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Abstract: Large language models are powerful generalists, yet solving deep and complex problems such
as those of the Humanity’s Last Exam (HLE) remains both conceptually challenging and computationally
expensive. We show that small orchestrators managing other models and a variety of tools can both push
the upper bound of intelligence and improve efficiency in solving difficult agentic tasks. We introduce
ToolOrchestra, a method for training small orchestrators that coordinate intelligent tools. ToolOrchestra
explicitly uses reinforcement learning with outcome-, efficiency-, and user-preference-aware rewards. Using
ToolOrchestra, we produce Orchestrator, an 8B model that achieves higher accuracy at lower cost than
previous tool-use agents while aligning with user preferences on which tools are to be used for a given query.
On HLE, Orchestrator achieves a score of 37.1%, outperforming GPT-5 (35.1%) while being 2.5x more efficient.
On 𝜏2-Bench and FRAMES, Orchestrator surpasses GPT-5 by a wide margin while using only about 30% of
the cost. Extensive analysis shows that Orchestrator achieves the best trade-off between performance and cost
under multiple metrics, and generalizes robustly to unseen tools. These results demonstrate that composing
diverse tools with a lightweight orchestration model is both more efficient and more effective than existing
methods, paving the way for practical and scalable tool-augmented reasoning systems.
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Figure 1 | ToolOrchestra shows consistently strong performance on HLE, FRAMES, and 𝜏2-Bench with
superior cost efficiency.

1. Introduction

Large language models (LLMs) have been reported to have made remarkable strides towards superhuman
intelligence but remain of limited utility in complex agentic tasks such as those posed by the Humanity’s Last
Exam (HLE) [1]. Tool use is a promising avenue for the extension of their capabilities beyond what can be
learned from the training data. By calling on external resources through search engines and code interpreters,
tool use has been shown to enhance accuracy and reduce hallucinations [2, 3, 4, 5, 6, 7, 8, 9, 10].

Prior research on tool-use agents has primarily focused on equipping a single powerful model with utility
tools such as web search or calculators. While effective in many scenarios, this approach underutilizes the
potential of tools: humans, when reasoning, routinely extend themselves by calling upon resources of greater-
than-human intelligence, from domain experts to sophisticated processes and software systems. Motivated
by this observation, we propose the orchestration paradigm. Under this paradigm, intelligence emerges not
from a monolith but from a composite system. At the center of the system lies an orchestrator model, whose
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Figure 2 | Overview of Orchestrator. Given a task, Orchestrator alternates between reasoning and tool
calling in multiple turns to solve it. Orchestrator interacts with a diverse tool set, including basic tools (web
search, functions such as get_flight_status, etc.), specialized LLMs (coding models, math models, etc.)
and generalist LLMs (GPT-5, Claude Opus 4.1, etc.). In training under ToolOrchestra, Orchestrator is jointly
optimized by outcome, efficiency and preference rewards via reinforcement learning.

responsibility is to invoke the right tools for the given task, and to do so in the right order to accomplish
the task. The crucial difference to the standard monolithic setup featuring a single powerful model is that
in addition to deterministic utilities such as web search functions and code interpreters, models of various
capabilities are made available to the orchestrator as intelligent tools. The use of tools of different levels
of intelligence comes at varying costs, and the challenge for the orchestrator is then to dynamically decide
on which tools to invoke in order to solve the task while respecting user preferences for various tools and
minimizing the cost. By delegating narrowed-down sub-problems of a larger effort requiring intelligence to
intelligent tools instead of handling the entire effort by a single generalist, orchestration teems with the
promise of exhibiting higher intelligence than any of the system’s tools and leading monolithic solutions alike.

One approach to implementing the orchestrator paradigm is to employ a language model as the orchestrator
and allow it to invoke stronger models only when it deems it necessary. This can be done naively by prompting
an off-the-shelf language model or by training a general-purpose orchestrator. For the former, we find that
relying on straightforward model prompting is brittle and introduces systemic biases. As shown in Figure 3
(left and middle), GPT-5 disproportionately delegates tasks to GPT-5-mini, while Qwen3-8B defers to GPT-5
at a markedly higher rate. This illustrates two present issues of prompting in the context of complex tool
orchestration: (i) the overuse of developmentally-related variants of oneself, i.e., self-enhancement bias [11],
and (ii) defaulting to the strongest available tool regardless of the cost or relative utility (see Appendix A
for more details and §4 for a thorough comparison to baselines). As such, we conclude that the scenarios in
which an orchestrating model may call on models and tools of capabilities both inferior and superior to its
own are idiosyncratic in the context of model tool calling and warrant their own approach to training. In
addition, controllability in tool-use agents remains underexplored along two axes: cost–efficiency and user
preferences (cf. §7).
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Figure 3 | Tool-calling preferences exhibited
by a prompted off-the-shelf or RL-trained
model. GPT-5 tends to call GPT-5-mini
most of the time, while Qwen3-8B relies
heavily on GPT-5.

We address these shortcomings by proposing ToolOrches-
tra (shown in Figure 2), a novel method for training a small
language model to act as the orchestrator – the “brain” of a het-
erogeneous tool-use agent. Using ToolOrchestra, we produce
the Orchestrator, an 8B-parameter model trained end-to-end
with reinforcement learning (RL) to decide when and how to
invoke more intelligent language models and various tools such
as web search or code interpreters, and how to combine them
in multi-turn reasoning. Our reward design balances three
objectives – correctness of the final outcome, efficiency in re-
source usage, and alignment with user preferences – to yield a
cost-effective and user-controllable tool-use policy. To aid RL
training, we build an automatic data synthesis pipeline that
generates thousands of verifiable multi-turn tool-use training
examples with complex environments across 10 domains. We
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will make the resulting dataset, ToolScale, publicly available
to facilitate further research on tool-use agent training.

In our experiments, we rigorously evaluate the merits of our
approach on three challenging tasks. On HLE [1], a benchmark consisting of difficult questions across many
disciplines, we find that Orchestrator substantially outperforms prior methods with far lower computational
cost. We also test on 𝜏2-Bench [12], a function-calling benchmark, where Orchestrator demonstrates the
ability to schedule a variety of tools effectively, calling a large model (GPT-5) in only ∼40% of the steps
and utilizing cheaper models or tools for the rest, yet still exceeding the performance of an agent that uses
the large model for every step. Finally, additional evaluations on the FRAMES [13], a factuality reasoning
benchmark, provide further evidence of the versatility and robustness of our approach. We observe that even
though the training and testing tasks differ markedly, the RL-trained Orchestrator adapts its tool-use policy
to new challenges, indicating a high degree of general reasoning ability.

Our contributions can be summarized as follows: (1) We introduce ToolOrchestra, a method for training
a small language model to serve as the orchestrator of a diverse toolkit, including classical tools and more
intelligent models. This dovetails with recent developments in the field testifying that small language models
are often sufficiently powerful and far more economical in agentic systems [14, 15]. (2) We develop a novel
reward training design that goes beyond accuracy. The resulting Orchestrator is trained end-to-end to balance
task outcome correctness, efficiency in cost and latency, and alignment with user cost and tool preferences.
(3) We demonstrate that Orchestrator trained by ToolOrchestra achieves state-of-the-art performance on
challenging reasoning benchmarks, surpassing frontier models while using only a fraction of their compute
and wall-clock time, and that it generalizes robustly to unseen tasks and tools.

2. Agentic Problem Formulation

2.1. Task Formulation

We investigate multi-turn tool-use agentic tasks and formalize them as a Markov Decision Process (MDP)
ℳ = (𝒰 , 𝒮, 𝒜, 𝒪, 𝒯 , 𝒵, 𝑟, 𝜌, 𝛾) following conventions similar to prior work [16, 17, 18]. We are given an
instruction 𝑢 ∈ 𝒰 , user action preferences 𝑝 = (0 ≤ 𝑝𝑎 ≤ 1 for 𝑎 ∈ 𝒜), an initial state drawn from 𝜌(· | 𝑢), an
initial observation 𝑜0 ∈ 𝒪, and the environment state space 𝒮. At step 𝑘, the Orchestrator chooses an action
𝑎𝑘 ∈ 𝒜 according to a policy 𝜋𝜃(𝑎𝑘 | ℎ𝑘) where ℎ𝑘 = (𝑢, 𝑜0, 𝑎0, 𝑜1, . . . , 𝑎𝑘−1, 𝑜𝑘) is the interaction history. The
environment transitions according to 𝒯 (𝑠𝑘+1 | 𝑠𝑘, 𝑎𝑘) and emits an observation 𝑜𝑘+1 ∼ 𝒵(· | 𝑠𝑘+1, 𝑎𝑘). The
actions 𝑎𝑖 come at costs 𝑐𝑖 and operational latency 𝑙𝑖, and the alignment of each action with user preferences
is 𝑝𝑎𝑖 . After 𝑁 interaction steps, Orchestrator has traced the trajectory 𝜏 = ℎ𝑁 and the environment provides
a reward 𝑟(𝜏) ∈ [0, 1] based on its correctness. Our goal is to maximize the correctness reward 𝑟(𝜏) and the
overall user preference alignment

∑︀
𝑝𝑎𝑖

while minimizing the total cost
∑︀

𝑐𝑖 and the aggregate latency
∑︀

𝑙𝑖.

2.2. Multi-Turn Rollout

Given a user task, Orchestrator produces a solution via an iterative rollout that interleaves tool use with
environment feedback to form a trajectory of turns. The rollout is initialized with a predefined system
prompt and the question; the model (assistant role) then generates an initial step that ends with an EOS
token. Each turn follows a reasoning–action–observation loop: (1) Chain-of-thought (reasoning). The
Orchestrator analyzes the current state and plans the next action. (2) Tool call (action). Based on its
reasoning, Orchestrator selects a tool from the available set (e.g., APIs, specialized models, code interpreters)
and specifies parameters. (3) Tool response (observation). If a tool call is present, the tool-call block
is extracted and executed by the environment; the resulting output is appended to the context under the
user role and fed back to the model for the next turn. This process repeats until Orchestrator receives a
termination signal from the environment or the rollout reaches a maximum of 50 turns.

3. ToolOrchestra

Our approach, ToolOrchestra, centers on training a small language model as an intelligent agentic model
capable of solving complex tasks by dynamically selecting and utilizing a wide variety of external tools.
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We hypothesize that small language models suffice for this purpose if they are taught to coordinate more
intelligent tools strategically, and thus choose to train an 8B model. ToolOrchestra consists of an end-to-end
reinforcement learning setup where the model under training, termed Orchestrator, learns to generate optimal
multi-step reasoning and tool-use trajectories. The overall architecture is illustrated in Figure 2.

3.1. Unified Tool Calling
In contrast to prior tool-use agents [19, 20], we broaden the toolset to include domain-specialized models and
expose all tools through a single, unified interface. Tools are specified in JSON as a list of objects; each object
defines the tool name, description, and a typed parameter schema (names and descriptions). When LLMs are
used as tools, we obtain their descriptions with the following steps: (1). randomly sample 10 training tasks;
(2). obtain the trajectories of LLMs to finish these tasks; (3). Ask another LLM to write the description
based on the task instructions, LLM trajectories and whether LLMs complete the tasks. In Appendix C, we
show an example description of Qwen3-32B. The complete catalog of tools used in our training is provided in
Appendix D.

3.2. End-to-End Agentic Reinforcement Learning

Reward design. We introduce outcome, efficiency and preference rewards into the training. For outcome
reward, each rollout trajectory 𝜏 in a rollout batch T receives a binary accuracy reward 𝑟outcome(𝜏) ∈ {0, 1}
based on whether 𝜏 solves the task:

𝑟outcome(𝜏) =
{︂

1 if solved(𝜏),
0 otherwise.

(1)

We leverage GPT-5 as a judge to compare the answers, e.g., a name, a date, etc., providing greater
flexibility in handling diverse predictions.

To encourage efficient solutions, we penalize the model under training for excessive compute or latency
with the following rewards: 𝑟compute(𝜏) = −$(𝜏), 𝑟latency(𝜏) = −Clock(𝜏), where $(𝜏) is the monetary cost of
𝜏 and Clock(𝜏) is the consumed wall-clock time by 𝜏 . To establish a unified measurement on the compute of
both open-sourced and proprietary models, we convert both the input tokens and output tokens to monetary
costs following the third-party API pricing systems. See more details in Appendix E.

Preference reward is designed to encourage models to consider user preferences when choosing tools
at each step. Given a set of tools {𝑡1, 𝑡2, ..., 𝑡𝑛} and a rollout trajectory 𝜏 , we consider the vector 𝑀𝜏 =
[𝑚𝜏

𝑡1
, 𝑚𝜏

𝑡2
, . . . , 𝑚𝜏

𝑡𝑛
, 𝑟outcome(𝜏), 𝑟compute(𝜏), 𝑟latency(𝜏)], where 𝑚𝜏

𝑡∙
is the number of times tool 𝑡∙ is invoked in

𝜏 , 𝑀𝜏 [𝑛 + 1] = 𝑟outcome(𝜏).

During RL training, we normalize each element 𝑀𝜏 [𝑘] for 1 ≤ 𝑘 ≤ 𝑛 + 3 over the rollout batch T as
follows: 𝑀𝜏

normalized[𝑘] = (𝑀𝜏 [𝑘] − 𝑀T
min[𝑘])/(𝑀T

max[𝑘] − 𝑀T
min[𝑘]), where 𝑀T

min[𝑘] and 𝑀T
max[𝑘] are minimum

and maximum value for 𝑀∙[𝑘] in the batch T. If 𝑀T
max[𝑘] = 𝑀T

min[𝑘], we disregard 𝑀𝜏 [𝑘] by setting it to
zero. We calculate the final reward for a trajectory 𝜏 as:

𝑅(𝜏) =
{︂

𝑀𝜏
normalized · 𝑃 if 𝑟outcome(𝜏)

0 otherwise.
(2)

where 𝑃 = [𝑝𝑡1 , 𝑝𝑡2 , ..., 𝑝𝑡𝑛
, 𝑝outcome, 𝑝compute, 𝑝latency] (0 ≤ 𝑝∙ ≤ 1) is the preference vector, indicating the

extent the user would like to optimize 𝑀 [∙]. For example, 𝑃 [1] = 𝑝𝑡1 = 1 indicates strong user preference to
use the tool 𝑡1, while 𝑃 [𝑛 + 1] = 𝑝outcome = 1 and 𝑃 [𝑛 + 2] = 𝑝compute = 0 implies that the user wants to
exclusively optimize accuracy without considering the computational cost.

Training procedure. Orchestrator is fine-tuned using a policy gradient reinforcement learning algorithm,
specifically Group Relative Policy Optimization (GRPO) [21]. For each task in a batch, the policy 𝜋𝜃 generates
a batch of trajectories T. Each trajectory 𝜏 ∈ T is assigned a scalar reward 𝑅(𝜏) (as calculated in Equation 2),
and GRPO normalizes this reward within its group to compute an advantage:

𝐴(𝜏) = 𝑅(𝜏) − mean𝜏∈T𝑅(𝜏)
std𝜏∈T𝑅(𝜏) . (3)
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Database entries w. schema
database:bookings

booking_id user_id moview_time total_price
A01 5302 2025/01/21 $29.5
A02 6281 2025/01/21 $13.0
A03 8612 2025/01/22 $20.9
… … … …

Tools T

cancel(booking) refund(usr, amount)

check_ticket(booking)

……

……

cancel(…)

refund(…)

Sampled tools  ̂T Intentions 

- Cancel the ticket and refund

- Check the booking and refund 

the difference if policy allows

I

Intention intiEntry rowj +
LLM +

Task candidate

Evolving
x n

Synthesized Dataset D

Task instruction & gold actions

{ 
    "task": "Cancel user (8612)’s 
ticket (A03) and refund fully", 
    "eval_criteria": 
[{"function": "cancel", "args": 
"A03"}], ...}

LLMDomain

movie 

booking

LLM

LLM

……

filter & dedup

Figure 4 | Overview of ToolScale data synthesis pipeline. Starting from a domain, LLM will (1) firstly generate
domain-specific database and tool APIs to simulate the environment and (2) then generate diverse user tasks
together with their corresponding golden actions.

The policy is then updated to maximize the clipped surrogate objective:

ℒGRPO(𝜃) = E𝜏 ∼ 𝜋𝜃

[︃
min

(︁
ratio𝜃(𝜏)𝐴(𝜏), clip(ratio𝜃(𝜏), 1 − 𝜖, 1 + 𝜖)𝐴(𝜏)

)︁]︃
, (4)

where ratio𝜃(𝜏) = 𝜋𝜃(𝜏)
𝜋old(𝜏) is the likelihood ratio between the current and previous policy.

Training techniques. To stabilize RL training and avoid KL loss explosion for this agent system, we
perform the following during backward propagation: (1) homogeneity filtering, when the standard deviation of
rewards in a rollout batch is smaller than 0.1, because this indicates that most rollouts in a batch exhibit
similar behaviors, and provides weak training signals; (2) format consistency filtering, when the example
output is not aligned with the tool call format; (3) invalid output filtering, when the example does not produce
a valid answer or output.

3.3. Data Synthesis

ToolScale. To enable end-to-end RL training of Orchestrator, we require agentic tool-call tasks, but
verifiable data of this kind is scarce. To generate such data, we devise a two-step process: (1) simulating rich
user-agent-tool environments, including creating database schemas and tool APIs; and (2) generating diverse
user tasks together with their corresponding ground truth solutions based on the environment. Figure 4
provided an overview of this process. Firstly, to simulate real-world user-agent-tool environments scalably,
we choose a domain 𝐷 and then ask an LLM to generate a database which includes schema, major subjects
to focus on and database entries (as illustrated in the top-left of Figure 4). Based on the given domain
𝐷, LLM proposes frequently-used tools. Secondly, to increase the diversity of the task instructions, LLM
first proposes diverse intents frequently seen in domain 𝐷, and then convert them to specific tasks based
on detailed database information. Each generated task consists of task instruction 𝐼, golden function calls
𝐴 = 𝑎1, 𝑎2, ..., 𝑎𝑙, and short information 𝑜 that must be mentioned during the process to solve the task. To
enhance the difficulty of the generated tasks, we leverage an additional LLM to complicate tasks by adding
more complexities such as more constraints. To ensure the quality of the synthesized data, we filter the data
to remove a task if: (1) the execution of golden function calls reports an error; (2) LLMs cannot solve it in
pass@8; and (3) the task can be solved without any actions. In Table 5, we list the statistics of the generated
data in each domain. More examples and prompts used to synthesize data can be found in Appendix I. To
evaluate whether a trajectory 𝜏 solves the given task, we define the following criteria: (1) execution correctness,
namely whether the database content matches after executing the golden function calls 𝐴 and the trajectory
𝜏 ; (2) process fidelity, i.e., whether the predefined information 𝑜, which is required to be communicated in the
process to solve the task, is mentioned in 𝜏 ; (3) operation completeness, that is whether the database entries
operated in the ground truth trajectory 𝐴 are also operated in 𝜏 . We consider 𝜏 to solve the task if each of
these three criteria is satisfied, and fail to solve it otherwise.
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User preference. Different users possess different preferences. For example, some users prefer local search
to safeguard privacy, while others opt for internet-based search to access broader knowledge. To train
Orchestrator to account for such preferences in tool selection, we construct pairs of preference instruction
𝑃𝐼 and preference vectors 𝑃 , which indicate the extent a user would like to optimize certain features, e.g.,
latency, or the frequency to use a particular tool (§3.3). Given a tool set {𝑡1, 𝑡2, ..., 𝑡𝑛}, and the corresponding
configuration metadata (e.g., tool price, latency), an LLM proposes diverse pairs of (𝑃𝐼, 𝑃 ), which are then
valiadated by another LLM to verify consistency (see Appendix F for a sample pair). The pairs are then split
into two sets Pairs𝑡𝑟𝑎𝑖𝑛 and Pairs𝑒𝑣𝑎𝑙 for training and evaluation, respectively. We concatenate the generated
preference instruction to the example instruction, and augment training and testing data with user preference.
During training, we use Equation 2 and the generated preference vector 𝑃 to calculate reward, but using
Equation 6 and 𝑃 to calculate metrics in the evaluation. More details on rewards are included in Appendix L.

General tool configuration. To enhance Orchestrator’s generalization abilities, we curate a diverse set of
tool configurations to prevent overfitting to specific usage patterns and encourage robust, general-purpose
invocation. To emulate heterogeneous user access, we randomize the subset of tools available in each training
instance, encouraging Orchestrator to optimize under varying constraints rather than relying on a fixed toolkit.
We also vary pricing schedules across training instances to reflect heterogeneous tool costs, exposing the model
to different cost configurations so it learns to adapt its optimization strategy as prices change. In aggregate,
this approach models the variability in both tool availability and cost structures across users, yielding a richer
supervisory signal for optimizing Orchestrator.

4. Experimental Setting

4.1. Tools

In the training, we prepare a large and comprehensive tool set (Appendix D), but only sample a subset for
each training instance to build diverse tool configurations (§3.3). We fix the following tool set in the evaluation
for fair comparison.

∙ Basic tools. We use Tavily search API 1 for web search, Python sandbox for Code interpreter, and
build Faiss index with Qwen3-Embedding-8B [22] for local search. Additionally, we also incorporate
domain-specific functions, such as get_flight_status, to address specialized challenges within those
domains.

∙ Specialized LLMs. We prompt GPT-5 [23], GPT-5-mini [23] as code writer, employ Qwen2.5-Coder-
32B-Instruct [24] as another code writer, and leverage Qwen2.5-Math-72B [25], Qwen2.5-Math-7B [25] as
specialized math models.

∙ Generalist LLMs. We consider GPT-5, GPT-5-mini, Llama-3.3-70B-Instruct [26], and Qwen3-32B [27] as
representative generalist models.

4.2. Baselines

We compare Orchestrator-8B produced by ToolOrchestra to baseline orchestrators constructed by prompting
LLMs. Additionally, we also compare to off-the-shelf monolithic LLM systems that are (1) not equipped with
tools, (2) equipped with basic tools, and (3) using the expanded tool set that further includes specialized
expert models and strong generalist models.

For off-the-shelf LLMs, we evaluate GPT-5, Claude Opus 4.1 [28], Llama-3.3-70B-Instruct, Qwen3-235B-
A22B [27], Llama-3_3-Nemotron-Super-49B-v1 [29], Qwen3-8B [27].

4.3. Evaluation Configuration

We conduct experiments on three popular benchmarks with complex reasoning: Humanity’s Last Exam
(HLE), FRAMES, and 𝜏2-Bench. Details about these three benchmarks are given in Appendix B.
Throughout the evaluation, we use the official price for proprietary models and leverage the pricing systems of

1https://www.tavily.com/
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Table 1 | Comparison of Orchestrator-8B with baselines (prompt-based LLMs). Llama-Nemotron-49B denotes
Llama-3.3-Nemotron-Super-49B-v1. Cost in US cents, Latency in minutes, are averaged between HLE and
Frames. More efficiency statistics on 𝜏2-Bench are in Table 16 in Appendix. Basic tools include domain
functions, search and code interpreter (§4.1). ↑ The higher the better. ↓ The lower the better. The results of
existing SOTA are reported by [23]†.

Tools Model(s) HLE (↑) FRAMES (↑) 𝜏2-Bench (↑) Cost (↓) Latency (↓)

Existing
reported
SOTA

GPT-5 35.2 – 84.2‡ – –
o3 24.3 – 68.4 – –
GPT-4o 5.3 – 43.8 – –

No tool

Qwen3-8B 3.2 24.2 –* 0.2 0.6
Llama-Nemotron-49B 3.6 25.6 –* 0.4 1.1
Llama-3.3-70B 3.8 32.4 –* 0.5 1.4
Qwen3-235B-A22B 5.2 34.3 –* 2.6 3.3
Claude Opus 4.1 11.7 58.2 –* 27.4 8.2
GPT-5 23.4 66.3 –* 6.2 4.1

Basic tools

Qwen3-8B 4.7 26.5 40.7 1.3 2.2
Llama-Nemotron-49B 6.8 28.2 23.2 2.5 3.5
Llama-3.3-70B 4.6 42.3 17.6 2.8 4.3
Qwen3-235B-A22B 14.0 39.5 52.9 12.3 10.2
Claude Opus 4.1 19.8 63.5 46.0 76.2 32.5
GPT-5 35.1 74.0 77.7 30.2 19.8

Basic tools,
Specialized LLMs
Generalist LLMs

Qwen3-8B 30.6 68.9 72.3 27.6 18.3
Llama-Nemotron-49B 25.8 57.9 66.7 25.6 17.1
Llama-3.3-70B 19.7 52.4 55.8 19.7 13.4
Qwen3-235B-A22B 32.8 74.2 75.6 29.7 21.2
Claude Opus 4.1 34.6 72.8 76.8 52.5 25.6
GPT-5 21.2 57.5 62.3 17.8 13.6
Orchestrator-8B 37.1 76.3 80.2 9.2 8.2

† The HLE results of Existing reported SOTA are based on the full set, while other baselines and ours are only on the text-only subset.
‡ Due to implementation differences, we could not fully reproduce GPT-5’s reported result (84.2) and only reached 77.7 in our

experiments.
* 𝜏2-Bench cannot be solved in the absence of tools.

TogetherAI2 for open-source models. We set the inference temperature to 0 and allow maximum 50 turn for
Orchestrator to solve a task.

4.4. Training Configuration

We employ Qwen3-8B as the backbone LLM and train it on the GeneralThought-430K 3 dataset in conjunction
with synthetic data (S3.3). The training configuration uses a learning rate of 1e-6, a maximum input sequence
length of 24,000, and a maximum generation length of 8,000, with a training batch size of 16 and a rollout
batch size of 8. We allow maximum 50 turns for the Orchestrator to finish a task during rollout and use 16
NVIDIA H100 GPUs throughout the training.

5. Experimental Results
We compare Orchestrator against a wide range of baselines across HLE, FRAMES, and 𝜏2-Bench. The results
are summarized in Table 1. For simple prompting methods without tools, models such as Qwen3-235B-A22B
and Llama-3.3-70B fail to demonstrate strong performance. This highlights the inherent difficulty of the
benchmarks, where tool use or additional reasoning mechanisms is essential. Providing tool access improves
performance in some cases. For instance, Claude Opus 4.1 with tool usage improves from 11.7 to 19.8 in HLE,
and from 58.2 to 63.5 in FRAMES, but at the expense of 2.8x costs and 4x latency. Smaller models like
Qwen3-8B perform poorly (4.7 on HLE), indicating that basic tools alone are insufficient. Combining tools
with specialized and generalist LLMs generally improves results — Qwen3-235B-A22B, for example, rises
from 14.0 to 32.8 on HLE and from 39.5 to 74.2 on FRAMES, but consumes more than 2 times of cost and
latency. However, the gains are inconsistent across different models. GPT-5 using both tools and models
suffers from performance drop due to inherent biases, often defaulting to GPT-5-mini (§6.1).

2https://www.together.ai/pricing
3https://huggingface.co/datasets/natolambert/GeneralThought-430K-filtered
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Figure 5 | The proportion of tool calls made by LLMs to solve a task (averaged across HLE, Frames and
𝜏2-bench). Qwen-32B refers to Qwen3-32B [27] and Coder-32B refers to Qwen2.5-Coder-32B-Instruct [24].
Compared to other strong foundation models, Orchestrator-8B makes more balanced tool calls, and does not
exhibit strong biases toward a particular tool or model. Detailed statistics are shown in Table 15.

In contrast, our Orchestrator-8B achieves 37.1 on HLE and 76.3 on FRAMES, surpassing all baselines by
a large margin. In 𝜏2-Bench, Orchestrator-8B outperforms GPT-5 using basic tools by 2.5%, exhibiting strong
function calling capabilities. Notably, compared to GPT-5 with tool use (35.1 on HLE) and Qwen3-235B-A22B
with tool + model (32.8 on HLE), our approach delivers consistent improvements of +2 to +4.3 absolute
points, while using only a small fraction of cost and time. These gains are particularly striking given that
Orchestrator has only 8B parameters, but is capable of coordinating more intelligent models such as GPT-5,
and achieves better performance with lower cost, which highlights the effectiveness of the orchestration strategy.
Overall, the results clearly demonstrate the effectiveness of ToolOrchestra and the superiority of Orchestrator
model in both performance and efficiency.

6. Analysis

6.1. Tool Use Analysis

Figure 5 shows the proportion of calls to each tool when various models serve as the orchestrator to solve a
task. Instead of excessively invoking strong models and expensive tools, Orchestrator-8B learns to coordinate
them more strategically. For example, in choosing between different models, Claude Opus 4.1 relies on GPT-5
most of the time, while making fewer calls to other models. In contrast, GPT-5 prefers to use GPT-5-mini.
Orchestrator-8B learns to choose between various tools strategically, and achieves superior performance while
using significantly lower costs.

6.2. Cost Analysis
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Figure 6 | The relationship between perfor-
mance and cost. Compared to strong mono-
lithic LLM systems, Orchestrator (ours)
achieves the best cost-effectiveness.

To analyze the cost-effectiveness, we display the performance
on HLE as a function of cost in Figure 6. We experiment with
settings where the maximum number of 10, 20, 50 and 100
turns are allowed to finish a task. As the maximum number of
allowed turns increases (i.e., cost increases), all models show
improved performance. Orchestrator-8B consistently outper-
forms GPT-5, Claude Opus 4.1 and Qwen3-235B-A22B at a
given budget, and can achieve similar results at a substantially
lower cost. This demonstrates the capability of Orchestrator-
8B to manage a heterogeneous set of tools, and pushes the
intelligence boundary of the system as a whole.

6.3. Generalization

To evaluate Orchestrator-8B’s generalization capability, we test
it with a tool configuration containing models unseen during
training: (1) Query writer: Claude Opus 4.1, o3-mini and GPT-4o [30]; (2) Code writer: Claude Opus 4.1,
Claude Sonnet 4.1 and Codestral-22B-v0.1 [31]; (3) Math model: OpenMath-Llama-2-70b [32], DeepSeek-
Math-7b-Instruct [21]; (4) Generalist Models: Claude Opus 4.1, Claude Sonnet 4.1 and Gemma-3-27b-it [33].
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Table 2 | Generalization performance of Orchestrator-
8B on HLE, Frames and 𝜏2-Bench.

Model(s) HLE (↑) Frames (↑) 𝜏2-Bench (↑) Cost (↓) Latency (↓)

Qwen3-8B 12.6 34.9 38.3 37.9 10.6
Llama-Nemotron-49B 13.9 32.7 22.9 53.6 8.3
Llama-3.3-70B 13.2 49.3 12.8 63.3 10.1
Qwen3-235B-A22B 14.7 63.5 38.7 87.2 13.8
Claude Opus 4.1 17.8 53.6 43.4 102.4 19.5
GPT-5 16.4 54.8 44.8 81.3 14.6

Orchestrator-8B 22.0 73.8 48.8 34.8 8.2

We keep the basic tools (web search, local search
and code interpreter) as the same mentioned in §4.1
and generate model descriptions following the same
procedures mentioned in section §3.1. Table 2
demonstrates that Orchestrator-8B shows strong
skills in using models as tools. Even provided with
a set of models not seen during training, Orchestra-
tor successfully adapts to it by understanding their
skills and weaknesses from model descriptions, and consistently achieves the best performance at the lowest
cost across HLE, Frames and 𝜏2-Bench. This confirms that the diverse tool configurations during training
effectively enhance the generalization capabilities of Orchestrator-8B. In Appendix H, we conduct further
experiments to evaluate Orchestrator-8B on pricing configurations unseen in training.

6.4. User Preferences Table 3 | Preference performance comparison. The
results show that Orchestrator-8B best adapts to
user preference during test time.

Model(s) HLE Frames 𝜏2-Bench

Qwen3-8B 25.3 43.2 55.7
Llama-Nemotron-49B 27.6 50.1 56.9
Llama-3.3-70B 22.3 44.5 55.4
Qwen3-235B-A22B 37.9 54.5 68.2
Claude Opus 4.1 40.2 63.4 73.5
GPT-5 34.6 62.3 70.3

Orchestrator-8B 46.7 68.4 79.5

To assess Orchestrator-8B’s ability to adapt to hetero-
geneous user preferences at test time, we evaluate it on
the Preference-aware test set described in §3.3, where we
concatenate each question with an additional preference
instruction. We evaluate the model preference adherence
performance by calculating the preference-aware rewards
defined in Appendix L. Table 3 shows that, even strong
monolithic systems such as GPT-5 struggle to faithfully
follow user preferences. In contrast, Orchestrator-8B
exhibits remarkably better adherence to user preferences.

7. Related Work

7.1. From Tool Learning to Generalist Agents

Tool learning underpins advanced reasoning in LLMs, as many tasks require external APIs, search engines, or
code interpreters. Early work [3, 2, 6] used supervised fine-tuning (SFT) on tool-labeled data like GPT-4
generated dialogues. More recently, tool use has been framed as a sequential decision-making problem
optimized by RL, with systems such as WebGPT [34], Search-R1 [20], ToRL [19], StepTool [7], SWiRL [8],
Nemotron-Research-Tool-N1 [9], and ToolRL [10]. Building on this foundation, generalist agents like deep
research agents [35, 36, 37, 38] autonomously discover, analyze, and synthesize across sources to produce
analyst-level reports, aligning with the vision of compound AI systems [39, 40]. Recent open-source frameworks
like SmolAgent [41], WebAgent [42, 43, 44], OWL [45], AutoAgent [46], and OAgent [47] extend this trend
toward modular, robust, and accessible systems, highlighting the broader democratization of generalist agents.

7.2. From Tool-Use Accuracy to Efficiency and Controllability

Beyond correctness, recent work emphasizes efficiency and controllability, aiming to reduce computational costs
and better align outputs with user preferences. Prompting-based methods like Self Divide-and-Conquer [48],
Efficient Agents [49], and SMART [50] adaptively invoke tools or fine-tune usage, though they often depend on
heavy prompt engineering or curated datasets. RL provides a more flexible alternative, where reward shaping
balances accuracy, efficiency, and reliability. Advances include integrating auxiliary signals (e.g., response
length, task difficulty)[51, 52, 53] and combining verifiable signals with human feedback[54]. A related direction
is weak-to-strong generalization [55], which explores eliciting stronger models from weaker supervision. The
most relevant work, OTC [56], improves efficiency by penalizing excessive calls while preserving accuracy.
Unlike the prior work, our approach addresses the broader orchestration problem by using RL to coordinate
diverse tools and models, balancing correctness, efficiency, and user preference for finer alignment and more
robust deployment.
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8. Conclusion

In this work, we presented ToolOrchestra, a method for training a small orchestration model to unify diverse
tools and specialized models. By training Orchestrator end-to-end with reinforcement learning, we showed
that it can learn to plan adaptive tool-use strategies guided by both outcome quality, efficiency, and human
preference rewards. This enables the agent to dynamically balance performance and cost, rather than relying
on static heuristics or purely supervised approaches. To aid reinforcement learning, we also contribute a
complex user-agent-tool synthetic dataset ToolScale. Our experiments on challenging benchmarks demonstrate
that our Orchestrator-8B attains state-of-the-art performance while operating at significantly lower cost
compared to larger models. Looking ahead, we envision more sophisticated recursive orchestrator systems to
push the upper bound of intelligence but also to further enhance efficiency in solving increasingly complex
agentic tasks.
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A. Pilot Study

To evaluate the effectiveness of simple prompting as a method to configure an off-the-shelf language model
to act as an orchestrator, we prompted GPT-5 and Qwen3-8B with a similar setting and the same prompt
template we used in Section 4, allowing them to use GPT-5, GPT-5-mini, Qwen3-32B, and Qwen2.5-Coder-32B
as tools and instruct the orchestrator to achieve best results while maintaining lowest cost. We then ran the
model on a set of 300 HLE problems with max_tokens=32,000 and temperature T=0 and monitored the
average number of times each model referred to one of its model choices. The results are shown in Figure 3.
When Qwen3-8B serves as the orchestrator, it exhibits a strong tendency to delegate the task to GPT-5 (73%
of the cases). We refer to this phenomenon as self-enhancement bias [11], where the orchestrator favors its
variants. In contrast, when GPT-5 serves as the orchestrator, it prefers to call GPT-5 or GPT-5-mini in
98% of the cases. We term this phenomenon other-enhancement bias, where the orchestrator favors stronger
models regardless of cost considerations, even though humans instruct them to do so.

Such imbalanced invocation patterns highlight the limitations of using off-the-shelf language models as
orchestrators by simple prompting: their decisions are heavily biased rather than balanced across available
options, resulting in poor orchestration effectiveness. This observation motivates our method ToolOrchestra
to train a dedicated small orchestrator to decide when and how to invoke more intelligent language models.

B. Evaluation Benchmarks

∙ Humanity’s Last Exam (HLE) [1]. A large-scale benchmark comprising PhD-level questions across
mathematics, humanities, natural sciences and more. It evaluates the model capabilities to perform iterative
search and intensive reasoning. Questions are multiple-choice or short-answer, with 10–14% requiring
images. We use the text-only subset, designed to be unambiguous and not solvable by simple web search.

∙ FRAMES [13]. A dataset for end-to-end evaluation of retrieval-augmented generation (RAG), covering
factuality, retrieval accuracy, and reasoning. It contains 824 multi-hop questions requiring 2–15 Wikipedia
articles, spanning numerical, tabular, temporal, and multi-constraint reasoning.

∙ 𝜏2-Bench [12]. A benchmark to evaluate model capabilities to use tools and solve problems in conversations
with users. It includes tasks in three domains: telecom, retail and airline.

C. Model description for Qwen3-32B

The model shows advanced mathematical and quantitative reasoning, often solving complex problems
and only faltering on highly specialized or computationally heavy items. Scientific domain knowledge is
strong—especially in biology—with solid performance in physics and engineering; chemistry is mixed, with
notable weaknesses in exact nomenclature and InChI outputs. Logical problem-solving is high, while humanities
knowledge is moderate and uneven, with gaps in niche scholarly details. Coding and function call abilities are
moderate, where it makes mistakes in parameters from time to time. Overall, the model has broad knowledge
and robust analytic skills, but accuracy drops on narrow, recent, or rote-precision tasks, particularly in
chemical informatics.

D. Tools in training

Below is the complete list of tools used in the training. For each example rollout, we randomly sample a
subset of them to simulate heterogeneous availability of tools:

• Query writer: GPT-5 [23], GPT-5-mini [23], meta-llama/Llama-3.3-70B-Instruct [26], meta-llama/Llama-
3.1-8B-Instruct [26], deepseek-ai/DeepSeek-R1 [57], nvidia/Llama-3_1-Nemotron-Ultra-253B-v1 [29],
microsoft/Phi-4-mini-instruct [58], google/gemma-3-27b-it [33], Qwen/Qwen3-32B [27]

• Web search: We use Tavily search API 4 to provide orchestrator real-time web access.
• Local search: Faiss index with Qwen/Qwen3-Embedding-8B [22]
4https://www.tavily.com/
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• Code writer + interpreter: We use GPT-5 [23], GPT-5-mini [23], bigcode/starcoder2-15b [59], and
Qwen/Qwen2.5-Coder-32B-Instruct [24] as code expert models to write code. We also implemented a
Python sandbox to execute the code.

• Math models: Qwen/Qwen2.5-Math-72B [25], Qwen/Qwen2.5-Math-7B [25]
• Generalist models: GPT-5 [23], GPT-5-mini [23], meta-llama/Llama-3.3-70B-Instruct [26], meta-

llama/Llama-3.1-8B-Instruct [26], deepseek-ai/DeepSeek-R1 [57], nvidia/Llama-3_1-Nemotron-Ultra-
253B-v1 [29], microsoft/Phi-4-mini-instruct [58], Qwen/Qwen3-32B [27]

E. Third-party API

Here is a list of third-party APIs. We used pricing configurations for training:

• TogetherAI: https://www.together.ai/
• Venice AI: https://docs.venice.ai/overview/about-venice
• Chutes: https://chutes.ai/
• NEBIUS: https://nebius.com/
• Lambda: https://lambda.ai/
• Hyperbolic: https://docs.hyperbolic.xyz/docs/welcome-to-hyperbolic
• Cloudflare: https://developers.cloudflare.com/
• Novita: https://novita.ai/
• AIML: https://aimlapi.com/
• Fireworks AI: https://fireworks.ai/

In the evaluation, we apply the pricing from Together AI for fair comparison.

F. Humane preference example

Tools; 𝑇 = [ Web search, local search, Qwen/Qwen3-235B-A22B, meta-llama/Llama-3.3-70B-Instruct, o3-mini,
o3 ]
Preference instruction: 𝑃𝐼 = I am a company employee and there is some confidential information in my
server. There are many GPUs in the server, so I can host open-sourced models or retrievers. It would be
great if we can avoid API calling as much as possible.
Preference vector: 𝑃 = [0,1,1,1,0,0,0,0,0] Explanation: The first digit in the preference vector corresponds
to the first tool in 𝑇 ; The second digit in the preference vector corresponds to the second tool in 𝑇 , etc.
The last three digits in 𝑃 corresponds to accuracy, cost and latency, aligned with the definitions in §3.2.
Therefore, this preference vector means the user prefers to use local search, Qwen/Qwen3-235B-A22B,
meta-llama/Llama-3.3-70B-Instruct.

G. Use of LLMs Disclosure

We used GPT-5 to polish the writing, primarily in the Abstract, Introduction, Methodology, and Experiments
sections, to improve the grammar, clarity, and readability. The research ideas, methodology, experiments, and
analyses were entirely conducted by the authors.

H. Generalization of pricing configurations

In Section 6.3, we examined Orchestrator-8B’s ability to generalize to unseen tools. Here, we investigate its
generalization across heterogeneous pricing regimes, where the same tools are assigned different costs. We
evaluate whether the model adapts by adjusting its tool-calling strategy to optimize outcomes, efficiency,
and alignment with user preferences—reflecting realistic settings in which tool costs vary across users. We
test Orchestrator-8B under a pricing configuration not encountered during training. Specifically, we use the
pricing configuration from deepinfra5. As shown in Table 4, it consistently delivers superior performance, cost

5https://deepinfra.com
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Table 4 | Generalization performance under different a pricing configuration. Orchestrator-8B consistently
performs the best in terms of performance, cost and latency, which illustates the robustness of the Orchestrator

HLE (↑) Frames (↑) 𝜏2-Bench (↑) Cost (↓) Latency (↓)

Qwen3-8B 29.7 68.2 71.9 27.4 17.9
Nemotron-49B 25.6 57.8 66.3 24.3 17.2
Llama-3.3-70B 19.6 52.2 55.4 17.9 12.0

Qwen3-235B-A22B 32.4 74.1 75.3 27.9 20.8
Claude Opus 4.1 34.5 72.3 76.4 52.3 25.1

GPT-5 20.8 57.3 61.9 17.5 13.2
Orchestrator-8B 36.9 76.6 80.4 7.5 7.8

efficiency, and accuracy. These results demonstrate that training with diverse pricing configurations produces
a model that is not constrained to a particular tool setup and can robustly generalize across diverse user
scenarios.

I. Data Synthesis

ToolScale. To enable end-to-end RL training of Orchestrator, we require data involving user-agent-tool
interaction trajectories, but such verifiable data is scarce. To generate such high-quality data, we devise a
two-step process: (1) simulating rich user-agent-tool environments, including creating database schemas and
tool APIs; and (2) based on the environment, generating diverse user tasks together with their corresponding
ground truth solutions. We further ensure quality by carefully verifying that each task is solvable using
the provided databases and tool APIs. Figure 4 provided an overview of this process. Firstly, to simulate
real-world user-agent-tool environments scalably, we choose a domain 𝐷 and then ask an LLM to generate a
database which includes schema, major subjects to focus on and database entries (as illustrated in the top-left
of Figure 4). Each entry is then checked to ensure coherence, adherence to the schema, and consistency across
content, logic, and entities. Based on the given domain 𝐷, LLM proposes frequently-used tools. Secondly, to
increase the diversity of the task instructions, LLM first proposes diverse intents frequently seen in domain
𝐷, which are later converted to specific tasks based on detailed database information. Each generated task
consists of task instruction 𝐼, gold function calls 𝐴 = 𝑎1, 𝑎2, ..., 𝑎𝑙, and short information 𝑜 that must be
mentioned during the process to solve the task. To enhance the difficulty of the generated tasks, we leverage
an additional LLM to complicate tasks by adding more complexities such as more constraints.

To ensure the quality of the synthesized data, we filter the data to remove a task if: (1) the execution of
golden function calls reports an error; (2) LLMs cannot solve it in pass@8; and (3) the task can be solved
without any actions. In Appendix J, we list the statistics of the generated data in each domain. More examples
and prompts used to synthesize data can be found in Appendix K. To evaluate whether a trajectory 𝜏 solves
the given task, we define the following criteria: (1) execution correctness, namely whether the database content
matches after executing the golden function calls 𝐴 and the trajectory 𝜏 ; (2) process fidelity, i.e., whether the
predefined information 𝑜, which is required to be communicated in the process to solve the task, is mentioned
in 𝜏 ; (3) operation completeness, that is whether the database entries operated in the ground truth trajectory
𝐴 are also operated in 𝜏 . We consider 𝜏 solves the task if all of three criteria are satisfied, or fails otherwise.

J. Breakdown of ToolScale

Table 5 | Statistics of ToolScale: the number of tools, database entries, and tasks per domain.

Finanace Sport E-commerce Medicine Entertainment Railway Restaurant Education Travel Weather
Tools 22 19 15 19 24 25 23 21 15 14

DB Entries 686 423 577 920 852 790 683 816 752 549
Tasks 396 247 343 622 561 414 348 426 331 375

K. Data synthesis prompts and examples
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Table 6 | Model prompts to generate subjects in a domain

Generate a list of major subjects in {domain}.
Output using the following format:
```
[subject1, subject2, ...]
```

Table 7 | Model prompts to generate schema in a domain

```
{demo_schema}
```
Generate another schema of similar formats for {domain}.

Table 8 | Model prompts to generate database entry

Schema
```
{schema}
```

Following the schema, write records in the subject {subject}. Make sure that the
values align with the definitions in the schema and are consistent in different places.
Use the following format to output:
```
{ “...": ..., “...": ..., }
```
Wrap the dictionary within ```.

Table 9 | Model prompts to validate database entry

Schema
```
{schema}
```

Database entry
```
{db_entry}
```

Please check whether the following conditions are satisfied:
Condition 1. The database entry strictly aligns with the fields and type definitions in
the schema.
Condition 2. The values in the database entry are consistent across different places,
e.g., id, name, etc.
Condition 3. The database content is logical, natural, and reasonable.
Output using the following format:
```
{ “condition 1": “satisfied or not satisfied, “condition 2": “satisfied or not satisfied,
“condition 3": “satisfied or not satisfied, }
```
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Table 10 | Model prompts to generate functions

Demonstration function
```
{demo_function}
```

Following the formats of demonstration function, write frequently-used functions in
{domain}. Wrap the functions within ```.

Table 11 | Model prompts to generate intents

Functions
```
{functions}
```

Propose realistic intents in {domain} that could be solved by the functions above. Use
the following format to output:
```.
[
“purpose 1",
“purpose 2",
...
]
```.

Table 12 | Model prompts to generate tasks

Functions
```
{functions}
```
Database
```
{database}
```

Propose a realistic task with the intent: {intent}. Use the following format to output:
```.
{task_template}
```.
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Table 13 | Model prompts to evolve tasks

Functions
```
{functions}
```
Database
```
{database}
```
Old task: {task}

Make a new task by adding more complexity to the old task. You can add constraints,
involve more entities, make the situation more tricky, etc. Use the following format to
output:
```.
{task_template}
```.

Table 14 | Database schema example

{
“movies": {
“MMMMMMM": { movie_id
“movie_id": "MMMMMMM",
“title": "...",
“genres": [“Action", “Adventure", “Comedy", “Drama", “Horror", “Thriller", “Ro-
mance", “Science Fiction", “Fantasy", “Mystery"],
“runtime_minutes": ...,
“mpaa_rating": “...",
“languages_audio": ["..."],
“subtitles": ["..."],
“formats": ["2D", "3D", "IMAX", "Dolby"],
“release_date": “YY-MM-DD",
“end_of_run_est": “YY-MM-DD",
“cast": [
{ “name": “...", “role": “..." }
],
“crew": {
“director": “...",
“writer": “...",
“producer": “...",
“music": “..."
},
"synopsis": "..."
},
...
},
...
}
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Table 15 | The average number of calls on each tool when various models serve as the orchestrator to solve an
instance (averaged across HLE, Frames and 𝜏2-bench). Qwen-32B refers to Qwen/Qwen3-32B [27], Coder-32B
refers to Qwen/Qwen2.5-Coder-32B-Instruct [24], Math-7B refers to https://huggingface.co/Qwen/Qwen2.5-
Math-7B-Instruct [25], Math-72B refers Qwen/Qwen2.5-Math-72B-Instruct [25], and Llama-70B refers to
meta-llama/Llama-3.3-70B-Instruct [26]. Compared to other strong foundation models, Orchestrator-8B
achieves better results (Table 1) while making few calls to GPT-5.

Model GPT-5 GPT-5-mini Qwen-32B Coder-32B Math-72B Math-7B Llama-70B Local search Web search Code interpreter

Qwen3-8B 6.0 0.5 1.4 0.5 0.0 0.0 0.0 0.8 1.2 1.6
Nemontron-49B 5.1 1.6 0.5 0.8 0.1 0.1 0.3 0.7 0.9 1.4
Llama-3.3-70B 1.8 0.0 0.1 0.0 1.4 0.3 4.8 0.6 1.4 1.3

Qwen3-235B-A22B 6.2 0.3 0.6 1.2 0.6 0.1 1.1 1.4 1.0 2.2
Claude Opus 4.1 6.2 0.2 0.3 0.3 0.1 0.0 0.1 1.0 1.3 1.4

GPT-5 2.7 5.6 0.0 0.2 0.0 0.0 0.0 0.5 0.7 1.0
Orchestrator-8B 1.6 1.7 1.3 0.2 0.0 0.1 0.0 1.8 0.7 0.8

Table 16 | The cost and latency of LLMs in 𝜏2-Bench. Orchestrator-8B consistently shows better performance
with lower cost and latency.

Tools Model(s) 𝜏2-Bench (↑) Cost (↓) Latency (↓)

Basic tools

Qwen3-8B 40.7 1.6 2.3
Llama-Nemotron-49B 23.2 2.7 3.6
Llama-3.3-70B 17.6 3.1 4.5
Qwen3-235B-A22B 52.9 12.6 10.6
Claude Opus 4.1 46.0 81.2 32.8
GPT-5 77.7 31.3 20.2

Basic tools,
Specialized LLMs
Generalist LLMs

Qwen3-8B 72.3 27.9 18.4
Llama-Nemotron-49B 66.7 25.8 17.5
Llama-3.3-70B 55.8 20.1 14.2
Qwen3-235B-A22B 75.6 30.0 22.6
Claude Opus 4.1 76.8 52.8 24.1
GPT-5 62.3 18.2 14.5
Orchestrator-8B 80.2 10.3 8.6

L. Calculation of rewards for preference-aware benchmark

During training, we directly follow the Equation 2 to calculate rewards. In the evaluation, we use the following
procedure. Following the definition in §3.2, we have a tool set {𝑡1, 𝑡2, ..., 𝑡𝑛} and a rollout trajectory 𝜏 , we
consider the vector 𝑀𝜏 = [𝑚𝜏

𝑡1
, 𝑚𝜏

𝑡2
, . . . , 𝑚𝜏

𝑡𝑛
, 𝑟𝜏

outcome, 𝑟𝜏
compute, 𝑟𝜏

latency], where 𝑚𝜏
𝑡∙

is the number of times
tool 𝑡∙ is invoked in 𝜏 . In the evaluation, we obtain the baseline vector 𝑀0 by running the starting checkpoint,
e.g., Qwen3-8B. For example, if we would like to evaluate a checkpoint CKPT 𝑠 that is trained for 𝑠 steps
from a base Qwen3-8B model, then we first run Qwen3-8B on the benchmark and record the vector 𝑀

𝜏(𝑒)
0 as

the baseline vector for the Qwen3-8B’s trajectory 𝜏(𝑒) for each example 𝑒 of the benchmark. We then obtain
𝑀

𝜏(𝑒)
𝑠 by running CKPT 𝑠 on the same example 𝑒. 𝑀

𝜏(𝑒)
𝑠 is normalized as

𝑀
𝜏(𝑒)
normalized,𝑠[𝑘] =

{︃
𝑀

𝜏(𝑒)
𝑠 [𝑘]/𝑚𝑎𝑥(1, 𝑀

𝜏(𝑒)
0 [𝑘]) if 1 ≤ 𝑘 ≤ 𝑛 + 1

𝑀
𝜏(𝑒)
0 [𝑘]/𝑚𝑎𝑥(1, 𝑀

𝜏(𝑒)
𝑠 [𝑘]) otherwise.

(5)

We then proceed to calculate the final preference-aware reward for the example 𝑒 as:

𝑅𝑒(𝜏) =
{︂

𝑀
𝜏(𝑒)
normalized,𝑠 · 𝑃 if 𝑟outcome(𝜏)

0 otherwise.
(6)

The benchmark result is calculated as the sum of 𝑅𝑒(𝜏) over the examples 𝑒 of the benchmark.
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