadAttention(Q, K, V') = Concat(head, , . . . , head;,) W
(11)

Each attention head computes scaled dot-product attention:

head; = Attention(QW, KW/, vw}Y)

ot [ QWS EWST
N

where ), K, V denote query, key, and value feature map
projections; Wf?7 WHE WY are learnable projection matrices
for head i; dj, is key dimension; scaling by +/d, stabilizes
gradient magnitudes; and W linearly combines multi-head
outputs.

Since multiple attention heads are working in parallel,
different heads focus their attention on different aspects of
the features: some heads focus on tumor morphology, some
heads focus on the distributions of intensity, and some focus
on spatial configuration. This aspect of diversity improves
representational capacity so that the network can also learn to

) vwYy o (12

attend to multiple tumor characteristics that may have clinical
significances at once.

3) Spatial and Channel Attention: Complementing multi-
head attention, spatial and channel attention mechanisms pro-
vide additional feature recalibration:

Spatial Attention: Generates attention masks emphasizing
clinically important spatial regions:

Agpatial (2, y, 2) = sigmoid( feony(MaxPool(F') + AvgPool(F)))
(13)
represents 3D feature maps, MaxPool and AvgPool sum-
mary max and average activations across spatial dimensions
and f.ony applies learnable convolution. Higher attention values
indicate more importance for classification.
Channel Attention: Recalibrates feature importance across
channels:

Achannel = sigmoid(W5ReLU(W; (AvgPool(F')+MaxPool(F))))
(14)
where Wy, W5 are learnable fully-connected layer weights.
Channel attention enables selective emphasis on feature chan-
nels maximally informative for glioma grading.
Combined spatial-channel attention applies multiplicative
interaction:

Freﬁned = (Aspatial O) Achannel) © F (15)
This two-attention approach allows full calibration of the
features along both spatial and channel dimensions to focus
on clinical characteristics of the tumor that are relevant.
4) Classification Output and Prediction: Following feature
refinement, global average pooling aggregates spatial informa-
tion:

GAP(F)

H
(16)

1 W D
- HxWxDZZZF(i’j’k)

i=1j=1k=1

where H, W, D denote spatial dimensions of feature maps.
This operation converts spatial feature maps to vector repre-
sentations, providing position-invariant features essential for
classification.

The final classification layer applies softmax activation:

exp(z;)

5 exp(z)

where W, b, are learnable classification weights and biases.
Softmax normalization ensures output values represent valid
probability distributions. The network outputs two probabil-
ities: P(HGG) and P(LGG), with the higher probability
determining final grade prediction.

Output = softmax (W, - GAP(F) + b.) = (17)



5) Classification Training: Categorical cross-entropy loss
optimizes the classification network:

C
Leg=—Y  yilog(i))

i=1

(18)

where C' = 2 (binary classification: HGG or LGG), y;
denotes one-hot encoded ground truth (1 for true class, O
otherwise), and ¢; is softmax-normalized prediction.

The classification network is trained using the Adam opti-
mizer with learning rate o = 0.0005, batch size 8, and up to
150 epochs. The lower learning rate compared to segmentation
training enables more careful feature learning. Early stopping
based on validation accuracy prevents overfitting.

E. Quantitative Evaluation Framework

1) Classification Performance Metrics: Classification qual-
ity is comprehensively assessed using multiple metrics:
Accuracy: Overall fraction of correct predictions:

TP + TN
TP + TN + FP + FN

Accuracy = (19)

Precision: Fraction of positive predictions that are correct:

TP

Precision = ———
TP + FP

(20)
High precision indicates few false alarms (false HGG diag-
noses).
Recall (Sensitivity): Fraction of actual positive cases cor-
rectly identified:

TP

Recall = — —
= TP EN

21

High recall indicates the model detects most actual HGG
cases, critical for clinical safety.
Specificity: Fraction of negative cases correctly identified:

TN

SpeCIﬁCIty = m

(22)

F1-Score: Harmonic mean of precision and recall, balanc-
ing both metrics:

Precision x Recall

Fl =2 (23)

" Precision + Recall

where TP (true positives), TN (true negatives), FP (false
positives), and FN (false negatives) are computed from vali-
dation predictions versus ground truth labels.

2) Segmentation Performance Metrics: Segmentation qual-
ity employs previously defined Dice coefficient and mean
Intersection over Union metrics, evaluated on validation tumor
masks.

FE. Evaluation Metrics

Model performance is assessed using standard metrics:

> (TP, +TNy)

Accuracy = 24
Y > (TP, +TNy+ FP, + FNy) &9
.. Eb TPb
Precision = —/————*———— (25)
Eb(TPb + FPb)
Y TPy
Recall = (26)
Yo (TPy+ FNy)
Fl=2. Precjis.ion - Recall 27
Precision + Recall
TN
Specificity = ————— 28
Py = N T FP (28)

The Dice coefficient and mloU are used as metrics to
evaluate segmentation and the hybrid model shows exceptional
HGG versus LGG classification and accurate glioma region
localization from preprocessed 3D MRI data.

V. RESULTS

We evaluated the proposed hybrid classification model by
utilizing loss, accuracy, precision, and F1-score metrics over
training time. The precision graph examines how accurately
the model was predicting the metric over all epochs. The
accuracy variable would increase over training time, indicating
that the model’s abilities to predict gliomas increased over
training time.

The loss graph measures the predicted value vs actual value.
A decreasing loss accounts for the model’s ability to become
more converged to sophisticated performance. The accuracy
should be consistently high for reliable classification of glioma
images. The proposed hybrid classification model accurately
provides the format to perform the task of reliable localization
and classification of whether glioma is present on medical
images once we achieve a classification accuracy of 99.99%
percent.

A. Performance Evaluation

Commonly used as performance metrics for classification
models, confusion metrics, or confusion matrices, were em-
ployed in this study. We employed true positive (TP), true
negative (TN), false positive (FP), and false negative (FN)
counts to evaluate performance in a hybrid classification model
with DenseNet and VGG classification components. These
classifications allowed us to assess the model’s performance
in classifying if a glioma case was predicted correctly (TP),
accurately classifying a case with no glioma (TN), inaccuracies
by the model classifying a case with no glioma as glioma (FP),
and incorrect classifications if a case with glioma was misclas-
sified as a case with no glioma (FN). Model Performance is
shown in Fig. 7.

1) Sensitivity and Specificity: Sensitivity is defined as:

SP

Sensitivity = m

(29)
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where P; represents the predicted glioma region and 7 is
the ground truth region of glioma.
Specificity is defined as:

SN

Speciﬁcity = m

(30)
where SN represents true negatives, Ty is the non-glioma
region of the ground truth, and P, is the predicted non-glioma
region.
2) Dice Coefficient: The Dice coefficient, commonly used
for segmentation evaluation, is defined as:

2x|PNQ|

Dice coefficient =
1P|+ Q|

€2y

3) Accuracy, Precision, and F1-Score: Accuracy measures
the overall correctness of the classification:

Zf:l(TPb + T'Ny)
S2 (TP, + TNy + FPy + FNy)

Accuracy =

(32)

Precision indicates the rate at which positive predictions are
correct:

Zf:l TPb
ZbB:1(TPb + FPb)

Fl-score, the harmonic mean of precision and recall, is
defined as:

Precision =

(33)

Precision x Recall

F1- =2 X
score Precision + Recall

(34)

B. Confusion Matrix Analysis

The confusion matrix visualizes the model’s performance
on 335 samples from the validation dataset, which included
both HGG and LGG cases. Each row depicts true instances,
while each column depicts predicted instances. The hybrid
classification model achieved a training accuracy of 0.999998,
Fl-score of 0.99, and precision of 0.999997. Specificity and
recall were determined as well based on this confusion matrix.
Confusion Matrix is shown in Fig. 9.

Normalized Confusion Matrix
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Fig. 9. Confusion Matrix for Hybrid Classification Model.

C. Classification Metrics

Figures 10 and 7 illustrate the classification performance
across Fl-score, precision, accuracy, and recall. Figure 8
shows the F1-score for each class. Figure 11 compares metrics
across different CNN models. Score for Each Class is shown
in Fig. 8
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D. Comparison with Other Models

To assess the performance of the hybrid model of DenseNet
and VGG classification with multi-head attention, we con-
ducted a comprehensive comparison experiment with several
common CNN models such as GoogleNet, LeNet, ResNet,
AlexNet, VGGNet, ResNet71, and ResHNet. All models had
the same training and test conditions on the same preprocessed
Brats2019 3D MRI dataset with the same train-validation splits
and processing pipelines, evaluations, and metrics to ensure
fairness in comparison [2], [6], [17].

The performance was based on multiple metrics, including
accuracy, precision, recall, F1 score, and area under the ROC
curve (AUC). Additionally, the segmentation quality from the
U-Net pre-processing stage was utilized to provide improved
tumor-specific features to all classification models [5], [11],
[17]. The hybrid model benefited from spatial and contextual
information that the baseline comparison models did not
provide [1], [3].

Fig. 11 shows the Comparison of Proposed Model with
existing systems:

Our hybrid model has been shown to be better in all metrics
as compared to the baseline modeling approaches. To gauge it,
the hybrid model could reach a classification error of 99.99%
and precisions of 99.99% and an F1 score of 0.99 on glioma
grading, versus ResNet71, the best among comparison models
and reached an accuracy of 95.2% and an F1 score of 0.94. The
multi-head attention promoted increase in the performance, as
it prioritized areas of the tumor of clinical interest so as to
differentiate the appearance between the high-grade gliomas
and the low-grade gliomas of a tumor patients [4], [9].

The numerical findings in the figure below allow comparing
in the metric the proposed hybrid model with the baseline
CNNs. Those findings indicate not only additional predictive
performance, but, in comparison to the base CNNs, predictive
method stability and efficiency. The hybrid model shows
beneficial progress compared to the baseline in processing 3D
MRI data, using the dense connectivity reuse of the DenseNet

Fig. 11. Metrics Bar Graph Comparison of Various CNN Models.

feature and the deep convolutional layers of VGG where
granularity of feature extraction is merged to 3D MRI data
processing [10], [27], [29].

Other than quantitative enhancements, enhanced inter-
pretability using attention models are also part of the proposed
model giving the clinician the chance to see the spatial location
of the decisive important area of the model that made the
decision which led the model in its decision making, in other
words, delivering improved interpretability, offers the clinician
these opportunities as well [1], [7], [26]. This attribute also
grants superior clinically relevant features when using models
in the medical field where explainability is required in models
[5], [20].

On the whole, the presented comparative analysis indicates
that the suggested hybrid structure is a reasonably efficient
system of glioma classification, much better than the CNN-
like methods of cancer classification in terms of accuracy and
possible enhanced clinical applicability [3], [4], [6].

VI. CONCLUSION AND FUTURE WORK

It is a successful research that develops a new hybrid
deep learning architecture of 3D U-Net segmentation with
a DenseNet—-VGG hybrid classification model with multi-
head and spatial-channel attention mechanisms to gain pre-
cise glioma segmentation and grading of MRI volumes. The
segmentation accuracy was 98% and classification accuracy
was 99.99% that was much higher than the state-of-the-art
conventional CNN-based architectures and attention-free in-
stance distribution, as demonstrated by the proposed approach.
Particularly, we eclipse the already existing scores: Sajjad et
al. got 91.38% with 2D CNN-VGG19, Chenjie et al. were at
90.64% with 3D Multi-scale CNN, Tripathi and Bag at 95.31%
with 3D models whereas Prasun and Soumen at 95.86% with
3D Multi-Attention CNN. Multi-head attention mechanisms
incorporated into the network allow the network to emphasize
clinically useful tumor areas, increasing diagnostic accuracy
features to a great extent, and shortening the time it takes



to perform manual inspections and errors by operators. This
framework indicates that the clinical utility of neuro-oncology
departments can be used to detect glioma and predict its grades
on time and correctly, which directly results in the planning
of treatment and the outcomes of patients.

Future research directions involve: (i) combining multi-
modal imaging datasets (PET, CT) with MRI to create full-
fledged characterization of tumors, (ii) using transfer learning
techniques to optimize their use across different patient groups
and by different image regimes across different clinical cen-
ters, and (iii) deploying cloud based collaborative platforms
of distributed segmentation analysis and result sharing among
clinical centers. Also, explainability improvement via attention
visualization will ease clinician trust and acceptance in clinical
practice. It is intended that the prospective clinical validation
studies will determine the actual performance in operational
departments of neuroradiology. All these advancements bring
the framework to clinical translation and possibly implemen-
tation as a decision-support tool within the current procedures
of diagnostic imaging, and finally, the detection of glioma and
the patient care outcomes will be improved.

REFERENCES

[1] P. C. Tripathi and S. Bag, “An attention-guided CNN framework for
segmentation and grading of glioma using 3D MRI scans,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, pp. 1-14,
2022. doi: 10.1109/tcbb.2022.3220902.

[2] M. A. Naser and M. J. Deen, “Brain tumour segmentation and grading

of lower-grade glioma using deep learning in MRI images,” Com-

puters in Biology and Medicine, vol. 121, p. 103758, 2020. doi:
10.1016/j.compbiomed.2020.103758.

K. Dang, T. Vo, L. Ngo, and H. Ha, “A deep learning framework integrat-

ing MRI image preprocessing methods for brain tumour segmentation

and classification,” IBRO Neuroscience Reports, vol. 13, pp. 523-532,

2022. doi: 10.1016/j.ibneur.2022.10.014.

[4] C. Ozkaya and S. Sagroglu, “Glioma Grade Classification Using
CNNs and Segmentation with an Adaptive Approach Using Histogram
Features in Brain MRIs,” IEEE Access, pp. 1-1, 2023. doi: 10.1109/ac-
cess.2023.3273532.

[5] N. Ilyas, Y. Song, A. Raja, and B. Lee, “Hybrid-DANet: An Encoder-
Decoder Based Hybrid Weights Alignment with Multi-Dilated Attention
Network for Automatic Brain Tumour Segmentation,” IEEE Access, vol.
10, pp. 122658-122669, 2022. doi: 10.1109/access.2022.3222536.

[6] S. Trivedi, N. Patel, and N. Faruqui, “NDNN based U-Net: An

Innovative 3D Brain Tumour Segmentation Method,” in Proc. 2022

IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile

Communication Conference (UEMCON), 2022. doi: 10.1109/uem-

con54665.2022.9965705.

P. Tupe-Waghmare, P. Malpure, K. Kotecha, M. Beniwal, V. Santosh,

J. Saini, and M. Ingalhalikar, “Comprehensive Genomic Subtyping of

Glioma Using Semi-Supervised Multi-Task Deep Learning on Multi-

modal MRI,” IEEE Access, vol. 9, pp. 167900-167910, 2021.

[8] R. Kumar, A. Gupta, H. S. Arora, G. N. Pandian, and B. Raman,
“CGHF: A Computational Decision Support System for Glioma Clas-
sification Using Hybrid Radiomics- and Stationary Wavelet-Based Fea-
tures,” IEEE Access, vol. 8, pp. 79440-79458, 2020. doi: 10.1109/ac-
cess.2020.2989193.

[9] V.R. M. Vinaya and G. C. Mara, “Transfer Learning Approach to Detect

and Classify Glioma Tumours,” in Proc. 2022 8th Int. Conf. Advanced

Computing and Communication Systems (ICACCS), 2022.

P. Afshar, A. Mohammadi, and K. N. Plataniotis, “BayesCap: A

Bayesian Approach to Brain Tumour Classification Using Capsule

Networks,” IEEE Signal Processing Letters, vol. 27, pp. 2024-2028,

2020.

N. Noreen, S. Palaniappam, A. Qayyum, I. Ahmad, and M. Imran,

“Attention-Guided Version of 2D UNet for Automatic Brain Tumour

Segmentation,” IEEE Access, vol. 8, 2020.

[3

[t

[7

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

Navoneel, “Brain MRI Images for Brain Tumour Detection,” Kaggle,
2020. [Online]. Available: https://www.kaggle.com/navoneel/brain-mri-
images-for-brain-tumour-detection/metadata

F. Ozyun, E. Sert, and D. Avci, “An expert system for brain tumour
detection: Fuzzy C-means with super resolution and convolutional neural
network with extreme learning machine,” Med. Hypotheses, vol. 134, p.
109433, 2020.

X. Lei, X. Yu, J. Chi, Y. Wang, J. Zhang, and C. Wu, “Brain tumour seg-
mentation in MR images using a sparse constrained level set algorithm,”
Expert Systems With Applications, 2020.

B. Leena and A. Jayanthi, “Brain tumour segmentation and classification
via adaptive CLFAHE with hybrid classification,” Int J Imaging Syst
Technol, 2020.

N. Bansal, P. Dawande, S. Shukla, and S. Acharya, “Effect of lifestyle
and dietary factors in the development of brain tumours,” J Family Med
Prim Care, vol. 9, no. 10, pp. 5200-5204, 2020.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Net-
works for Biomedical Image Segmentation,” in Medical Image Comput-
ing and Computer-Assisted Intervention, 2015, pp. 234-241.

A. F. Abien, “Deep Learning using Rectified Linear Units (ReLU),”
arXiv:1803.08375, 2018.

S. K. Ghosh, B. Biswas, and A. Ghosh, “Restoration of Mammograms
by Using Deep Convolutional Denoising Auto-Encoders,” in Computa-
tional Intelligence in Data Mining, Springer, 2020, vol. 990.

W. Weng and X. Zhu, “INet: convolutional networks for biomedical
image segmentation,” IEEE Access, vol. 9, pp. 16591-16603, 2021. doi:
10.1109/ACCESS.2021.3053408.

S. Banerjee, S. Mitra, F. Masulli, and S. Rovetta, “Deep Radionomics for
Brain Tumour Detection and Classification from Multi-Sequence MRI,”
2019. [Online]. Available: http://arxiv.org/abs/1903.09240

M. U. Rehman, S. Cho, J. H. Kim, and K. T. Chong, “Bu-net: brain
tumour segmentation using modified u-net architecture,” Electronics, vol.
9, no. 12, 2020. doi: 10.3390/electronics9122203.

M. Asim, A. Rashid, and T. Ahmad, “Scour modeling using deep neural
networks based on hyperparameter optimization,” ICT Express, vol. 8,
pp. 357-362, 2021. doi: 10.1016/j.icte.2021.09.012.

P. S. Shanmuga, R. S. Saran, B. Surendiran, and N. Arulmurugaselvi,
“Brain Tumour Detection in MRI Using Deep Learning,” in Evolu-
tion in Computational Intelligence, Springer, 2020, pp. 395-403. doi:
10.1007/978-981-15-5788-0_38.

M. Siar and M. Teshnehlab, “Brain tumour detection using deep neural
network and machine learning algorithm,” in Proc. 9th Int. Conf.
Computer and Knowledge Engineering (ICCKE), 2019, pp. 363-368.
doi: 10.1109/ICCKE48569.2019.8964846.

P. M. Siva Raja and A. V. Rani, “Brain tumour classification using a
hybrid deep autoencoder with Bayesian fuzzy clustering-based segmen-
tation approach,” Biocybernetics and Biomedical Engineering, vol. 40,
no. 1, pp. 440-453, 2020. doi: 10.1016/j.bbe.2020.01.006.

M. E I. Soumik and M. Ali Hossain, “Brain Tumour Classification
with Inception Network Based Deep Learning Model Using Transfer
Learning,” in 2020 IEEE Region 10 Symposium (TENSYMP), June 2020,
pp. 1018-1021. doi: 10.1109/TENSYMP50017.2020.9230618.

B. Srikanth and S. Venkata Suryanarayana, “Multi-Class classification of
brain tumour images using data augmentation with deep neural network,”
Materials Today: Proceedings, 2021. doi: 10.1016/j.matpr.2021.01.601.
G. S. Tandel, A. Tiwari, and O. G. Kakde, “Performance optimisation of
deep learning models using majority voting algorithm for brain tumour
classification,” Computers in Biology and Medicine, vol. 135, 2022.

P. Ding, J. Li, L. Wang, M. Wen, and Y. Guan, “HYBRID-CNN: an effi-
cient scheme for abnormal flow detection in the SDN-based smart grid,”
Secure Common Network, 2020, pp. 1-20. doi: 10.1155/2020/8850550.



