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Canvas-to-Image: Compositional Image Generation with Multimodal Controls
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Figure 1. Canvas-to-Image enables compositional control for text-to-image generation through a unified Multi-Task Canvas framework.
The canvas serves as a flexible visual interface that guides image synthesis by supporting diverse guiding signals, including spatially
positioned subjects, pose signals, bounding boxes, and text annotations.

Abstract

While modern diffusion models excel at generating high-
quality and diverse images, they still struggle with high-
fidelity compositional and multimodal control, particularly
when users simultaneously specify text prompts, subject ref-
erences, spatial arrangements, pose constraints, and lay-
out annotations. We introduce Canvas-to-Image, a unified
framework that consolidates these heterogeneous controls
into a single canvas interface, enabling users to generate
images that faithfully reflect their intent. Our key idea is
to encode diverse control signals into a single compos-
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ite canvas image that the model can directly interpret for
integrated visual-spatial reasoning. We further curate a
suite of multi-task datasets and propose a Multi-Task Can-
vas Training strategy that optimizes the diffusion model
to jointly understand and integrate heterogeneous con-
trols into text-to-image generation within a unified learn-
ing paradigm. This joint training enables Canvas-to-Image
to reason across multiple control modalities rather than re-
lying on task-specific heuristics, and it generalizes well to
multi-control scenarios during inference. Extensive experi-
ments show that Canvas-to-Image significantly outperforms
state-of-the-art methods in identity preservation and control
adherence across challenging benchmarks, including multi-
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person composition, pose-controlled composition, layout-
constrained generation, and multi-control generation.

1. Introduction

Recent advances in large-scale diffusion models [9, 33, 38]
have substantially improved the realism and diversity of
synthesized imagery. However, these models remain inher-
ently stochastic and provide limited flexibility when users
wish to control multiple aspects of image generation simul-
taneously. This limitation is particularly consequential in
creative and design-oriented applications, such as digital art
and content creation, where users often need to coordinate
several types of control signals, such as spatial layouts, sub-
ject references, pose constraints, etc.

We introduce Canvas-to-Image, a framework that en-
ables heterogeneous compositional control over diffusion-
based image generation through a unified canvas represen-
tation. As illustrated in Fig. 1, our approach allows users
to combine diverse forms of input within a single interface:
subjects and objects can be positioned, resized, rotated, and
posed; bounding boxes with descriptive tags can define sub-
jects with spatial constraints; and pose overlays [4] can
specify body configurations. This flexible, multi-modal in-
teraction design enables users to guide the generation pro-
cess using complementary controls that collaboratively de-
fine both semantics and composition.

Achieving unified multi-control generation remains
highly challenging, and no existing model can handle all the
aforementioned controls simultaneously. Existing control
mechanisms [22, 26, 52] typically address isolated aspects
of compositional image synthesis, e.g. spatial layouts or
pose constraints, but fail to handle multiple controls within
a single input. The core difficulty lies in reconciling hetero-
geneous inputs that differ in both structure and semantics,
including subject references, bounding boxes, and textual
tags, while training a model capable of jointly interpreting
and balancing these signals.

Consequently, prior works supporting subject injec-
tion [14, 35, 50] usually lack spatial control, whereas
layout-guided methods [22, 51] cannot incorporate specific
poses or subjects. Recent methods such as StoryMaker [55]
and ID-Patch [53] demonstrate both subject insertion and
spatial control, but rely on complex module combinations,
such as ControlNet [49] and IP-Adapter [50], which intro-
duce additional complexity, are limited to face injection,
lack bounding-box support, and generalize poorly.

To address these challenges, we propose three key in-
novations. First, we introduce the Multi-Task Canvas, a
unified input representation that consolidates diverse con-
trol modalities, including background composition, subject
insertion, bounding-box layouts, and pose guidance, into a
single composite RGB image. This canvas serves as a gen-

eralized visual interface where all control elements are ex-
pressed in a common pixel space, allowing the model to
interpret multimodal guidance without extra modules or ar-
chitectural changes. Second, we curate a comprehensive
multi-task dataset that aligns these heterogeneous controls
with corresponding target images, supporting consistent
joint supervision across tasks. Third, we design a Multi-
Task Canvas Training framework that fine-tunes the dif-
fusion model to reason across tasks collectively, learning
shared semantics and spatial dependencies among different
control types. Importantly, we observe that once trained on
this multi-task canvas, the model generalizes naturally to
multi-control scenarios at inference time, even when com-
binations of controls were not seen together during training.

We summarize our contributions as follows:

 Unified canvas framework: A generalized Multi-Task

Canvas representation that consolidates heterogeneous

controls into a single canvas-to-image formulation (Fig.

2), enabling coherent reasoning across modalities.

Multi-task datasets and training: We curate com-

prehensive multi-task datasets covering diverse control

modalities and propose a unified Multi-Task Canvas

Training framework that fine-tunes the diffusion model

jointly across these tasks. Experiments reveal joint train-

ing enables mixed controls in inference time.

» Comprehensive evaluation: Extensive experiments on
challenging benchmarks demonstrate clear improvements
in identity preservation and control adherence compared
to existing methods. Ablations confirm that our unified
multi-task design is key to achieving flexible and coherent
heterogeneous control.

2. Related Work

Diffusion Models for Image Synthesis. Diffusion mod-
els [16, 41] are the dominant paradigm for high-fidelity im-
age synthesis. Text-to-image models [37, 38, 40] use large-
scale text-image pairs for open-vocabulary generation. Dif-
fusion transformers [3, 9, 31] have further improved qual-
ity and scalability. Emerging multimodal models [7, 45]
integrate MLLMs with diffusion models for higher quality
and better prompt following. While impressive, these mod-
els still struggle with fine-grained, multi-constraint com-
positional control. Our work builds on a pretrained dif-
fusion model, introducing a unified canvas interface and
multi-task training strategy to enable comprehensive com-
positional control.

Personalization in Image Generation. Personalization
methods generate specific subjects or identities in novel
contexts. Early approaches [10, 21, 39] require per-concept
fine-tuning. Adapter-based solutions [12, 13, 30, 34, 44, 50]
improve efficiency by keeping the base model frozen and
injecting subject-specific representations. Multi-concept
personalization remains challenging: optimization-based
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Figure 2. Overview of Canvas-to-Image framework. (a) Multi-Task Canvas Training. We reformulate heterogeneous control tasks:
spatial composition, pose guidance, and layout-constrained generation into a single canvas-to-image formulation. Each training step
samples one type of canvas (Spatial, Pose, or Box), where the target frame serves as supervision. All control signals are encoded as
RGB canvases interpretable by the Vision-Language Model (VLM) for unified visual-spatial reasoning. The Multi-Modal DiT (MM-DiT)
receives VLM embeddings, VAE latents, and noisy latents to predict the velocity for flow matching. (b) Inference. Although trained on
single-control samples, the model generalizes to multi-control compositions, jointly leveraging pose, layout, and reference cues within a
single generation process. This enables coherent multi-control reasoning without task-specific retraining.

methods [1, 6, 11, 20, 32] demand explicit concept dis-
entanglement, while optimization-free approaches [5, 14,
35, 43, 48] concatenate embeddings at the cost of linear
complexity growth. Beyond these scalability and flexibil-
ity limitations, most personalization methods focus solely
on reference injection [15, 36]. A true creative design
process requires handling multiple controls simultaneously.
Canvas-to-Image addresses the scalability and flexible con-
trol challenges with a unified single canvas that maintains a
constant computation cost, providing a foundation for such
a multi-control, multi-subject personalization framework.

Compositional Control in Generation. Providing fine-
grained compositional control remains a challenge, as ex-
isting mechanisms typically address isolated tasks. For in-
stance, models like ControlNet [52] and T2I-Adapter [26]
use structural cues like pose skeletons or depth maps to
specify body configurations. Another line of work targets
spatial layout control. Methods such as GLIGEN [22], Lay-
outDiffusion [54], and CreatiDesign [51] finetune the gen-
erator to interpret bounding boxes or segmentation masks.
Unifying these heterogeneous controls is highly challeng-
ing, particularly with identity constraints for personaliza-
tion. Methods supporting subject injection often lack fine-
grained spatial control, while layout-guided methods can-
not incorporate specific poses or subject identities. Re-
cent attempts at unification, such as StoryMaker [55] and
ID-Patch [53], rely on complex combinations of separate

modules (e.g., ControlNet with IP-Adapter) and are limited
to single-type control. Canvas-to-Image addresses this gap
by reformulating diverse control types into a single “visual
canvas”. Instead of relying on task-specific heuristics, our
unified canvas supports spatial layouts, pose guidance, and
subject appearance injection within one coherent interface,
enabling the model to reason across modalities collectively.

3. Methodology

Canvas-to-Image is a unified framework for multi-modal,
compositionally controlled image synthesis. The model
takes as input a generalized Multi-Task Canvas, which is
a single RGB image used to encode heterogeneous user
controls. These controls include subject identities for per-
sonalization, spatial layouts, human poses, or bounding
boxes. The Multi-Task Canvas formulation (Sec. 3.1) en-
ables the diffusion model to interpret these diverse con-
trol modalities, all unified within this single image for-
mat, within a consistent training setup. Each canvas vari-
ant teaches the model a different type of compositional rea-
soning, from using subject references for personalization to
applying fine-grained structural guidance. The underlying
VLM-Diffusion architecture and multi-task training strat-
egy (Sec. 3.2) jointly optimize the model across all control
types. This design enables Canvas-to-Image to generalize to
multi-control scenarios at inference, combining conditions
not seen together during training while maintaining precise,



controllable synthesis.

3.1. Multi-Task Canvas

Our core contribution is the introduction of a Multi-Task
Canvas that generalizes different complex compositional
tasks into a shared input format: a single RGB image. This
“visual canvas” serves as a flexible, multi-modal format that
unifies diverse compositional inputs. We generate our can-
vas variants, which serve as different ways of expressing
a composition, from data sources appropriate for each task.
These variants are designed to be interpreted as distinct con-
trol types. For example, a Spatial Canvas provides a literal,
pixel-based composition, while a Pose Canvas provides an
abstract, structural one. Canvas-to-Image is built upon three
primary canvas variants:
Spatial Canvas. The first variant trains the model to ren-
der a complete scene based on an explicit composition, as
depicted in Fig. 2 as “Spatial Canvas”. This input canvas
is a composite RGB image created by visually pasting seg-
mented cutouts of subjects (€.8., Lsubject_1; Lsubject2) at their
desired locations on a masked background. This canvas is
constructed using Cross-Frame Sets (Fig. 2 left), which al-
lows for pairing subjects and backgrounds drawn in a cross-
frame manner. This strategy is crucial for the methodology
as it avoids the copy-pasting artifacts common in simpler
composition methods. This canvas enables multi-subject
personalization as a compositional control, where users can
place and resize reference subjects to guide the generation.
Pose Canvas. This task enhances the Spatial Canvas by pro-
viding a strong visual constraint for articulation. We overlay
a ground-truth pose skeleton (e.g., from [4]) onto the Spa-
tial Canvas using a specific transparency factor, as shown
in Fig. 2 as ”Pose Canvas”. This semi-transparent overlay
is a key design choice: the pose skeleton remains clearly
recognizable as a structural guide, while the visual identity
from the underlying subject segments (when present) can
still be recovered and interpreted by the model. In this can-
vas, the subject segments themselves are randomly dropped
during training, i.e., there are cases with only poses in the
empty canvas to guide the pose. This is designed to support
pose control as an independent modality in inference, even
without reference injection.
Box Canvas. This task trains the model to interpret explicit
layout specifications through bounding boxes with textual
annotations directly onto the canvas. Each box contains a
textual identifier (e.g., “Person 17, ”Person 2”, ’Stone” in
Fig. 2) that specifies which subject should appear in that
spatial region and their sizes. The person identifier is or-
dered from left to right. Such a “Box Canvas” supports
simple spatial control with text annotations without refer-
ence images as in previous two canvas variants.

By training the model on these distinct, single-task can-
vas types, the framework learns a robust and generalizable

policy for each control. Interestingly, this enables the model
to generalize beyond single-task learning, allowing for the
simultaneous execution of these distinct control signals at
inference time even in combinations not encountered dur-
ing training, as shown in Fig. 2(b).

3.2. Model and Multi-Task Training

As illustrated in Fig. 2, Canvas-to-Image builds upon a
VLM-Diffusion architecture. The Vision-Language Model
(VLM) encodes the unified canvas into a tokenized repre-
sentation. This representation is concatenated with the VAE
latents of the canvas and provided to the diffusion model as
conditional inputs, along with the text prompt embedding
and the noisy latents. The model is optimized using a task-
aware Flow-Matching Loss:
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where x( is the target latent, x; is the noise latent, and x
is the interpolated latent. A represents the input condition,
which is itself a concatenation of the VLM embeddings (de-
rived from the canvas and text prompt) and the VAE latents
(derived from the same canvas). c represents the task indi-
cator that specifies the current control type. The network vg
predicts the target velocity v, = zg — 1.

Canvas-to-Image adopts a unified Multi-Task Canvas
formulation, in which each training step samples one type
of canvas as the input condition (e.g., Spatial, Pose, Box).
Training on this diverse, multi-task curriculum enables the
model to learn decoupled, generalizable representations for
each control type. Consequently, the model can execute
a combination of these controls at inference time (e.g., a
mixed canvas with both pose skeletons and layout boxes)
despite having never seen such a combination during train-
ing. This emergent generalization from single-task learning
to multi-task application is a key property of the proposed
framework. To prevent task interference, we introduce a
task indicator prompt—a short textual token (e.g., “[Spa-
tial]”, “[Pose]” or “[Box]”) prepended to the user prompt.
This indicator (c), which is necessary because our different
canvas types represent different control meanings, disam-
biguates the task context and prevents mode blending. Ab-
lation studies (Sec. 4.3) demonstrate the effectiveness of
our multi-task training strategy on performing these control
tasks compositionally at inference time.

4. Experiments

4.1. Experiment Details

Implementation. We build upon Qwen-Image-Edit [45]
as our base architecture. The input canvas image and text
prompt are first processed by the VLM to extract seman-
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Figure 3. Qualitative Comparisons on 4P Composition Benchmark. Under the Spatial Canvas setup, our Canvas-to-Image achieves the
highest identity preservation for multi-subject insertion while respecting the spatial placement of each subject segment. FLUX Kontext [3]-
based approach [ 18] fails to preserve identity, whereas NanoBanana [42] consistently exhibits copy-pasting artifacts. Compared to our base
model, Qwen-Image-Edit [45], our method maintains similar image quality but demonstrates significantly stronger identity preservation.

tic embeddings, while the canvas image is also simultane-
ously encoded by the VAE into latents. These VLM embed-
dings, VAE latents, and noisy latents are concatenated and
fed into the diffusion, which predicts the velocity for de-
noising. During training, we fine-tune the attention, image
modulation, and text modulation layers in each block using
LoRA [17] with a rank of 128. Note the feed-forward lay-
ers are frozen, as we find it is important to preserve the prior
image quality of the pretrained model. Optimization is per-
formed with AdamW [24], using a learning rate of 5 x 10~°
and an effective batch size of 32. The model is trained for
200K steps on 32 NVIDIA A100 GPUs.

Dataset. Our training is constructed from two primary data
sources. The Spatial Canvas and Pose Canvas variants are
derived from a large-scale internal, human-centric dataset
containing 6M cross-frame images from 1M unique iden-
tities. This dataset enables flexible composition sampling
for our Multi-Task Canvas formulation, for example, pair-
ing subjects and backgrounds drawn in a cross-frame man-
ner to avoid copy-pasting artifacts. See Appendix for de-
tails. For the Box Canvas, we extend the internal data with
bounding box annotations from the external CreatiDesign

dataset [51], which provides a large-scale corpus of images
annotated with boxes and named entities. During training,
we sample each task type and its dataset with an uniform
distribution for a balanced multi-task supervision.

Benchmarks. We benchmark our method against sev-
eral baselines, including the base model Qwen-Image-
Edit [45], the state-of-the-art commercial editing model
Gemini 2.5 Flash Image (also known as Nano-Banana) [42],
and other most recent related work such as Cre-
atiDesign [51] and Overlay Kontext [18] in corresponding
benchmarks. For a fair and direct comparison of unified-
interface methods, our main paper evaluates baselines that
also operate on a single image input. We provide an
extended comparison against other methods such as ID-
Patch [53] in Appendix. Evaluations are conducted across
four distinct benchmarks: (i) 4P Composition via the Spa-
tial Canvas, (ii) Pose-Overlaid 4P Composition via the Pose
Canvas, (iii) the Layout-Guided Composition benchmark
via the Box Canvas, and (iv) our proposed Multi-Control
Benchmark, which is curated from the CreatiDesign bench-
mark [51] containing humans in prompts and augmented
with our Spatial and Pose Canvas for reference subject in-
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Figure 4. Qualitative Comparisons on Pose-Overlaid 4P Composition Benchmark. Our Canvas-to-Image achieves the highest identity
preservation and most accurate pose alignment. Note how Canvas-to-Image closely follows the target poses defined in the prior generated
by FLUX-Dev [2] (“Pose Prior” column), while maintaining subject identities more faithfully than the baselines.

jection and pose controlling. See Appendix for more details.
Metrics. We report ArcFace ID Similarity [8] for identity
preservation, HPSv3 [25] for image quality, VQAScore [23]
for text-image alignment. In addition, to assess the fidelity
w.r.t. applied control (e.g. identity, pose, box), we intro-
duce a Control-QA score (evaluated by an LLM). For each
control, Control-QA assesses each image between a score
of 1-to-5, depending on how aligned each generation to the
given set of control combinations. We provide details of
the Control-QA in Appendix. A comprehensive user study
further validating these results is also provided in Appendix.

4.2. Qualitative and Quantitative Results

We present qualitative comparisons across the four bench-
mark setups in Figures 3-6. In the 4P Composition bench-
mark (Fig. 3), Canvas-to-Image demonstrates superior iden-
tity preservation and spatial alignment when composing
multiple personalized subjects, outperforming state-of-the-
art baselines including Qwen-Image-Edit [45], the commer-
cial model Nano-Banana [42], and Overlay Kontext [18],
which is trained upon FLUX Kontext [3]. Nano-Banana
consistently produces copy-pasted human segments, an ob-
servation supported by the quantitative results in Tab. 1.

Table 1. Quantitative Comparison of our method against base-
lines across four different control tasks. We report ArcFace ID
Similarity [8] for identity preservation, HPSv3 [25] for image
quality, VQAScore [23] for text-image alignment, and Control-
QA for control adherence. The best results for each task are high-
lighted in bold, where the second best is highlighted as underlined.

Method ArcFace T HPSv31 VQAScore T Control-QA 1
4P Composition

Qwen-Image-Edit [45] 0.258 13.136 0.890 3.688

Nano Banana [42] 0.434 10.386 0.826 3.875

Overlay Kontext [18] 0.171 12.693 0.879 2.000

Ours 0.592 13.230 0.901 4.000
Pose Guided 4P Composition

Qwen-Image-Edit [45] 0.153 12.940 0.890 4.031

Nano Banana [42] 0.262 9.973 0.861 3.438

Ours 0.300 12.899 0.897 4.469
Layout-Guided Composition

Qwen-Image-Edit [45] - 10.852 0.924 3.813

Nano Banana [42] - 10.269 0.917 3.750

CreatiDesign [51] - 9.790 0.923 4.844

Ours - 10.874 0.935 4.844

Multi-Control Composition

Qwen-Image-Edit [45] 0.204 12.251 0.903 3.575

Nano Banana [42] 0.356 11.370 0.873 3.625

Ours 0.375 12.044 0.906 4.281

Such artifacts may occur because closed-source models
such as Nano-Banana [42] are likely not trained with
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Figure 5. Qualitative Comparisons on the Layout-Guided Composition Benchmark. Under the Box Canvas setup, our
Canvas-to-Image achieves the highest fidelity in spatial layout control, even compared to the state-of-the-art CreatiDesign [51] model
trained for this task. Nano Banana [42], while demonstrating good image quality, does not adhere to the bounding boxes as closely as our
model. Compared to our base model Qwen-Image-Edit [45], we achieve the same level of image quality but significantly stronger spatial
condition alignment.
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Figure 6. Qualitative Comparisons on the Multi-Control Composition Benchmark. We compare Canvas-to-Image with state-of-the-
art baselines under inputs containing multiple heterogeneous control signals. Existing methods [42, 45] fail to simultaneously satisty all
conditions, often neglecting spatial, pose, or identity constraints. In contrast, Canvas-to-Image accurately adheres to the bounding boxes
for spatial placement, respects pose and interaction cues from overlaid skeletons, and maintains strong identity fidelity of the reference
identity images across multi-control inputs.

segment-like inputs, which are explicitly incorporated in
our canvas-based training. Overlay Kontext and Qwen-
Image-Edit [45] also fail to preserve subject identities (e.g.,
15t row 4™ 1D, 2" row 3™ ID, and 3" row 4™ ID), a weak-
ness reflected in their low ArcFace scores in Tab. 1.

In the benchmark with extra overlaid poses (Fig. 4),
Canvas-to-Image is the only method that accurately fol-
lows the target poses (“Pose Prior” column) while main-

taining high identity fidelity and visual realism, substan-
tially outperforming baselines [42, 45]. For the Layout-
Guided Composition benchmark (Fig. 5), Canvas-to-Image
produces semantically coherent compositions that adhere
to the box constraints, whereas Nano-Banana and Qwen-
Image-Edit often ignore structural signals or suffer from
annotation rendering artifacts. Notably, Canvas-to-Image
also surpasses the dedicated state-of-the-art model Cre-
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Figure 7. Qualitative Ablation for Multi-Task Canvas Training. Starting from training with only the Spatial Canvas, the model struggles
to follow pose and bounding-box annotations. As we incrementally add the Pose Canvas and Box Canvas tasks, the model progressively
learns to respect these additional controls. The final model effectively handles complex multi-control inputs. Notably, during training, each
sample contains only a single control type, yet the model exhibits strong generalization to multi-control scenarios at inference.

Table 2. Ablation study for Multi-Task Canvas Training. Per-
formance on the Multi-Control Benchmark is evaluated as the Pose
Canvas and Box Canvas tasks are incrementally added to the base-
line Spatial Canvas model.

Model ArcFacet VQAScoret HPSv3T Control-QAT
Spatial Canvas 0.389 0.865 10.786 4.156
+ Pose Canvas 0.371 0.874 11.440 4.188
+ Box Canvas 0.375 0.906 12.044 4.281

atiDesign [51], which was trained specifically for this task
in the training set of CreatiDesign evaluation benchmark.

Finally, on the Multi-Control Benchmark (see Fig. 6),
where identity preservation, pose guidance, and box an-
notations must be satisfied jointly, our model achieves the
highest compositional fidelity. It integrates reference sub-
jects and multiple control cues seamlessly, while base-
lines [42, 45] often produce artifacts or fail to satisfy all
input constraints. Quantitatively, Tab. 1 validates the effec-
tiveness of our unified framework. The balanced perfor-
mance across control adherence and identity preservation
confirms that encoding heterogeneous signals into a single
canvas successfully enables the simultaneous execution of
spatial, pose, and identity constraints.

We highlight that all results across benchmarks are gen-
erated by the same unified Canvas-to-Image model, demon-
strating its strong generalization from single-control train-
ing samples to complex control scenarios at inference.

4.3. Ablation Studies

We conduct ablation studies to evaluate the effectiveness
of our Multi-Task Canvas Training on the Multi-Control
Benchmark. We start with a baseline model trained only

on the Spatial Canvas and then progressively add the Pose
Canvas and Box Canvas tasks to the training curriculum.
Quantitative and qualitative results are presented in Tab. 2
and Fig. 7, respectively. Tab. 2 clearly show that as more
canvas tasks are incorporated, we observe consistent gains
in image quality (HPSv3) and control adherence (Control-
QA). The qualitative results (Fig. 7) confirm this: the base-
line model fails to follow pose and layout instructions,
while the full model successfully handles all multi-control
inputs. Additionally, we provide ablations on the impact of
the trained branches of MM-DiT[31] and the convergence
behavior of control following in Appendix.

5. Conclusion

We introduced Canvas-to-Image, a unified framework for
flexible, compositional image generation. Our approach
enables a diffusion model to reason jointly over reference
subjects, pose signals, and layout constraints by reformu-
lating these heterogeneous controls into a single canvas-
conditioned paradigm. Our Multi-Task Canvas training
enables Canvas-to-Image to generalize from single-control
training samples to complex multi-control scenarios at in-
ference, allowing a single unified model to achieve strong
identity preservation, pose fidelity, and structural coher-
ence. This unified canvas formulation establishes a scal-
able paradigm for multi-modal guidance; while currently
bounded by the information density of a single RGB inter-
face, as discussed in the Appendix, it establishes a robust
foundation for future work to enable even richer forms of
visual and semantic control.
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Canvas-to-Image: Compositional Image Generation with Multimodal Controls

Supplementary Material
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Figure I. Training Dynamics for Canvas-to-Image. The Control-
QA score steadily improves during early training and converges
around 50K iterations, indicating that the model effectively learns
consistent control and composition. We further train up to 200K
iterations to refine local details and enhance robustness in genera-
tion quality.

A. Comparisons with Personalization Methods

In the main paper, we compare Canvas-to-Image primarily
with approaches designed to naturally support the composi-
tion task with free form inputs, such as [18, 42, 45, 51].
However, acknowledging that composition and personal-
ization are intersecting tasks, we provide supplementary
comparisons with recent zero-shot personalization meth-
ods capable of supporting multiple-concept input, specifi-
cally UniPortrait [15], FLUX Kontext [3], UNO [47], Om-
niGen2 [46], DreamO [27], and ID-Patch [53]. To ensure a
robust evaluation, we extend these comparisons across three
distinct benchmarks, detailed below.

4P Composition Benchmark. Following the 4P Com-
position setup introduced in the main paper, we provide
quantitative comparisons with personalization methods, in-
cluding [15, 27, 46] and [3] in Tab. I. We validate that
Canvas-to-Image achieves superior identity preservation
(ArcFace), image quality (HPSv3), and text-image align-
ment (VQAScore) compared to these competing baselines.
In addition to the quantitative metrics, we provide compar-
ative qualitative examples in Fig. II for a visual assessment.
These examples illustrate how Canvas-to-Image achieves
more consistent identity preservation and realistic multi-
subject composition compared to all personalization-based
baselines as well as Qwen-Image-Edit [45].

Table 1. Quantitative Comparison Including Personalization
Baselines on the 4P Composition Benchmark. Bold values de-
note the best performance for each metric, highlighting the supe-
rior overall performance of our method across all categories.

ArcFace T HPSv31 VQAScore T Control-QA 1

DreamO [27] 0.2049 12.4210 0.7782 1.4062
OmniGen2 [46] 0.0859 12.9873 0.8051 1.9688
ID-Patch [53] 0.0824 7.1262 0.7846 1.0938
UniPortrait [15] 0.3088 12.4011 0.7860 2.5000
Overlay Kontext [18] 0.1709 12.6932 0.8792 2.0000
Flux Kontext [3] 0.2168 12.7684 0.8687 2.2188
UNO [47] 0.0769 12.1558 0.8402 1.5000
Nano Banana [42] 0.4335 10.3857 0.8260 3.8750
Qwen Image Edit [45] 0.2580 13.1355 0.8974 3.6875
Ours 0.5915 13.2295 0.9002 4.0000

Table II. Quantitative Comparisons on the Pose-Guided 4P
Composition Benchmark. The Control-QA score provides a uni-
fied criterion that accounts for both pose accuracy and identity
preservation, where our method achieves the highest performance
among all baselines.

Pose ArcFacet HPSv31T VQAScore? Control-QA 1 PoseAPys T
ID-Patch [53] 0.2854 11.9714 0.8955 4.1250 75.0814
Nano Banana [42] 0.2623 9.9727 0.8609 3.4375 64.1704
Qwen-Image-Edit [45] 0.1534 12.9397 0.8897 4.0312 67.2734
Ours 0.3001 12.8989 0.8971 4.4688 70.1670

Table III. Quantitative Results on the ID-Object Composition
Benchmark. We compare our method with several baselines
across five different metrics. Bold values indicate the best per-
formance in each column. DINOv2 measures object preservation.
Our Canvas-to-Image achieves the highest identity (ArcFace) and
object (DINOvV2 [29] preservation as well as the highest control
following (Control-QA).

ArcFaceT HPSv31T VQAScoret Control-QA 1 DINOv2 1

UNO [47] 0.0718 8.6718 0.8712 2.5000 0.2164
DreamO [27] 0.4028 9.0394 0.8714 3.9688 03111
OmniGen2 [46] 0.1004 10.2854 0.9266 4.4062 0.3099
Overlay Kontext [18] 0.1024 8.6132 0.8539 3.2812 0.2703
Flux Kontext [3] 0.1805 9.2179 0.8914 3.1562 0.2818
Qwen-Image-Edit [45] 0.3454 10.3703 0.9045 4.4062 0.2867
Ours 0.5506 9.7868 0.9137 4.8750 0.3298

Pose-Guided 4P Composition Benchmark. We provide
additional quantitative and qualitative comparisons with ID-
Patch [53], a method specifically designed for pose-guided
composition with human identities. These results are de-
tailed in Table II.

To rigorously evaluate this task, we employ a compre-
hensive set of metrics: ArcFace [8] for identity, HPSv3 [25]
for aesthetic quality, VQAScore [23] for semantic align-
ment, and our proposed Control-QA score (see Sec. F). Fur-
thermore, we introduce the Pose AP 5 score, which reports
the Average Precision (AP s) for extracted pose keypoints
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Figure II. Supplementary Qualitative Comparisons on the 4P Composition Benchmark with Personalization Approaches.
Both Qwen-Image-Edit and our Canvas-to-Image significantly outperform the state-of-the-art multi-subject personalization baselines
DreamO [27], OmniGen2 [46], and UNO [47] in terms of identity preservation. Compared to Qwen-Image-Edit, our method demon-
strates further improvements in identity fidelity, particularly for the rightmost man in the 1°¢ row, the leftmost woman in the 2"¢ row, and

the second man in the 3" row.

to strictly measure spatial adherence.

As shown in Table II, Control-QA provides a unified
evaluation criterion that jointly considers pose accuracy
and identity preservation (measured by ArcFace similar-
ity), under which our method achieves the highest score.
Qualitative results in Fig. III further demonstrate that al-
though ID-Patch [53], through its integration with Control-
Net [52], can effectively reproduce target poses—resulting
in high PoseAP scores—it often fails to maintain the cor-
rect number of subjects and consistent identities. In con-
trast, Canvas-to-Image achieves a more balanced trade-off
between pose fidelity and identity preservation. Additional
qualitative examples of pose-guided composition in single-
person (1P) and two-person (2P) scenarios are presented in
Fig. VI and Fig. V, respectively.

ID-Object Interaction Benchmark. To demonstrate the
generalizability of our approach beyond human subjects,
and to evaluate performance in scenarios involving natu-
ral interactions between subjects, we extend our evalua-
tions to the ID-Object Interaction benchmark. To construct
this benchmark, we pair human identities from the FFHQ-
in-the-Wild [19] dataset with object references from the
DreamBooth [39] dataset to create challenging ID-Object
pairs.

We quantitatively compare our method against a wide
range of baselines, including [3, 18, 27, 42, 46, 47], as
well as our main baseline, Qwen-Image-Edit [45]. Cor-
responding quantitative results are provided in Table III.
Our Canvas-to-Image achieves the highest identity and ob-
ject preservation, as well as the strongest overall control
following, as indicated by ArcFace, DINOv2 [29], and
Control-QA metrics, respectively. To further assess in-
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Figure III. Supplementary Qualitative Comparisons on the Pose-Overlaid 4P Composition Benchmark. We additionally include
the relevant state-of-the-art personalization baseline, ID-Patch [53], in our comparison. While ID-Patch follows poses to some extent, it
performs significantly worse in identity preservation and image quality. In contrast, image editing baselines fail to accurately follow the
target pose. Our Canvas-to-Image achieves both strong identity preservation and precise pose alignment.

teraction fidelity, we provide qualitative comparisons in
Fig. IV. Canvas-to-Image produces coherent compositions
that faithfully preserve both human identity and object fi-
delity, maintaining correct proportions and natural interac-
tions between them, whereas existing baselines often fail to
achieve realistic integration of the two.

B. Supplementary Ablations

In addition to the ablation studies in the main paper, we
provide a deeper analysis of the training dynamics of
Canvas-to-Image. Specifically, we examine the conver-
gence behavior under multi-task learning and empirically
validate our selection of trainable blocks.

Convergence Behavior of Canvas-to-Image. We
tracked the model’s performance across different training
iterations (Fig. I). The Control-QA curve shows steady
improvement in the early stages, with rapid gains up to

50K iterations, where convergence is largely achieved.
During this phase, the model progressively strengthens
control adherence. Although key metrics plateau beyond
50K, we continue training up to 200K iterations to refine
local details and improve robustness. All subsequent ab-
lation studies use this 200K-iteration model as the default
checkpoint.

Ablations of Trainable Blocks. We investigate the im-
pact of different architectural choices for LoRA optimiza-
tion. In our default configuration, we train modulation
and attention layers within the text and image attention
branches, while keeping feed-forward layers frozen. Ta-
ble IV quantifies the impact of including or excluding these
components on the 4P Composition benchmark. Two key
findings emerge from this analysis. First, effective identity
preservation requires the joint training of both the text and
image branches; omitting either leads to a drop in identity
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Figure IV. Qualitative Results on the ID-Object Composition Benchmark. Our Canvas-to-Image generates coherent compositions
that faithfully preserve both human identity and object fidelity, maintaining correct proportions and natural interactions between them. In
contrast, existing baselines often fail to achieve realistic integration between the human and the object. For instance, the baseline Qwen-
Image-Edit [45] fails to preserve both identity and object consistency, as illustrated in these examples.

fidelity. Second, training the feed-forward layers negatively
impacts the model’s generalization; we observe a deterio-
ration in both visual quality and prompt alignment when
these layers are unfrozen. Based on these results, our final
model excludes feed-forward layers from the optimization
process. Finally, we evaluate the contribution of the task
indicator prompt (c). As reported in Tab. IV, removing this
indicator leads to a degradation in performance across all
metrics. This confirms that explicitly signaling the control
type is crucial for the model to resolve ambiguity and ef-
fectively switch between different compositional reasoning
modes. We provide qualitative ablations on the task indica-

tor in Fig. VII

C. Limitations

While Canvas-to-Image provides an intuitive interface for
compositional image generation with multimodal inputs,
enabling combined controls in a single inference pass, the
“visual canvas” format has inherent constraints. Although
this format offers significant advantages in usability and
flexibility, it is strictly bound by the available pixel space.
As demonstrated in Fig. 3 and 4, Canvas-to-Image suc-
cessfully handles occluding entities up to 4P composition,
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Figure V. Qualitative Results on Pose-Overlaid 2P Composition. Under the Pose Canvas setup, our Canvas-to-Image achieves superior
identity preservation and accurate pose alignment. Notably, Canvas-to-Image closely follows the target poses defined by the prior generated
from FLUX-Dev [2] (“Pose Prior” column), while producing coherent and high-quality images.

Pose Prior Inputs Pose Prior

Figure VI. Qualitative Results on Pose-Overlaid 1P Composition. Under the Pose Canvas setup, our Canvas-to-Image again achieves
superior identity preservation and accurate pose alignment.

outperforming baseline approaches. However, relying on a single RGB canvas implicitly limits the number of concepts



Table IV. Ablations on Model Architecture. We conduct abla-
tions on the fine-tuned layers using the 4P Composition Bench-
mark. Our default configuration, which fine-tunes both the text
and image branches while excluding the feed-forward layer, with
task indicators included, achieves the highest overall performance.

Model ArcFace? HPSv3T VQAScoreT

Qwen-Image-Edit 0.2580 13.1355 0.8974
Ours w/o Text Branch 0.4917 11.6523 0.8297
Ours w/o Image Branch 0.4687 12.7077 0.8880
Ours w/ Feed-Forward 0.5603 12.4846 0.8577
Ours w/o Task Indicator 0.5217 12.6046 0.8555
Ours 0.5915 13.2295 0.9002

Input w/o Task Indicator

[BHCKTING EONETIGS

Figure VII. Qualitative Ablations on the Task Indicator. We
visualize the impact of removing the task indicator prompt (c) in
training. Without this explicit signal, the model suffers from task
mix-up, where the 4P Composition (Spatial Canvas) is impacted
by the Box Canvas task. This results in unwanted text artifacts ap-
pearing in the background, as the model incorrectly transfers the
text-rendering behavior required only in box-canvas settings to a
spatial composition benchmark that does not require text render-
ing.

that can be interpreted simultaneously; as the number of
concepts increases, the canvas becomes crowded and harder
to interpret. To resolve this, future work could explore lay-
ered controls, such as designing the input canvas with an
additional alpha channel (RGBA).

D. Additional Applications

Canvas-to-Image is also capable of background-aware com-
position. We provide qualitative examples of this capability
in Fig. VIII. Canvas-to-Image can inject humans or objects
into a scene through reference image pasting or bounding
box annotation, with the inserted elements naturally inter-
acting with the background.

E. User Study

We validate the effectiveness of Canvas-to-Image on the
Multi-Control Composition task through human evaluation.
To ensure a fair and accurate assessment, we conduct two
separate user studies aimed at evaluating the condition-
following behavior of Canvas-to-Image against competing
methods. Given the cognitive difficulty of assessing three
simultaneous conditions (pose, identity, and box layout) at
once, we decouple the input controls into two distinct pair-
wise comparisons: Pose + Identity” and Pose + Box Lay-
out”.

For each combination, we perform a separate study with
unique participants. In total, we collected responses from
30 anonymous participants for 30 examples per study, con-
ducted via the Prolific platform. The specific setups are de-
tailed below:
¢ Control Following (Pose + Box Layout”): This study

focuses on the structural capabilities of the model. For
each question, users are shown an input pose reference
and a box layout. Then they are presented with gener-
ated samples and asked to select which generation better
adheres to the input controls. We utilize an A/B testing
setup in which users select their preferred output. The in-
structions provided to the participants are shown in Fig.
IX, and a sample question is provided in Fig. X.

* Identity Preservation (Pose + Identity’’): To evaluate
identity fidelity under spatial constraints, this study fo-
cuses on how well the subject’s identity is preserved while
applying a specific pose. Users are instructed to prioritize
identity preservation in their assessment while verifying
that the pose is applied. Similar to the previous study, we
use an A/B setup. User instructions are provided in Fig.
XI, with a sample question in Fig. XII.

We report the win rates against competing methods
in Table V for both the Control Following” and Identity
Preservation” evaluations. Consistent with the quantitative
analyses in the Multi-Control Composition Benchmark, we
compare our method against [45] and [42].

Our results indicate that while Canvas-to-Image out-
performs both baselines overall, there is a distinct trade-
off among competitors: [42] performs stronger on identity
preservation, whereas [45] performs better on control fol-
lowing. This alignment between human preference and our
reported metrics serves as a strong validation for our pro-
posed Control-QA score, confirming its success as a unified
metric for evaluating multiple control inputs.

F. Benchmark Details

F.1. Evaluation Metrics

For all evaluations, we employ a unified setup focusing on
identity preservation, visual quality, prompt alignment, and
control adherence. We detail the specific metrics below.
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Figure VIII. Background-Aware Composition with Canvas-to-Image. Given a background image, Canvas-to-Image seamlessly inte-
grates humans or objects into the scene through reference image pasting or bounding box annotations, producing natural spatial alignment

and consistent lighting with the surrounding environment.

Table V. User Study Results. The win rate represents the per-
centage of cases where users preferred our results over baseline
methods. Canvas-to-Image is significantly preferred in both con-
trol following and identity preservation compared to strong base-
lines.

Control Following Identity Preservation

Ours vs. Qwen-Image-Edit [45] 67.3% 77.3%
Ours vs. Nano Banana [42] 78.9% 73.8%

ArcFace & DINOv2. We use ArcFace [8] to quantita-
tively evaluate identity preservation across all benchmarks
involving human subjects (i.e., 4P Composition, Pose-
Guided 4P Composition, Multi-Control Composition, and
ID-Object Interaction). We sample input identities from
the FFHQ-in-the-wild [19] dataset and compute the Arc-
Face similarity score between the generated image and the
masked identities in the corresponding composition. For
object consistency in the ID-Object Interaction Benchmark,
we utilize DINOv2 [29] in a similar manner to calculate
similarity scores.

HPSv3 and VQAScore. To evaluate visual quality and
adherence to the input prompt, we use the Human Prefer-
ence Score v2 (HPSv3) [25]. We compute this metric us-
ing the original generation prompt. Although closed-source
models like [42] may employ internal prompt rewriting, we
ignore such implicit augmentations to ensure a fair com-
parison based on the user-provided input. Additionally, we
utilize VQAScore [23] to further assess prompt alignment
across our experiments.

Control-QA. Given the variety of control settings in
Canvas-to-Image (e.g., pose, spatial layout, layout boxes),
we establish a unified evaluation framework using an LLM-
based scoring system. We employ GPT-40 [28] as a mul-
timodal expert to rate the generated compositions against
the provided control images. The system prompts used
for the 4P Composition, Pose-Guided 4P Composition,
Layout-Guided Composition, and Multi-Control Composi-
tion benchmarks are provided in Tables VI, VII, VIII, and
IX, respectively. Note that additional quantitative evalua-
tions for pose adherence (PoseAP) are discussed in Sec. A,
and human user studies are detailed in Sec. E.

F.2. Evaluation Benchmarks

We employ an automated pipeline to construct the input
canvases for all benchmarks. Below, we detail the construc-
tion process for each specific task.

4P Composition Benchmark. To construct the can-
vases for the 4P Composition benchmark, we randomly
sample four human identities from the FFHQ-in-the-wild
dataset [19]. To determine a natural spatial arrangement for
these individuals, we employ a two-step process. First, we
generate a synthetic “prior image” using FLUX.1-Dev [2]
based on the target prompt. Second, we detect the human
instances within this prior image to obtain realistic bound-
ing boxes. Finally, we construct the input canvas by placing
the segmented FFHQ identities into these extracted posi-
tions.



Pose-Guided 4P Composition Benchmark. Building
upon the 4P Composition setup, we incorporate structural
control into the pipeline. We utilize the same FLUX.1-
Dev [2] prior images generated for the 4P task, but in-
stead of just extracting bounding boxes, we utilize our in-
ternal pose estimation model to extract the target poses. We
then construct the input canvas by placing these target poses
alongside the reference identities.

Layout-Guided Composition Benchmark. As this
benchmark focuses on named entity composition based on
a layout rather than human identity, we utilize the test set
of the CreatiDesign [51] dataset. Since our canvas format
utilizes text overlaid directly on the image (rather than
regional prompting), we filter the test set to select samples
compatible with this modality. It is worth noting that the
CreatiDesign dataset places a strong emphasis on text
rendering capabilities, as demonstrated in our qualitative
comparisons (see Fig. 5).

Multi-Control Composition Benchmark. For this com-
plex setting, we leverage the text prompts and named entity
annotations from the CreatiDesign [51] test set, specifically
filtering for samples that involve human subjects. To ob-
tain a valid target pose that aligns with these prompts, we
generate a synthetic prior image using our baseline model,
Qwen-Image-Edit [45]. Crucially, we do not utilize the
pixel data of this prior image as a direct input; instead,
we use it strictly to extract the target skeletal pose. We
then construct the final input canvas by combining this ex-
tracted pose, a sampled reference identity, and the named
entity annotations (for text rendering) from the original
CreatiDesign sample. This setup simultaneously evaluates
identity preservation, pose adherence, and text rendering, as
highlighted in Fig. 6 and 7.

F.3. Dataset Details

To train Canvas-to-Image, we utilize an internal cross-frame
dataset augmented with the CreatiDesign [51] dataset. Our
internal dataset comprises ~6M human-centric training im-
ages, constituting ~1M scenes with cross-frame samples.
Due to legal constraints, we cannot open-source this inter-
nal dataset; however, a similar multi-frame dataset can be
constructed from public open-source video datasets. From
these 1M scenes, we use an internal instance segmentation
model to extract human segments for constructing the in-
put canvases, while treating the remaining image areas as
the background. Similarly, we extract poses from the tar-
get frames using an internal pose estimation model. Since
Canvas-to-Image is built upon this human-centric data, we
construct the human boxes in the “Box Canvas” using these
extracted segments. To enable the model to be capable
with a variety of objects, we include the CreatiDesign [51]

User Study - Control Following
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a Target Layout along wi
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Figure IX. User Instructions for User Study “Control Follow-
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Figure X. Sample Question for User Study “Control Follow-
ing”.
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Figure XI. User Instructions for User Study ‘“Identity Preser-
vation”.

dataset, which introduces named annotations into our train-
ing set along with text-rendering focused samples.



Table VI. Compositional Fidelity Evaluation Protocol (System Prompt). This protocol was provided to the human evaluators and served
as the instruction set for the LLM-based scoring system.

System Prompt Content

You are an expert visual analyst and quality assurance evaluator for an AI image generation system. Your
task is to compare two images: an "Input Canvas" (Image 1) and a "Generated Scene" (Image 2).

Your goal is to provide a single, holistic score that judges the Compositional Fidelity. This score must
be based on three combined criteria:

1. Identity Preservation: Do the individuals in the Generated Scene (Image 2) look like the correct
people from the Input Canvas (Image 1)7?
2. Spatial Order: Are these same individuals placed in the correct relative left-to-right order?

3. Realism & Integration: Do the individuals look like they belong in the scene? Or do they look
"pasted on"? The lighting, shadows, and perspective on the subjects must be consistent with the new scene.

Your evaluation logic must link these three criteria. A scene with the right people in the right order,
but looking like a bad "cut and paste" job, is a failure.

Tolerance: This is a composition, not a simple copy. Slight differences in pose, expression, or clothing
are fine. Do not penalize minor artistic adjustments as long as the core identity, relative order, and scene
integration are preserved.

Instructions:
1. Identify the individuals in the Input Canvas (Image 1) from left to right.
2. Find those same individuals in the Generated Scene (Image 2).
3. Evaluate how well the AI preserved all three criteria: Identity, Spatial Order, and Realism.
4. Provide a single, holistic score based on the rubric below.

Scoring Rubric (1-5):

* 5 (Excellent): All individuals are clearly identifiable, they are in the correct relative order, AND
they are all flawlessly integrated into the scene (correct lighting, shadows, scale, and no cutout artifacts).
* 4 (Good): All three criteria are met, but with a minor flaw in one area (e.g., one identity is
slightly weak, one person has slightly mismatched lighting, OR one minor spatial swap). Still free of obvious

artifacts.

* 3 (Partial): A significant flaw in one criterion OR minor flaws in several. For example, identities
and order are correct, but the subjects look pasted on (poor realism, faint but visible cutout edges, or bad
lighting). OR, realism is good, but identities/order are wrong.

* 2 (Poor): Fails on at least two of the three criteria. OR, the scene prominently displays cutout
artifacts, even if identity and order are correct.

* 1 (Failure): The Generated Scene bears no meaningful resemblance to the Input Canvas, or is a clear
"cut and paste" job with no integration.

Output Format:

Composition Fidelity Score: <A single numerical rating from 1-5>
Reasoning: <A brief explanation for your score. Justify your rating by referencing how well Identity,
Spatial Order, AND Realism (including any cutout artifacts) were achieved together.>




Table VII. Compositional Fidelity Evaluation Protocol (System Prompt) with Pose Control. This protocol extends the previous evalu-
ation by adding Pose Fidelity as a fourth critical criterion.

System Prompt Content

You are an expert visual analyst and quality assurance evaluator for an AI image generation system. Your
task is to compare three images to judge the quality of a generated scene.

Your Inputs:
+ Image 1 (Pose Prior): Shows the target pose skeletons (e.g., OpenPose).
+ Image 2 (Canvas): Contains the subject cutouts. This defines WHO the person is (identity) and their
relative left-to-right order.
« Image 3 (Generated Scene): The AI’s final output.

Your Goal:
Provide a single, holistic score for Compositional Fidelity. This score must be based on four combined

criteria:

1. Identity Preservation (from Image 2): Do the people in the Scene look like the people from the
Canvas?

2. Spatial Order (from Image 2): Are the people in the correct left-to-right order?

3. Pose Fidelity (from Image 1): Are the people in the Scene matching the target poses?

4. Realism & Integration: Does the final image look natural? Or does it look like a "pasted on"
collage with bad lighting or perspective?

Evaluation Logic (Very Important):
* All four criteria are linked. A failure in one is a failure for the composition.
* You must use the left-to-right position to link the images. The pose on the left in Image 1 applies
to the person on the left in Image 2, and both should appear on the left in Image 3.
* A correct pose on the wrong person is a failure.
* The right person in the right pose but looking "pasted on" is a failure.
* The right person, right pose, right order, but "pasted" is a failure.

Tolerance: This is a composition. Slight, artistic differences in pose, expression, or clothing are
fine. Do not penalize minor adjustments as long as the core identity, order, pose intent, and realism are
preserved.

Scoring Rubric (1-5):

* 5 (Excellent): All four criteria are met perfectly. Correct identities, correct order, correct
poses, and realistic integration.

* 4 (Good): A minor flaw in one of the four criteria (e.g., one pose is slightly off, one identity is
weak, one person’s lighting is bad, a minor order swap).

* 3 (Partial): A major flaw in one criterion (e.g., all poses are wrong, or subjects look "pasted") OR
minor flaws in several (e.g., weak identity and bad realism).

* 2 (Poor): Fails on at least two criteria (e.g., wrong people and wrong poses, regardless of realism).

* 1 (Failure): The Generated Scene bears no meaningful resemblance to the inputs.

Output Format:

Composition Fidelity Score: <A single numerical rating from 1-5>
Reasoning: <A brief explanation for your score. Justify your rating by referencing how well Identity,
Order, Pose, AND Realism were achieved together.>
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Table VIII. Spatial Alignment Fidelity Evaluation Protocol (System Prompt). This protocol focuses specifically on evaluating how well
the model respects bounding box layouts and relative object positioning.

System Prompt Content

You are an expert visual analyst and quality assurance evaluator for an AI image generation system. Your
task is to compare two images to judge the spatial alignment of specific elements.

Your Inputs:

* Image 1 (Spatial Layout): This image shows bounding boxes with labels for specific objects (e.g.,
"circular window", "potted plant"). The position and relative size of these boxes define the expected layout.
« Image 2 (Generated Scene): This is the AI’s final output. It will contain a full scene, but should

place the specified objects according to the Spatial Layout.

Your Goal:

Provide a single, holistic score for Spatial Alignment Fidelity. This score must solely reflect whether
the objects identified in the "Spatial Layout" (Image 1) are present in the "Generated Scene" (Image 2) and
appear in the correct relative positions and proportions.

Evaluation Logic:

+ Focus ONLY on the boxed elements and their relative positions, sizes, and orientations as suggested by
the bounding boxes in Image 1.

* Ignore other elements in Image 2 that are not specified in Image 1.

* Ignore artistic style, realism, or quality of the generated objects themselves. The primary concern
is whether the layout is matched.

* The system understands that bounding boxes are approximations; minor deviations are acceptable for a
high score, but significant shifts are not.

* If an object specified in Image 1 is completely missing or unrecognizable in Image 2, that’s a major
penalty.

Scoring Rubric (1-5):

* 5 (Excellent): All specified objects are present and their relative positions, sizes, and general
orientations perfectly match the Spatial Layout. The image is free of any generation artifacts, including the
input bounding boxes.

* 4 (Good): All specified objects are present and mostly in the correct relative positions/sizes, with
only one very minor deviation (e.g., one object is slightly shifted or scaled but clearly recognizable and in
the right general area). Still free of artifacts.

* 3 (Partial): Most objects are present and correctly positioned, but one or two are significantly

misplaced, incorrectly scaled, or one is missing. OR, the layout is correct but the scene contains faint but
visible traces of the bounding boxes.

* 2 (Poor): Several objects are either missing, unrecognizable, or significantly misplaced. OR, the
scene prominently displays the bounding box artifacts, even if the layout is partially correct.
* 1 (Failure): The Generated Scene bears no meaningful resemblance to the Spatial Layout in terms of

the specified objects’ placement.

Output Format:

Spatial Alignment Score: <A single numerical rating from 1-5>
Reasoning: <A brief explanation for your score, detailing which objects were correctly placed/sized and
which were not. Mention if box artifacts were present.>

11



Table IX. Joint Control Fidelity Evaluation Protocol (System Prompt). This protocol evaluates the model’s ability to handle three
simultaneous control signals (Identity, Pose, and Spatial Layout) within a single input canvas.

System Prompt Content

You are an expert visual analyst and quality assurance evaluator for an AI image generation system. Your
task is to compare two images to judge how well a "Generated Scene" adheres to a "Combined Control Canvas".

Your Inputs:
+ Image 1 (Combined Control Canvas): This single image provides three types of control:
1. Identity: The face of the person shown.
2. Pose: The pose skeleton overlaid on the person.

3. Spatial Layout: The labeled bounding boxes (e.g., "dress", "rendered text") showing where
elements should be.
« Image 2 (Generated Scene): This is the AI’s final output.

Your Goal:
Provide a single, holistic score for Joint Control Fidelity. This score must reflect how well the
Generated Scene simultaneously satisfies all control types.

Evaluation Logic:
* All criteria are linked. A failure in one is a failure for the composition.
* Identity: Does the person in Image 2 look like the person in Image 17
« Pose: Does the person’s pose in Image 2 match the skeleton from Image 17
* Layout: Are the elements from the bounding boxes (like "dress" or "rendered text") present in Image 2
in the correct locations?
« Realism: Does the final image look like a coherent, natural scene, or a "pasted" collage?

A correct pose on the wrong person is a failure. The right person in the right pose, but with text in the
wrong place, is a failure. The right person, pose, and layout, but with a "pasted" look, is also a failure.

Scoring Rubric (1-5):

* 5 (Excellent): All four criteria (Identity, Pose, Layout, Realism) are perfectly met.

* 4 (Good): A minor flaw in one of the four criteria (e.g., identity is slightly weak but recognizable,
text is a bit off-center, pose is almost right, minor lighting inconsistency) .

* 3 (Partial): A major flaw in one criterion (e.g., pose is completely ignored, identity is wrong) OR
minor flaws in several.

* 2 (Poor): Fails on two or more criteria (e.g., wrong person and wrong pose).

* 1 (Failure): The Generated Scene bears no meaningful resemblance to the control inputs.

Output Format:

Joint Control Fidelity Score: <A single numerical rating from 1-5>
Reasoning: <A brief explanation for your score, referencing Identity, Pose, Spatial Layout, and Realism.>
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Which image better depicts the Identity Reference in the Target Pose?

Prioritize the resemblance to the Identity Reference above all else, selecting the image that best captures the person's features while respecting
the Pose Reference. *

Identity Reference Target Pose

Your Companion,
Your Style_

Everyday Essentials Everyday Essentials

O imagea O Images

Figure XII. Sample Question for User Study “Identity Preser-
vation”.
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