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Abstract

Non-invasive electroencephalography (EEG)-based brain—computer interfaces (BCIs) offer an
intuitive means for individuals with severe motor impairments to independently operate assistive
robotic wheelchairs and navigate built environments. Despite considerable progress in BCI
research, most current motion control systems are limited to discrete commands, rather than
supporting continuous pursuit, where users can freely adjust speed and direction in real time. Such
natural mobility control is, however, essential for wheelchair users to navigate complex public
spaces, such as transit stations, airports, hospitals, and indoor corridors, to interact socially with
the dynamic populations with agility, and to move flexibly and comfortably as autonomous driving
is refined to allow movement at will. In this study, we address the gap of continuous pursuit motion
control in BCIs by proposing and validating a brain-inspired Bayesian inference framework, where
embodied dynamics in acceleration-based motor representations are decoded. This approach
contrasts with conventional kinematics-level decoding and deep learning-based methods. Using a
public dataset with sixteen hours of EEG recordings from four subjects performing a motor
imagery-based target-following task, we demonstrate that our method, utilizing Automatic
Relevance Determination for feature selection and continual online learning, reduces the
normalized mean squared error between predicted and true velocities by 72% compared to
autoregressive and EEGNet-based methods in a session-accumulative transfer learning setting.
Theoretically, these findings empirically support embodied cognition theory and reveal the brain’s
intrinsic motor control dynamics in an embodied and predictive nature. Practically, grounding EEG
decoding in the same dynamical principles that govern biological motion offers a promising path
toward more stable and intuitive BCI control.

Keywords: Brain-Computer Interface (BCI), Bayesian inference, EEG decoding, Continual
learning, Motor control, Embodied cognition, Mobile Robot, Wheelchair

1 Introduction

In the pursuit of a more inclusive society and the design of accessible public spaces, individuals
with limited mobility, including older adults and persons with disabilities, should be afforded



comprehensive opportunities to access diverse resources, seek employment, and participate in
social gatherings (Belkacem et al., 2020). However, the current reality is that restricted mobility
often limits these individuals’ ability to benefit fully from various social welfare provisions
(Bezyak et al., 2019; Jansuwan et al., 2013; NEVEN, 2015). This constraint extends even to
essential daily activities such as shopping for necessities and obtaining medical care.

This issue is both widespread and urgent, affecting a substantial portion of the population
worldwide. Rapid population aging and the rising prevalence of disabilities have created an urgent
need for assistive technologies that support independence and dignity in daily life (Remillard et
al., 2022). For instance, in the United States alone, demographic projections indicate significant
shifts: by 2030, one in five people will be aged 65 or older, and by 2034, older adults are expected
to outnumber children under 18 (AARP, 2024). Concurrently, nearly one in four adults—over 70
million people—Ilive with some form of disability (CDC, 2024). These statistics highlight the
pressing necessity for innovative technologies that help enhance independent mobility, reduce
reliance on caregivers (Al-Qaysi et al., 2018; Davies et al., 2003), and enable more equitable
participation in social and economic activities.

At present, people with mobility impairments predominantly rely on wheelchairs for daily
movement, which may be manually operated or powered by electric motors. The advent of
motorized wheelchairs has significantly alleviated the physical effort required for manual
propulsion (Davies et al., 2003), while also expanding the range and diversity of activities
accessible to users. For example, motorized wheelchair users can now navigate outdoors under
adverse weather conditions: traversing snowy surfaces, enduring strong winds, or navigating rain
while holding an umbrella. The enhanced mobility has further expanded the functional and
socioeconomic opportunities available to wheelchair users. For instance, the ability to transport
goods or carry groceries powered by a motorized wheelchair enables individuals who were once
isolated at home to actively participate in community engagements and even take on gig-economy
roles such as local deliveries. This promotion of meaningful inclusion in society has the potential
to change the current reality social isolation and workforce exclusion often faced by wheelchair
users (NEVEN, 2015), especially in less developed countries.

Furthermore, robotic wheelchairs equipped with intelligent path planning algorithms extend users’
ability to navigate both indoor buildings and outdoor sidewalks efficiently. It also makes it feasible
for users to navigate in unfamiliar environments once impossible, for instance, finding their way
to a specific examination room during a first visit to a hospital. However, although fully
autonomous wheelchairs are technologically advanced, they also raise significant usability
concerns. When navigation is governed entirely by autonomous systems, users may feel
disempowered or anxious, as their sense of control is diminished and they may feel as though they
become “marionettes”. This highlights the need for an intermediate approach, i.e., shared control,
which maintains the benefits of motorized power and intelligent path planning, yet simultaneously
preserve human agency and the ability to adjust or override the wheelchair’s operation as needed.



Shared control systems could offer substantial practical advantages for robotic wheelchairs. While
autonomous wheelchairs are equipped with obstacle avoidance capabilities, their navigation in real
indoor environments remains limited. For example, one of the key challenges is socially aware
navigation, including determining the appropriate social distance to maintain from pedestrians or
follow others. Although robotic wheelchairs can be programmed to follow general design
guidelines, each user’s psychological comfort level varies, and individuals may have their own
preferences to make adjustments. Additionally, autonomous navigation typically operates by
setting a start and end point and executing a route once selected at the beginning. However, in real-
world driving scenarios, users may often need to change their navigation intentions. For example,
in an airport, a wheelchair user may encounter a crowded situation in front and prefer to stop and
wait until congestion clears, rather than proceeding to navigate around the crowd. In a hospital,
users might meet acquaintances or medical staff along the way and wish to pause for conversation,
or may need to make unscheduled stops to use restroom facilities.

Because of these dynamic interactions and decisions that arise during navigation, we need to
understand users’ motion intention (desired changes in speed and direction) in real time in order
to flexibly accommodate such interventions during autonomous operation. One intuitive approach
for enabling this user input is through brain-computer interfaces (BCls), which have been
developed to restore communication and control capabilities for individuals with severe motor
impairments (Frank et al., 2000; Luis & Gomez-Gil, 2012). BCIs bypass muscle pathways entirely,
directly interpreting brain signals to discern users’ intentions for wheelchair control (Bi et al.,
2013). Despite extensive research into EEG-based BCI-driven wheelchairs, most control schemes
remain limited to discrete commands, such as move forward, stop, turn left or right, and select
among predefined destinations or trajectories (Chen et al., 2022; Hamad et al., 2017; He et al.,
2017; Tturrate et al., 2009a; Iturrate et al., 2009b; Kim & Lee, 2016; Lakas et al., 2021; Ng et al.,
2014; Ngo & Nguyen, 2022; Widyotriatmo et al., 2015; Yu et al., 2017)

The key underlying rationale for the methodological framework developed in this study is to
decode brain activity in a manner consistent with how humans generate intention-encoded signals,
specifically through a Bayesian inference approach (Friston, 2010; Knill & Pouget, 2004; Thomas
Parr, 2022). Moreover, prior research typically focuses on decoding Electroencephalography (EEG)
signals and mapping them to velocity or position to control wheelchairs (Forenzo et al., 2024b;
Inoue et al., 2018; Lee et al., 2025; Volkova et al., 2019; Willsey et al., 2025). However, the human
brain fundamentally organizes force to drive motion; therefore, we hypothesize that motion control
is more appropriately represented at the dynamics level, rather than the kinematics level. This
paper thus aims to evaluate a Bayesian learning approach from an embodied dynamics perspective.

Section 2 provides a detailed review of state-of-the-art EEG-based BCI-driven wheelchair systems
and outlines the neuroscience inspirations underpinning our Bayesian methodology. To assess our
method’s performance, particularly its capability for continual online learning during use for
reliable BCI control, we tested it under two control paradigms (kinematics versus dynamics
decoding) using a public continuous pursuit BCI dataset. Sixteen hours of continuously recorded
EEG data (acquired with a 64-channel Neuroscan EEG cap) and corresponding kinematics



performance from four users were analyzed in a real-time, motor imagery (MI)-based target-
following task. Automatic Relevance Determination (ARD) was used to select meaningful
channels and synchronized features across four frequency subbands of the EEG signals. We
compared the error between predicted and true velocities achieved by our method with four widely
used training strategies in recent literature: an autoregressive model, EEGNet-based deep learning,
transfer learning, and calibrated learning. Finally, we propose a feasible neurophysiological
mechanism for BCI-enabled motion control, and discuss its broader implications for embodied
artificial intelligence (Al) systems.

2 Related Works
2.1 Interaction Modalities for Shared Control in Robotic Wheelchair

Contemporary research on robotic wheelchairs has explored a spectrum of interaction modalities
to facilitate shared control, aiming to understand human intention to enable human input,
particularly for individuals with severe motor impairments. Commonly implemented modalities
include voice commands (Williams & Scheutz, 2017) and vision-based gesture recognition
(Prathibanandhi et al., 2022). These approaches can be effective in controlled, quiet environments,
such as private residences, where ambient noise is minimal and social pressures are limited (Al-
Qaysi et al., 2018). In such settings, speech and gesture recognition systems typically perform well,
enabling hands-free or physically unobtrusive control.

However, these modalities reveal critical shortcomings in real-world, public environments. The
performance of voice-based interfaces deteriorates markedly in noisy settings, such as transit
stations or busy streets, where high background noise introduces recognition errors and reduces
reliability. Likewise, vision-based gesture systems face substantial challenges due to variable
lighting conditions, complex backgrounds, and line-of-sight occlusions. Thus, their effectiveness
is confined to relatively static and predictable environments, limiting their practical utility for users
who need robust, context-independent interface solutions.

EEG-based BCI control has emerged as a promising alternative, offering distinct advantages that
address many of these limitations. Most notably, EEG-based systems bypass peripheral muscular
pathways and directly capture the neural signatures of movement intention (Maiseli et al., 2023).
By reading brain activity rather than observable actions or auditory cues, EEG-driven interfaces
remain largely immune to environmental disturbances such as noise, visual clutter, or physical
barriers, enabling reliable performance in diverse and dynamic settings where conventional
methods often fail.

Beyond technical robustness, EEG-driven control also delivers critical psychological and social
benefits. Because neural activity can be interpreted silently and invisibly, EEG-based interaction
provides a private and discreet channel of communication. Users need not vocalize instructions or
perform visible gestures, preserving confidentiality and reducing the risk of social discomfort or
unwanted attention in public (Freitas et al., 2017). In contrast, speech-based systems can
inadvertently broadcast user intentions to bystanders, while gesture-based controls may be



conspicuous or misunderstood. For disabled individuals whose sense of autonomy and dignity may
be especially vulnerable in social contexts (Bezyak et al., 2019), such privacy considerations are
not trivial.

2.2 EEG-Based BCI-Driven Wheelchair Motion Control

Two dominant paradigms have shaped the landscape of EEG-based BCI research: spontaneous and
evoked signal paradigms. Spontaneous signals stem from internal mental activities, most notably
ML, in which users imagine specific movements such as left or right hand motion (Cao etal., 2014;
Huang et al., 2019) or foot movement (Li et al., 2013; Long et al., 2012). This paradigm forms the
basis for many early BCI competitions and public benchmark datasets (Blankertz et al., 2006;
Gwon et al., 2023). In addition to MI, other cognitive imagery tasks, such as mental singing,
arithmetic, and spatial rotation, have also demonstrated distinct and classifiable neural patterns
(Hwang et al., 2014). Evoked signals, on the other hand, are generated in direct response to external
stimuli, with the oddball P300 (He et al., 2017; Iturrate et al., 2009a; Yu et al., 2017) and steady-
state visual evoked potentials (SSVEP) (Chen et al., 2022; Kim & Lee, 2016; Long et al., 2012;
Widyotriatmo et al., 2015) being the most well-studied examples.

Despite continuous advancement within these paradigms, a critical gap persists in their practical
application to mobile robot control, such as wheelchair navigation. Both spontaneous and evoked
paradigms were originally designed for discrete, low-dimensional tasks, such as selecting
characters or initiating simple predefined actions. They do not naturally translate to the seamless,
continuous, and intuitive control needed for real-world movement. Consequently, bridging the gap
between laboratory-based BCI paradigms and embodied, fluid robotic interaction remains an open
challenge.

A central technical obstacle is the non-stationarity of EEG signals. Minor electrode shifts, changes
in skin impedance, and fluctuations in user attention, fatigue, or emotional state can produce
substantial signal drift, undermining decoding accuracy over time (Silversmith et al., 2021; Zhang
et al.,, 2020). Existing solutions have predominantly relied on transfer learning and continual
learning strategies (Fahimi et al., 2019; Forenzo et al., 2024b; Zhang et al., 2020; Zhou & Liao,
2023), primarily leveraging deep neural network frameworks that attempt to recalibrate model
weights as the underlying data evolves. While deep learning methods have demonstrated notable
adaptive capabilities, a fundamental question persists: to what extent do artificial neural networks
actually mirror the brain’s computational principles, and are they truly optimal for decoding neural
signals in MI and other tasks? The conceptual analogy between artificial neural networks and
biological brains remains largely superficial, given the profound differences in their learning
mechanisms (Plebe & Grasso, 2019).

This discrepancy highlights the importance of exploring alternative inference architectures. In
particular, active inference, grounded in the Bayesian brain hypothesis, offers a theoretically robust
and biologically plausible framework for understanding how humans generate and adapt motor
commands in uncertain environments (Friston, 2010; Knill & Pouget, 2004; Thomas Parr, 2022).
Although its application to neural decoding remains largely underexplored, active inference offers



interpretability and holds promise for advancing BCI-based motor control. Therefore, empirically
validating such Bayesian approaches may bridge the gap between biological computation and
artificial systems, illuminating new paths for BCI research.

A second major challenge in the field is that current BCI-controlled mobile robots continue to
depend heavily on discrete control paradigms. In most existing systems, once MI patterns are
decoded from EEG signals (Abiyev et al., 2016; Fernandez-Rodriguez et al., 2016; Li et al., 2013;
Li et al., 2025; Tabar & Halici, 2017; Wang et al., 2014), they are mapped to a limited set of
predefined commands or selections. These include character selection in BCI spellers (Blankertz
et al., 2006; Candrea et al., 2024; Gwon et al., 2023), destination selection for navigation (Iturrate
et al., 2009a; Iturrate et al., 2009b; Lakas et al., 2021; Ng et al., 2014; Ngo & Nguyen, 2022),
trajectory confirmation (Hamad et al., 2017), or simple control commands such as turning left or
right, moving forward, and stopping (Chen et al., 2022; He et al., 2017; Kim & Lee, 2016;
Widyotriatmo et al., 2015; Yu et al., 2017).

However, this framework falls short of the ideal paradigm for BCI-based assistive robotic
wheelchair, which should enable smooth, flexible, and continuous interaction. In an optimal
system, users would be able to steer the robot freely in any direction, refining trajectories and
movement in real-time, rather than being restricted to a finite set of discrete options. This research
challenge is conceptualized as the “continuous pursuit task™ in BCI studies (Forenzo et al., 2024a).
Yet, despite extensive advancements using left- and right- hand MI for directional control, the
continuous pursuit task where users exert ongoing, fluid control over speed and direction remains
largely unaddressed, but it is a critical frontier for advancing truly seamless and natural BCI-driven
control of assistive mobile robots in shared control frameworks.

2.1 Deep Learning for EEG Motor Imagery Decoding

MI refers to the mental simulation of physical movement without actual muscle execution and
represents one of the most widely studied paradigms in BCI research (Altaheri et al., 2023). Over
the years, both traditional machine learning (ML) and deep learning methods have been developed
to decode Ml-related EEG signals. Among traditional ML approaches that rely on handcrafted
features, the Common Spatial Pattern (CSP) feature and its variants have consistently
demonstrated strong performance in MI-EEG classification (Ang et al., 2012; Xie & Li, 2015).
These methods extract discriminative spatial-spectral features by decomposing EEG signals into
multiple frequency bands (Millan et al., 2009), which are subsequently fed into classic classifiers
such as Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM) (Fernandez-
Rodriguez et al., 2016).

The emergence of deep learning has transformed EEG decoding by enabling models to
automatically learn rich, discriminative representations directly from raw signals, thus eliminating
the need for manual feature engineering. This capability is particularly valuable given the inherent
complexity of EEG data, which are high-dimensional, non-stationary, and characterized by a low
signal-to-noise ratio in the temporal domain (Hasenstab et al., 2017). Researchers have explored a
wide range of neural architectures for MI-EEG decoding, including autoencoders (AEs)



(Hassanpour et al., 2019), convolutional neural networks (CNNs) (Lawhern et al., 2016), recurrent
neural networks (RNNs) (Luo et al., 2018), temporal convolutional networks (TCNs) (Ingolfsson
et al., 2020), deep belief networks (Xu et al., 2020), and more recently, Transformer-based models
(Wan et al., 2023). Among these architectures, CNNs have become the most widely adopted
backbone due to their ability to capture localized spatial-temporal patterns in EEG data efficiently
(Ang et al., 2012; Saibene et al., 2024).

Both lightweight and deep convolutional CNN architectures have been explored for MI-EEG
classification, including a wide range of variants such as inception-based CNNs (Amin et al., 2021),
multi-scale CNNs (Li et al., 2020), multi-branch CNNs (Liu & Yang, 2021), and attention-
enhanced CNNs (Altuwaijri et al., 2022). Notable baseline models include DeepConvNet and
ShallowConvNet proposed by (Schirrmeister et al., 2017), which employ deep and compact
convolutional layers to extract hierarchical representations from EEG data. Another widely
adopted model is EEGNet by (Lawhern et al., 2016), which leverages depthwise and separable
convolutions to efficiently learn temporal and spatial features from multi-channel EEG signals.

Subsequent studies have incorporated temporal modeling components alongside CNNs to better
capture sequential dependencies and temporal dynamics, most commonly through RNNs and
TCNs. Additionally, attention mechanisms have been integrated to enable models to selectively
emphasize task-relevant neural patterns while suppressing noise. Although these hybrid
architectures have achieved improved performance on benchmark datasets such as BCI
Competition IV-2a and IV-2b (Zhao et al., 2025), EEGNet continues to serve as one of the most
robust and representative deep learning baselines in recent real-time, BCI-enabled control studies
(Forenzo et al., 2024b; Lee et al., 2025).

2.4 Theoretical Foundation
2.4.1 Neuroscience-inspired Artificial Intelligence

In the early development of Al research was deeply intertwined with neuroscience and psychology,
as scientists sought to model aspects of human cognition and neural computation (Hinton, 1984;
Hopfield, 1982; Turing, 2007). Over time, debates emerged regarding whether the brain should
serve as the ideal blueprint for machine intelligence or whether artificial systems should diverge
to pursue alternative computational paradigms (Brooks et al., 2012).

In the past decade, Al has undergone a profound transformation driven by the rise of neural
network—based, or “deep learning” methods (LeCun et al., 2015). The computational mechanisms
underlying CNNs, including nonlinear transduction, divisive normalization, and max-pooling
(Yamins & DiCarlo, 2016), were directly inspired by single-cell recordings in the mammalian
visual cortex, which revealed how neurons in primary visual area V1 filter and integrate sensory
inputs (Hubel & Wiesel, 1959). Moreover, modern network architectures mirror the hierarchical
organization of the mammalian cortical system. They implement both convergent and divergent
information flow across successive layers, analogous to the hierarchical processing observed for
object recognition in biological visual pathways (Krizhevsky et al., 2012; Riesenhuber & Poggio,
1999; Serre et al., 2007).



However, despite the remarkable success of deep learning, its role in advancing toward artificial
general intelligence (AGI) remains highly debated. After reviewing 84 cognitive architectures
proposed over the past four decades, (Kotseruba & Tsotsos, 2020) concluded that deep learning
models, while powerful for pattern recognition, do not constitute unified cognitive architectures
and fall short of modeling the full scope of human intelligence. Although artificial neural networks
are often described as being inspired by the human brain, several fundamental neural mechanisms,
such as spiking dynamics, lateral connectivity, and Hebbian learning, are absent from modern deep
learning frameworks. Consequently, deep learning differs substantially from biological neural
networks in both design principles and functional scope (Maex et al., 2009). Historically, neural
network research has experienced periods of decline and resurgence, with a major turning point
marked by the introduction of the backpropagation algorithm, which enabled efficient learning
across multiple network layers (Rumelhart et al., 1985). Nevertheless, backpropagation lacks
biological plausibility. Unlike artificial networks that rely on a global error signal propagated
across all layers, biological neurons update synaptic weights based on local learning rules, where
adjustments depend on local activity patterns and synaptic correlations (Plebe & Grasso, 2019;
Rolls, 2023). Human neurons do not communicate over long distances to share centralized error
information; thus, the mechanism underpinning modern deep learning are fundamentally different
the processes governing learning in the brain.

For decoding neural signals, the human brain contains approximately 100 billion neurons
interconnected by trillions of synapses (Herculano-Houzel, 2009; Pakkenberg et al., 2003). EEG
recordings measure voltage fluctuations at the scalp that represent the summed activity of millions
of neurons, primarily the synchronized dendritic currents of pyramidal cells within the cortical
neuropil (Buzsaki, 2006). These signals provide a coarse and highly integrated view of neural
dynamics, where fine-grained spatiotemporal information can be lost due to volume conduction
and spatial averaging. This inherent complexity and indirectness mean that EEG decoding does
not map onto the layer-by-layer computations of artificial neural networks. In addition, deep
learning architectures assume structured, stationary relationships between inputs and outputs and
depend on large, high-quality datasets for stable training. This condition is however rarely satisfied
by real-time EEG data, which are noisy, non-stationary, and influenced by transient cognitive and
physiological states. Moreover, unlike the biological brain, which performs probabilistic inference
over uncertain sensory evidence, neural networks are deterministic function approximators that
lack explicit mechanisms for representing uncertainty.

Therefore, although deep learning has achieved impressive performance in EEG signal
classification, it may not represent the most suitable approach for decoding EEG signals related to
flexible motor control (the underlying neural computations are discussed in Section 2.4.2). This
limitation instead motivates the exploration of alternative frameworks, particularly the Bayesian
and active inference approaches that more closely reflect how the brain integrates noisy sensory
inputs, updates beliefs, and regulates action under uncertainty.

2.4.2 Embodied Cognition and Internal Models of Motion



Embodied cognition posits that perception and action are not separable processes but deeply
intertwined, with cognition grounded in the bodily structures and sensorimotor capacities of the
agent. Unlike traditional representational theories that treat cognition as an abstract manipulation
of symbols (Dawson, 2019), embodied accounts argue that the mind is shaped and constrained by
the morphology of the body and the dynamics of its interaction with the world. Philosophical
perspectives (Shapiro & Spaulding, 2024) frame embodiment as a rejection of Cartesian dualism,
reasserting the role of the body, beyond the brain itself, in structuring cognition. The enactive
approach further emphasizes that cognition emerges from embodied sensorimotor experience,
situated within biological, psychological, and cultural contexts (Varela et al., 1991). Collectively,
these accounts that the nervous system’s representations are not arbitrary but are tuned to the
dynamic variables through which the body acts upon the world. This view naturally supports a
force-based interpretation of motor control: since movement is governed by physical mass, motor
execution is most plausibly organized at the level of acceleration, consistent with Newton’s second
law.

In human motion perception, embodiment manifests in anticipatory processes such as
representational momentum, which is the systematic displacement of a perceived object position
forward along its trajectory (Brouwer et al., 2004; Freyd & Finke, 1984). Such predictive biases
indicate that the brain does not passively register positions but instead encodes dynamic internal
models that anticipate future motion states. This interpretation aligns with the predictive coding
framework (Hohwy, 2013), which proposes that higher-level generative models continuously
predict upcoming sensory input. From an embodied perspective, representational momentum can
be viewed as a cognitive analogue of physical inertia, implying that the brain encodes not only
position but also concepts of mass and force. Therefore, motor control can be understood as
organized primarily at the acceleration level as a direct expression of embodied dynamics.

Findings from motor control research further support this interpretation. Human movements
exhibit a number of invariant properties, such as Fitts’ law (Fitts & Peterson, 1964), the bell-shaped
velocity profile (Morasso, 1981), the two-thirds power law (Viviani & Schneider, 1991), and the
minimum-jerk model (Hogan, 1982), which are believed to reflect fundamental principles of
voluntary motion organization (Harris & Wolpert, 1998; Jones et al., 2002). Among these, the
minimum-jerk model has been particularly influential: jerk, the derivative of acceleration, is both
directly measurable and strongly predictive of natural human trajectories (Flash & Hogan, 1985;
Shadmehr & Wise, 2004; Todorov, 2004). If the nervous system indeed minimizes jerk, producing
the smooth, bell-shaped velocity profiles and straight-line trajectories characteristic of natural
movement, then the primirary control variable is best interpreted as acceleration (the integral of
jerk). Velocity and position, in turn, represent secondary, noisier integrations of these underlying
dynamics. This perspective motivates our central hypothesis: BCI-based continuous motion
control should prioritize decoding at the acceleration level, aligning more closely with the dynamic
principles that govern biological motor behavior.

2.4.3 Bayesian Inference



The Bayesian brain hypothesis conceptualizes the nervous system as an inferential machine that
encodes and computes probability distributions to interpret and predict sensory events (Friston,
2012; Knill & Pouget, 2004; Pouget et al., 2013). Under this view, perception and action are framed
as probabilistic inferences performed under uncertainty: because sensory observations are
inherently noisy and ambiguous (Beck et al., 2012; Fiser et al., 2010), they must be integrated with
prior expectations about environmental regularities (Girshick et al., 2011; Hohwy, 2017; Ma et al.,
2006; Quax et al., 2021). Neural circuits are thought to implement generative models that
continuously compare predicted states with incoming sensory input, updating beliefs via prediction
error minimization (Shadmehr et al., 2010; Wolpert et al., 2011). Through this recursive updating,
organisms can approximate Bayes-optimal decision making and action selection (Kording &
Wolpert, 2004; Wolpert & Landy, 2012).

Empirical evidence for Bayesian inference in the brain has been observed across multiple domains.
Event-related potentials such as mismatch negativity and the P300 have been interpreted as neural
signatures of prediction error and Bayesian surprise (Baldi & Itti, 2010; Naitdnen et al., 2011;
Polich, 2007). EEG studies demonstrate that trial-by-trial activity correlates with Bayesian
parameters such as prior expectation and surprise during attention and decision-making tasks
(Gomez et al., 2019). Similarly, multisensory integration exemplifies Bayesian computation: rather
than simply fusing signals, the nervous system infers the most likely causal structure underlying
them (Aller & Noppeney, 2019; Rohe et al., 2019), a process that unfolds hierarchically over time.

Beyond biological cognition, Bayesian inference provides a principled foundation for robotics and
Al It underlies key processes such as state estimation (e.g., particle filtering and Monte Carlo
localization; (Li et al., 2024)), affordance modeling (Montesano et al., 2008), gesture recognition
(Lopes & Santos-Victor, 2005), and adaptive trajectory planning (Shen et al.,, 2025). In
neuroscience, Bayesian methods are widely applied to EEG for source localization (Jun et al., 2005;
Yildiz et al., 2007) and ERP detection (Wu et al., 2014), though typically in offline settings. Only
a few studies have attempted to embed Bayesian inference into real-time BCI systems (Chiappa,
2006), and these have not explicitly addressed temporal uncertainty in user intention or integration
within closed-loop sensorimotor control.

Taken together, Bayesian inference offers a powerful computational framework for modeling
uncertainty, prediction error, and internal generative models—principles fundamental to human
motor control yet underexplored in continuous BCI applications. This motivates our investigation
into whether applying Bayesian inference to acceleration-level decoding can yield biologically
aligned improvements in continuous BCI-based motion control.

3 Methodology
3.1 Dataset

We evaluate the proposed framework using the Continuous Pursuit (CP) BCI dataset (Forenzo et
al., 2024a; Forenzo et al., 2024b), a uniquely publicly available benchmark specifically designed
for real-time continuous BCI control.
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In this dataset, participants used non-invasive EEG recordings to continuously control a cursor that
tracked a moving visual target on a two-dimensional screen. The task is grounded in the left- and
right-hand MI paradigm, which is dominant in MI-based BClIs (Saibene et al., 2024). Participants
were instructed to employ a kinesthetic MI strategy, i.e., imagining the feeling of hand movement.
This is different from the visual imagery paradigm, where participants imagine observing motion
without the accompanying sensation. In previous BCI studies, it is reported that the kinesthetic
strategy is more reliable than the visual strategy (Xiong et al., 2019).

Control was intuitive: imagining the left hand moved the cursor leftward, the right hand moved it
rightward, both hands simultaneously moved it upward, and no hand movement (idle state) moved
it downward. Moreover, participants could combine these strategies to guide the cursor freely in
any direction.

3.1.1 Experimental Phases
The CP dataset consists of two experimental phases:
1. Phase I — Subject-Specific Decoding.

In the first phase, each participant completed eight sessions of real-time EEG-based motion control.
After each session, subject-specific models were trained using the participant’s cumulative data.
This setup corresponds to a rehearsal-based (or memory-replay) strategy when all previous data
are mixed, or cumulative learning when earlier sessions are retained intact.

In practice, although this strategy maximizes performance by exploiting the full dataset, it becomes
computationally impractical as data volume increases indefinitely.

2. Phase Il — Cross-Subject Generalization and Online Adaptation.

In the second phase, a new cohort of subjects was recruited to evaluate generalized deep-learning
models. A base model trained on data from all participants in Phase I was fine-tuned for each new
subject using their own data after every session. This procedure represents a transfer-learning (TL)
or subject-adaptation strategy.

Because our study focuses on online adaptation performance, we used data from Phase II.
3.1.2 Experimental Design

During Phase II, each subject performed four sessions, each comprising 12 runs (also referred to
as blocks). Each run contained five trials, with each trial lasting approximately 60 seconds. Three
adaptation methods were implemented:

e AR (Autoregressive model) — traditional feature-based baseline (used only in the first session);
e DL (Deep Learning) — EEGNet trained separately for each session;

e TL (Transfer Learning) — EEGNet fine-tuned cumulatively across sessions;

e CL (Calibrated Learning) — real-time adaptation using a pre-trained baseline EEGNet decoder.

Each adaptation strategy was tested in four runs per session (the first session contained AR instead
of DL). Thus, every subject contributed roughly four hours of EEG recordings, and the analysis in
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this study included four subjects, totaling approximately 16 hours of continuously recorded EEG
data.

3.1.3 Dataset Structure and Exploratory Analysis

The EEG signals were recorded using 64-channel Neuroscan Quik-Caps, following the
international 10-20 electrode placement system. The raw EEG data were sampled at 1000 Hz and
subsequently band-pass filtered between 0.1 Hz and 60 Hz to remove slow drifts and high-
frequency noise. The filtered signals were then transmitted to the Neuroscan acquisition software
in blocks at 25 Hz for real-time processing, analysis, and storage.

Each recording file contains continuous EEG signals (62 active channels), accompanied by
synchronized cursor kinematics (position and velocity) and target trajectories across multiple runs
within each session. The data are stored in MATLAB .mat format, with filenames encoding
metadata such as subject ID, session number, condition, and run index (e.g., S16_Se02 CL RO1).
We organized these recordings into structured Python dictionaries using HDF5 and NumPy arrays
to facilitate efficient data loading and indexing.

To gain an initial understanding of the dataset, we conducted exploratory analyses by visualizing
behavioral time series and cursor—target trajectories from representative runs. Figures 1-3
illustrate sample trajectories and temporal alignments between the cursor and moving target. For
example, in Subject S15, Run 1, the cursor position time series contains 7,931 samples, which, at
25 Hz, corresponds to approximately 317 seconds (~5 minutes), consistent with the duration of
one continuous trial block.

- 300

Cursor vs Target Trajectory (2-D)
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200
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Y (au)
Time (s)

100

50

Figure 1. A representative run from the CP dataset showing the cursor path and the target path in
the X—Y plane (arbitrary units). Markers indicate start (green) and end (red) locations.
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Cursor vs Target Position (time series)
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Figure 2. Temporal traces of cursor and target positions along the X (top) and Y (bottom) axes for

the same run as Figure 1.
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Figure 3. Horizontal velocity (vy), vertical velocity (vy), and cursor speed from a representative

time period.
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For EEG preprocessing and quality inspection, we imported the signals into MNE-Python for
further analysis. To evaluate signal characteristics, we computed the power spectral density (PSD)
across all channels. As shown in Figure 4, the channel-wise PSD exhibits the expected 1/f spectral
profile and a notch around 60 Hz, reflecting suppression of line-frequency interference.

EEG Power Spectral Density

=

N

o
L

Power (dB pV2/Hz)

0 10 20 30 40 50 60 70
Frequency (Hz)

Figure 4. EEG power spectral density across channels for a representative session.

3.2 Preprocessing
3.2.1 EEG Preprocessing and Packetization of Features

Raw EEG was downsampled from 1000 Hz to 250 Hz (f;) using zero-phase decimation. Thereafter,
EEG signals were converted into packets to match the control update rate (f, = 25Hz). Packets
were defined by a sliding window of length

L = round(window_sec - f;) (1)
advanced every
H = round(step_sec - f;) (2)

where we adopted windows,. = 0.25s, and step,,. = 0.04s. This yields an effective packet
interval of At = 0.04s.

For each packet, PSD was estimated with Welch’s method (50% overlap, n,¢r5erg = min(L, 256))

on each channel. Bandpower was then computed for predefined frequency ranges By, (0 [4—7 Hz],
a [8—13 Hz], B [13-30 Hz]):

Pe = f PSD(f)df 3)
f€Bg

and concatenated across channels and bands to form one feature vector per packet. The resulting
feature matrix is

Xpp € RV*P, D = C x #bands 4)

These bandpower features are used for AR and Bayes decoders.
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For CNN input, packet windows were processed with Common average reference (CAR). At each
time point t, the average across channels was subtracted:

Cc
B 1
Xte = Xte — E Z Xt.c! (5)

c’'=1
Next, exponential moving standardization was applied. For each channel c, recursive estimates of
the mean and variance were maintained:

m={0—-a)m_, + AXt o (6)
ve=(1—-a)ve + a(xec — mt)z (7)

and samples were standardized as
Xte = My

Jvte (8)

with smoothing factor @ and numerical stabilizer €; windows of length L were extracted with hop

Xte =

H, reshaped as

X,q € RNXIXCXL )
which served as the input to EEGNet.
3.2.2 Label Construction and Resampling

Decoder targets were constructed according to dataset availability. If both cursor and target
positions were present:

y; = target, — cursor; (10)
representing the position error vector. Otherwise, cursor velocities were used:
Ye =Vt (11)

All label signals were linearly resampled to the packet timestamps {t,} to align exactly with
feature packets:

Y[k] = interp(y(t),t, t;), Y € RN*2 (12)

Subsequently, since bandpower and raw window packetizes can produce slightly different counts
(due to edge effects or adaptive window shortening), the feature and label streams were truncated
to the common length

N = min (Nbp:Nraw:NY) (13)

Thus, the final aligned dataset for each run consisted of X, € RN*D (bandpower features),

Xyqw € RNXIXCXL (raw windows), and Y € RN*2 (labels, velocity or acceleration).

3.3 Models
3.3.1 Bayes Decoder
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We design a Bayesian regression decoder to map neural features X; € RP to kinematic variables
y: € RP. At each time step t, the generative model is defined as:

ye = X W + ¢, g~N(0,02%1,) (14)
where W € RP*2 denotes the weight matric and o2 the observation noise variance.
We impose a Gaussian prior on the weights:
p(W) =N (0,4A7H) (15)
with precision matrix A. Two formulations of A are considered:
1) Isotropic prior: A = alp, which enforces uniform shrinkage on all features.
2) Automatic Relevance Determination(ARD) prior: A = diag(ay, ..., ap), where irrelevant
features acquire large q; to effectively prune them.
Given calibration data (X,Y), with sufficient statistics
Sex = XX, Sy =XTY (16)
the posterior mean of the weights is obtained by solving:
W = (Syx + 024)71S,, (17)
This yields a closed-form Bayesian ridge regression solution regularized by the prior precision.

The decoder is trained using all data from previous sessions as calibration data. The sufficient
statistics (Sxy, Sxy) are accumulated, and weights W are computed as above. In mid-session update,
the first half of the session is used to train the decoder.

The updated decoder is evaluated on the remaining half of the session. Because of the online
adaption setup, the decoder continues to adapt during evaluation. At every time step, predictions
are generated as

Ve = XtWt—l (18)
Residuals are computed:

e =Y =Vt (19)
Every K samples (update interval), the sufficient statistics are updated:

Sex © ASxx + Xp Xy, Sxy < ASyy + X3 Y, (20)
where X3, Y, denote buffered mini-batches, and 4 € (0,1] is a forgetting factor that down-weights
older data. The weights are then recomputed:

W« (Sxx +0%A4)71S,, (21)
After each online update, a small empirical-Bayes (EB) step is performed to gently adjust ¢ and

(for ARD) the feature-wise precision a;

1. Noise variance update (Exponential Weighted Moving Average on residuals):
For residuals r = Y — XW,
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0% « 0902 + 0.1mean(r?) (22)

2. Approximate ARD precision update (diagonal posterior covariance approximation):
With ¥ = (S, + 02A)" and }}; its diagonal,

Vi =1—-a;%; (23)
2
57 = 1 w2 (24)
wj =35 jk
k=1
ai < 09a; + 0.1L (25)
g) ] a—)z

J
For isotropic, a scalar @ uses the mean y and mean W?2.

In addition, the decoder maintains a diagonal observation noise estimate R, that is updated from
instantaneous residuals:

R, = (1 - ﬁ)Rt—l + ﬁ : Clip(rtez' Rpnin, Rmax) (26)

where [ is a smoothing factor. This allows the decoder to track dynamic changes in EEG noise
levels.

Parameter details about the Bayesian decoder configuration is provided in Table 1.

Table 1: Bayesian decoder configuration.

Parameter Value Parameter Value
o2 (init) 0.01 Update interval 50 packets
Forgetting factor 0.98 B (adapt R) 0.05
Rinin 0.001 Rinax 1.0

To account for run-to-run variability, we implemented a mid-run fine-tuning scheme for the
baseline models: The first half of the run was used to estimate the model parameters W, and
predictions were generated on the second half using the fixed W. This procedure closely mimics
the calibration phase commonly used in practice, during which the subject provides labeled data
at the beginning of a run to adapt the model before real-time control.

3.3.2 Autoregression (AR)

The AR baseline follows the original CP paper. The purpose is to map bandpower features X €
RN*P to the paired kinematic targets Y € RV*2, We first standardize features component-wise:

= %2 X, 27)
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N
1
o= NZ(Xi W2+ ee=10"" (28)
i=1

%= (29)

A bias term is concatenated to form the augmented design
X, = [¥ 1] € RNX@+D) (30)
We then estimate a multi-output linear map W € RP*1*2 by ridge regression:

W = argvr;iin Y — X, W + AW |7 (31

with 4 > 0 the L, regularization strength. The resulting closed-form solution is
W = (XJ Xy + Aps) X7V (32)
with regularization parameter 1 = 1073,

At test time (the second half of the run), each incoming feature vector x;, is standardized using
the stored u, o, augmented with a bias term, and mapped to the 2-D output by

y=1I

The ridge objective above is equivalent to a maximum a posteriori (MAP) solution under a
Gaussian observation model with isotropic residual covariance (i.e., the two output dimensions are
jointly penalized via squared error without per-axis reweighting) and a zero-mean Gaussian prior

Xte — U 7

1w (33)

on W with spherical covariance &< A71. In our implementation, A is a direct regularize; we do not
estimate a noise variance parameter, nor do we introduce output-axis-specific noise weights.

3.3.3 EEGNet

EEGNet was used as a baseline given its broad adoption in most latest BCI online control
experiment (Lee et al., 2025).

The network follows an EEGNetv4-inspired design adapted for regression:

1. Temporal convolution (spectral filtering)
A 2D convolution with kernel size (1, L) (where L is the temporal kernel length) learns
temporal filters for each channel:

H® = BN (COnvtime(X)) (34)

with F; temporal filters.
2. Depthwise spatial convolution (channel mixing)
A depthwise convolution across the C channels captures spatial patterns:

H® = ELU (BN (Convspatial(H(l)))) (35)

producing F; - D feature maps.
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3. Pooling and dropout (regularization)
Average pooling across channels/time and dropout are applied to reduce dimensionality
and prevent overfitting.

4. Separable convolution (temporal refinement)
A depthwise-pointwise convolution pair further refines temporal features while controlling
parameter count:

H® = ELU (BN (Convye, (H(Z)))) (36)

yielding F, feature maps.

5. Global pooling and dense regression head
Adaptive average pooling collapses the spatial and temporal dimensions, and the ouput is
flattened to a vector of length F,. A fully connected layer maps to the final 2D output:

y = WfTCHﬁ)oled +bre, 9 ER? (37)

During training, mean squired error loss was used:

N
1
£©) =5 ) Iy — fo (X3 (39)
i=1

where fy denotes the EEGNetCP mapping parameterized by weights 8, and (X;,y;) are the
calibration samples. Optimization was performed with stochastic gradient descent.

During evaluation where the second half of the run was used, the trained model is applied to unseen
windows X*¢ with fixed weights 8, yielding predictions

vt = fo(X*®) (39)
Details about the EEGNet architecture and training parameters are summarized in Table 2:

Table 2: EEGNetCP configuration and training parameters.

Parameter Value Parameter Value
F; 8 Kernel length 64
Expansion D 2 F, 16
Pooll size 4 Pool2 size 8 (adaptive)
Dropout rate 0.25 Optimizer Adam
Learning rate 0.001 Weight decay 0.0
Batch size 128 Epochs 20

3.4 Prediction Mode
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The three types of decoders were trained and evaluated in two alternative label modes, which differ
in how the kinematic targets are derived from recorded trajectories.

1. Velocity mode
The decoder is trained to map directly to the contemporaneous velocity:
[vx (t)]

vy (t)

Ve =

(40)

2. Acceleration mode
The regression targets are the finite-difference accelerations, computed as discrete changes
in velocity:

UVt — V-1
at = At ,Ut S Rz (41)
In this mode, the decoder predicts accelerations:
Ay (t)]
= 42
Yt [ay (©) (42)

Therefore, the decoder’s outputs correspond to instantaneous changes in motion, rather
than absolute velocity. Decoded acceleration a; is then integrated to reconstruct velocity:

ﬁt = ﬁt—l + atAt (43)

3.5 Evaluation Metric

To assess model performance, we adopted the evaluation metrics defined in the original CP dataset
study (Forenzo et al., 2024a). The primary quantitative measure is the Normalized Mean Squared
Error (NMSE) between the predicted and true cursor velocities. NMSE provides a normalized
index of reconstruction accuracy that accounts for differences in movement scale across runs and
subjects.

Formally, NMSE is defined as:

v, — D, ||?
NMSE = M (44)

Lellvell?

where v; and ¥, denote the true and predicted cursor velocities at time t, respectively. The
numerator quantifies the squared Euclidean error between predicted and actual velocity vectors,
while the denominator normalizes this error by the total motion energy across the trial.

This metric directly reflects the quality of continuous control, with lower NMSE values indicating
more accurate and stable trajectory tracking between the decoded EEG signals and the intended
motion.

4 Results
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To compare the performance, for each model, we have 3 sessions X 3 conditions X 4 runs X 4
subjects = 144 data points. A Friedman test comparing NMSE in the acceleration mode across
models (AR, Bayes, EEGNet; see Figure 5) was significant, ¥*(2) = 8.00, p =.018, Kendall’s W =
1.00 (very large effect). A mixed-effects model (with subject as a random intercept and all 36
observations per subject) indicated that Bayes yielded significantly lower NMSE compared to both
AR and EEGNet (Holm-adjusted p < 0.001), whereas AR and EEGNet did not differ (see Table 3).
To stabilize skewness, effects were reported on the log scale and back-transformed to produce
ratios of geometric means. We found Bayes’s typical NMSE was ~72% lower than that of AR and
EEGNet in the acceleration mode.

NMSE by Model (Acceleration)
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Figure 5: Box/violin/scatter plots show NMSE medians and variability by model in the
acceleration mode.

Table 3 Pairwise comparisons (acceleration mode).

Contrast log scale est Ratio geom means p_uncorrected p_holm Sig
AR — Bayes +1.29 3.62x higher 1.2¢e-4 3.5e4
AR — EEGNet -0.0017 ~1.00 0.996 0.996 X
Bayes — EEGNet -1.29 0.28% (72% lower) 1.2e-4 3.5¢4
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However, in the velocity mode no significant differences between models were observed (all
Holm-adjusted p = 1.0; see Figure 6 and Table 4).

NMSE by Model (Velocity)
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Figure 6: Box/violin/scatter plots show NMSE medians and variability by model in the velocity
mode.

Table 4 Pairwise comparisons (velocity mode).

Contrast log scale est Ratio geom means p_uncorrected p_holm Significant?
AR — Bayes -0.150 0.86x 0.672 1.000 X
AR — EEGNet -0.018 0.98x 0.959 1.000 X
Bayes — EEGNet +0.131 1.14x 0.711 1.000 X

Figure 7 illustrates NMSE trajectories across 4 runs per session (12 runs total) for each subject
(S16-S19) in the acceleration mode. Across all subjects, Bayes consistently yielded lower NMSE
values and remained more stable across runs (subject-level medians ~112—175, SD = 275-517). In
contrast, AR produced substantially higher NMSE with greater variability (medians ~700-1177,
SD = 1870-2500), whereas EEGNet showed intermediate performance (medians ~525-1037, SD
~ 1500-2008). Between the two higher-error models, EEGNet exhibited lower NMSE and smaller
variability compared to AR, a pattern consistent with the results reported in original study (xx).
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NMSE over Runs by Subject (Median £ SD « Acceleration Mode)
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Figure 7. NMSE over runs by subject in the acceleration mode. Each panel shows a subject (S16—
S19), with lines representing the median NMSE across trials per run and shaded areas indicating
+1 SD.

We also compared ARD and isotropic Bayesian models under both acceleration and velocity
decoding modes on a subject-wise basis. For Subject 16 in the acceleration mode, NMSE was
significantly lower under the ARD condition than under the isotropic condition, as indicated by a
Wilcoxon signed-rank test (n = 39 paired observations, including one UNK condition per session
from the original CP dataset), W = 104.0, p = 2.20x1075, effect size r = 0.68 (large effect) (see
Figure 8). Per-session and per-condition Wilcoxon tests (Holm-corrected within family) showed
that these differences arose primarily from Sessions 2 and 3 and the DL condition (Tables 5-6).

In contrast, no significant difference was observed between the ARD and isotropic Bayesian
models in the velocity mode for Subject 16 (W =377.0,p =0.863, r=0.03; Figure 9). These results
suggest that the superior performance of the Bayesian model in the acceleration mode is not
random but reflects its ability to capture feature relevance and functional importance more
effectively. This advantage is particularly meaningful for intermediate BCI sessions, where users
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are still stabilizing their motor imagery strategies and the decoder operates without explicit
adaptation mechanisms.
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Figure 8. Bayes NMSE comparisons between ARD and isotropic setups for Subject 16 in the
acceleration mode.

Table 6. Per-session Wilcoxon comparisons for Subject 16 in the acceleration mode (ARD vs
isotropic Bayes NMSE).

Median Median

A
Session Median ard |, L. . Mean A W p_uncor p_holm Significant?
isotropic (isotropic —ard) - -

Se02  230.5 230.2 +3.74 +18.5 3 0.0012 0.0037 v
Se03  41.7 44.1 +0.35 +4.0 12 0.0171 0.0034 v
Se04  226.5 234.9 +2.10 +3.8 23 0.1272 0.1272 X

Table 7. Per-condition Wilcoxon comparisons for Subject 16 in the acceleration mode (ARD vs
isotropic Bayes NMSE).
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Median Median

Condition isotropic Median A Mean A W p_uncor p_holm Significant?
CL 93.4 95.7 +0.40 +2.4 14 0.0522 0.1567 X
DL 48.2 50.0 +2.38 +13.7 0 0.00049 0.00195 v
TL 385.8 3944 +3.79 +12.5 14 0.0522 0.1567 X
UNK 1246  126.7 +0.45 +0.1 3 1.0000 1.0000 X
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Figure 9. Bayes NMSE comparisons between ARD and isotropic setups for Subject 16 in the

velocity mode.

5 Discussion

Our findings suggest that motor intentions in the human brain are expressed more naturally in
acceleration space than in velocity space. Although position is the observable outcome and
acceleration is a second-order derivative, decoding EEG activity at the acceleration level produces

s16_vel_ard

s16_vel_isotropic

trajectories that are more closely aligned with the brain’s natural control logic.

5.1 Scientific Significance: Evidence for Embodied Dynamics
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At the cognitive and neurophysiological levels, these results provides empirical support for
longstanding debates in neuroscience and cognitive science regarding the representational basis of
motor control (Omrani et al., 2017). The evidence challenges the view that the brain encodes
abstract kinematic parameters such as spatial position (Scott, 2008), instead supporting the
perspective that motor control is organized through dynamical variables, specifically, force and
acceleration (Michaels et al., 2016; Pandarinath et al., 2015).

Within the framework of embodied cognition, this finding implies that cognition emerges from the
continuous regulation of sensorimotor dynamics instead of detached positional codes. Acceleration
holds a privileged position in this control hierarchy: it can be directly sensed by the vestibular
system that responds to inertial and gravitational forces (Green et al., 2005), as well as by
proprioceptive feedback from muscles and joints (Proske & Gandevia, 2012). Neurophysiological
studies further corroborate this view: neurons in the primary motor cortex show stronger
correlations with acceleration and applied force than with absolute position (Kalaska et al., 1990),
while cerebellar and basal ganglia circuits also specialize in predictive error correction at the level
of dynamic forces and accelerations (Haar & Donchin, 2020). Moreover, these findings highlight
a central principle that cognition is embedded not in the discrete end-point specification but in the
ongoing regulation of process variables (Hatsopoulos et al., 2007).

5.2 Implications for Digital Twin of Robotics and Embodied AI

A particular striking observation is that this embodied preference for acceleration persisted even
in a virtual, MI-based BCI task. Participants controlled a cursor purely through imagined
movement without actual limb movement, muscle force output, or vestibular feedback. Yet, their
neural activity still reflected acceleration-based control. This finding suggests that embodiment is
not confined to overt physical interaction but extends to internal simulations of the body’s
sensorimotor apparatus. In other words, embodiment can manifest in the absence of physical
sensors and actuators or external movement, as long as internal representations of the body’s
dynamic structure remain engaged. This interpretation is consistent with neuroimaging evidence
showing overlapping neural substrates for motor imagery and execution (Behrendt et al., 2021;
Boulenger et al., 2006; Sobierajewicz et al., 2017; Sobierajewicz et al., 2016) and with theories of
internal simulation of action (Jeannerod, 2001).

These findings carry important implications for embodied robotics and artificial intelligence (AI).
For example, a robotic system that internally encodes and regulates motion in terms of force and
acceleration, analogous to neural representations in biological systems, may thus achieve
functional embodiment even in purely virtual environments. Contemporary motor control
architectures for avatars or simulated agents are typically organized around position trajectories
or velocity profiles (Lanillos et al., 2021), whereas decades of robotics research show the benefits
of force/impedance and operational-space dynamics (Hogan, 1984; Khatib & Burdick, 1987). Our
findings suggest that acceleration- and force-based representations, though long recognized in
physical control, should also underpin virtual and cognitive forms of embodiment.
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By grounding EEG decoding in the same dynamic principles that govern biological motion, a
direct benefit for BCI research is that brain activity decoding can more accurately reflect the brain’s
intrinsic representation of action, thereby enhancing control stability and reducing calibration
demands. In the longer term, this approach can foster more natural and trustworthy human—robot
interactions, improve collaboration performance, and broadly contribute to bridging and
complementing embodied robotic intelligence with human neural processes.

5.3 Limitations and Future Work
Despite these promising results, several limitations warrant considerations.

First, this study relied on a publicly available dataset rather than newly collected experimental data.
While benchmark datasets provide a controlled and reproducible testbed widely recognized in the
BCI community, offline analyses inherently lack the proprioceptive and vestibular feedback that
participants experience during real-time control. Nevertheless, the proposed Bayesian framework
achieved the best performance across all conditions represented in the dataset, highlighting its
robustness and potential for real-world application. As an immediate next step, we plan to conduct
real-time user studies using a robotic wheelchair platform (Xu et al., 2025), enabling participants
to perform continuous driving tasks in naturalistic indoor environments and test the model’s ability
to adapt online and support embodied interaction .

Second, when comparing Bayesian inference with deep-learning approaches, we employed
EEGNet as a representative neural network baseline. Although more recent architectures, such as
NeuroGPT (Cui et al., 2024) and EEGConformer (Song et al., 2022)) have demonstrated improved
performance, they still operate under the same transfer learning paradigm considered here.
Moreover, their greater computational complexity poses challenges for real-time deployment. In
our experiments, EEGNet training required approximately five times longer than Bayesian
adaptation, indicating not only the efficiency advantage of probabilistic inference but also its
suitability for on-device and adaptive BCI control where latency is critical.

Third, the current work primarily emphasized decoding accuracy, while post-decoding trajectory
regulation and control smoothness remain open areas for improvement. Future studies should
explore how hierarchical regulatory mechanisms can be integrated to enhance stability without
compromising responsiveness. In particular, mechanisms grounded in kinematic invariants such
as the minimum-jerk principle (Todorov, 2004), may help regulate trajectories in the CP task.
Furthermore, although our current framework tracks residual noise term R;, this term was not yet
incorporated into the MAP update. In future extensions, especially under shared-control settings
or when fused with Kalman filtering, explicitly incorporating R, as a measurement noise term
could enable more principled modeling of uncertainty and further enhance closed-loop adaptability.

6 Conclusion

This study introduced a Bayesian inference framework for decoding EEG signals in CP motion
control, exploring an alternative hypothesis that the human brain organizes motor intentions more

27



naturally in acceleration space than in velocity or positional space. Through analysis of the CP BCI
dataset, we demonstrated that acceleration-level decoding not only yields superior performance
(reduced NMSE by 72%) but also aligns with the brain’s intrinsic control dynamics, reflecting its
embodied and predictive nature.

From a scientific standpoint, these findings contribute empirical evidence to theories of embodied
cognition and motor control, supporting the view that human movement is regulated through
dynamic variables such as force and acceleration rather than abstract positional representations.
Even in a purely motor imagery context devoid of physical movement, neural activity preserved
this acceleration-based organization, indicating that embodiment persists at the level of internal
body schema and predictive simulation.

At the computational level, the results highlight the advantages of probabilistic inference over
deterministic deep learning models for real-time BCI applications. The Bayesian approach proved
both computationally efficient and biologically interpretable, capable of adapting to uncertainty
and capturing the hierarchical structure of neural control. These properties make it particularly
suited for adaptive and on-device systems.

Practically, grounding EEG decoding in the same dynamical principles that govern biological
motion offers a promising path toward more stable and intuitive BCI control. In the long term, this
approach may enable seamless human—robot collaboration, improve trust and transparency in
shared-control systems, and inform the design of embodied Al and digital twin frameworks that
bridge neural computation with physical and virtual autonomy.

Future work will extend this framework to real-time experiments with robotic wheelchair
platforms, integrating acceleration-level decoding with adaptive feedback and shared-control
mechanisms. Through this, we aim to bring BCI research closer to its ultimate goal, realizing
embodied, adaptive, and trustworthy human—machine interaction that reflects the intelligence and
flexibility of the human brain.
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