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Figure 1. (a) Most VLAs fail to show zero-shot performance on the challenging Franka (DROID) setup in unseen environments, without
task or environment-specific fine-tuning. (b) SPEAR-1 operates in this challenging setup, outperforms 7w0-FAST [33] and matches 7.5 [6]
on Franka (DROID) embodiment zero-shot in unseen environments while using 20 x less robot demonstrations data. It also shows strong
performance on WidowX (Bridge) (c) SPEAR-1 evaluation results on different embodiments and in different environments.

Abstract

Robotic Foundation Models (RFMs) hold great promise
as generalist, end-to-end systems for robot control. Yet
their ability to generalize across new environments, tasks,
and embodiments remains limited. We argue that a major
bottleneck lies in their foundations: most RFMs are built
by fine-tuning internet-pretrained Vision-Language Models
(VLMs). However, these VLMs are trained on 2D image-
language tasks and lack the 3D spatial reasoning inher-
ently required for embodied control in the 3D world. Bridg-
ing this gap directly with large-scale robotic data is costly
and difficult to scale. Instead, we propose to enrich easy-
to-collect non-robotic image data with 3D annotations and
enhance a pretrained VLM with 3D understanding capa-
bilities. Following this strategy, we train SPEAR-VLM, a
3D-aware VLM that infers object coordinates in 3D space
from a single 2D image. Building on SPEAR-VLM, we in-
troduce our main contribution, SPEAR-1: a robotic foun-

dation model that integrates grounded 3D perception with
language-instructed embodied control. Trained on ~45M
frames from 24 Open X-Embodiment datasets, SPEAR-1
outperforms or matches state-of-the-art models such as -
FAST and mq 5, while it uses 20X fewer robot demonstra-
tions. This carefully-engineered training strategy unlocks
new VLM capabilities and as a consequence boosts the reli-
ability of embodied control beyond what is achievable with
only robotic data. We make our model weights and 3D-
annotated datasets publicly available.

1. Introduction

Vision-Language-Action (VLA) models have emerged as a
promising paradigm for building generalist, end-to-end sys-
tems for robot control. Their success relies on two fac-
tors: (1) the strong visual-linguistic understanding inher-
ited from internet-scale pretraining of the underlying Vi-
sion Language Model (VLM), which provides broad “com-
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mon sense”” knowledge, and (2) training on large, diverse
datasets of robot demonstrations.

Despite this progress, the landscape of generalist VLA
policies remains fragmented in terms of generalization —
across embodiments, environments, and tasks. This be-
comes especially prominent in zero-shot performance in
unseen real-world environments with variations in cam-
era positions and out-of-distribution backgrounds, such as
the typical deployment scenarios of the Franka (DROID)
setup [2]. In contrast, as shown in Fig. | (a), most existing
VLAs (e.g. OpenVLA [19], CogAct [21], Spatial VLA [35],
MotoVLA [40]) achieve high zero-shot performance' in
“toy” environments with seen camera positions, but struggle
with zero-shot performance in unseen challenging Franka
scenarios and depend on task- or environment-specific fine-
tuning. Recent efforts such as 7y and my 5 [6] push to-
ward broader generalization, yet at the cost of closed large-
scale robotic data. We introduce SPEAR-1, which ad-
vances these desired generalization capabilities while be-
ing substantially more data-efficient. Quantitatively (see
Fig. 1 (b)), SPEAR-1 outperforms my-FAST [33] and
matches 7y 5 on multiple robot embodiments using 20 x
fewer demonstrations, which is especially important given
the high cost and logistical difficulty of collecting real-
world robotic data.

We achieve this efficiency by introducing explicit 3D
awareness into the vision-language backbone before any
robot training. The model incorporates a pretrained depth
encoder and is optimized on 3D-aware vision-language
tasks such as distance estimation and 3D bounding box pre-
diction, embedding control-relevant spatial reasoning di-
rectly into its representations. Achieving such integration
is non-trivial: aligning 3D geometric cues with high-level
linguistic and visual features requires detailed multimodal
dataset annotations and precise cross-modal calibration, as
naive fusion often degrades both semantic understanding
and spatial accuracy. In contrast, existing VLAs rely on 2D
VLMs that excel at semantic perception, but lack geometric
understanding, forcing them to learn 3D structure implicitly
from large-scale robot demonstrations. This dependence on
costly and embodiment-specific data limits scalability and
generalization across environments, underscoring the diffi-
culty and significance of SPEAR-1’s design.

In our progression from spatial understanding to em-
bodied control, we introduce a staged training pipeline,
as shown in Fig. 2. In Stage I, we develop a 3D-aware
vision-language model, SPEAR-VLM, which extends a
pretrained VLM by learning spatial reasoning from non-
robotic 2D images annotated with 3D cues. This stage es-
tablishes a perceptual backbone that encodes geometric re-
lations while preserving the rich semantic priors of large-

IFor more details on the definition of ’zero-shot performance in unseen
environments” see Appendix A.4

scale pretraining. In Stage 2, we introduce an action ex-
pert that maps the grounded visual-language representa-
tions to motor actions. This stage demands well-tuned
vision-language-action modeling choices and a carefully-
crafted multi-embodiment data processing strategy to learn
precise low-level robot controls. Together, these stages
bridge the gap between internet-scale 2D perception and
embodied 3D interaction, progressively transforming pas-
sive spatial understanding into actionable behavior.

Unlike previous works that address the challenge of 3D
knowledge for robot control [35, 40], SPEAR-1 demon-
strates improvement on a foundation model level, with an
end-to-end policy across multiple different environments
and robots. It is capable of achieving state-of-the-art robot
control on multiple robot embodiments without requiring
target evaluation environment fine-tuning. Furthermore,
SPEAR-1 demonstrates how significant amounts of robot
demonstration data can be “replaced” by non-robotic 3D-
annotated image data. In summary, our work makes the
following contributions:

* SPEAR-VLM: a VLM with control-inspired 3D ca-
pabilities (e.g. localizing objects in 3D), trained on
carefully-crafted VQA tasks and enriched 2D-image non-
robotic data. Importantly, SPEAR-VLM directly boosts
downstream VLA performance.

* SPEAR-1: an open-weight robotics foundation model

with 3D understanding, which significantly outperforms

or matches the strongest state-of-the-art baselines, trained
with 20x more robot demonstration data

Extensive experimental validation: we demonstrate

strong generalization across diverse settings with a sub-

stantial reduction in reliance on hard-to-collect robotic
data. Notably, using only 200k non-robotic 2D images,

SPEAR-1 surpasses models trained with more than 900M

additional frames of robotic demonstrations.

2. Related Work

Spatial Understanding for VLMs. The majority of exist-
ing VLMs trained on large-scale datasets have been limited
to flat 2D image understanding [4, 17, 26, 41, 43, 46]. Our
work extends the PaliGemma VLM [4] by integrating the
MoGe monocular depth estimator [47] as a supplementary
vision backbone and by training on manipulation-relevant
3D tasks to enhance the VLM’s 3D understanding. Pre-
viously, Chen et al. [8] used a similar data annotation ap-
proach for training a 3D-aware VLM, but they do not inte-
grate a pretrained depth estimator and neither their model
nor their dataset is publicly accessible. Additionally, unlike
Spatial VLM [8] or RoboSpatial [39], trained on high-level
spatial relationships, our SPEAR-VLM focuses on explicit
3D coordinate prediction, a pretraining task much closer
to embodied control. SpatialBot [7] also previously pro-
posed a spatially-aware VLM targeting robot control, but
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Figure 2. SPEAR-1 stages of training. Stage 0: General VLM
pretraining on web scale data, e.g. PaliGemma. Stage 1: Integrate
a mono depth vision encoder to build SPEAR-VLM and train it
on embodied-inspired VQA tasks, e.g. 3D bounding box or object-
to-object distance estimation. We use 2D images from non-robotic
data, enriched with 3D annotations. Stage 2: Add an action expert
to train SPEAR-1 on robot demonstration data, e.g. OpenX [32].
Each stage boosts the model’s robotics-relevant knowledge and ca-
pabilities, but the abundance and diversity of data decreases.

their method involves a multi-step VLM inference process
and was never shown to integrate into a VLA for generalist
robotic control.

Vision-Language-Action Models. Recently, multiple
works have developed generalist robot policies [5, 6, 10,
19, 32, 33, 53] trained on multiple robot embodiments.
SPEAR-1 builds on top of the 7 architecture, which com-
bines a pretrained PaliGemma VLM and an action ex-
pert module, but we initialize the underlying VLM from
our SPEAR-VLM to integrate pretrained 3D understand-
ing. Previously, Spatial VLA [35] proposed integrating a
monocular depth encoder [48] in the VLA, but without any
VLM alignment or pretraining and therefore learning 3D
capabilities entirely from hard-to-collect robotic data. Mol-
moAct [20] recently proposed a spatially-aware VLA, but
the approach involves 'reasoning’ at inference time, render-
ing the method too slow for real-time control. Most closely
related, Gemini Robotics 1.0 [44] follows a similar 3D pre-
training method to fine-tune the significantly larger Gemini
2.0 [34] and distill into a smaller VLA with reasoning capa-
bilities. With most of the method’s details undisclosed, our
work still differs in several important aspects: (1) we inves-
tigate the benefits of 3D pretraining in isolation, (2) train
much smaller open-access model on limited, less diverse
open data from OpenX [32], and, most importantly, (3) we
demonstrate the ability to reduce the need for robotic data
with non-robotic 2D images.

3. Method

In this section, we describe SPEAR-1 and its training recipe
in detail. In section 3.1 we describe the architecture, data
generation pipeline, and training procedure of our 3D-aware
SPEAR-VLM. This stage aims to enhance the 3D spatial
understanding capabilities of an off-the-shelf VLM through
fine-tuning on 3D spatial perception tasks. We then pro-
ceed, in section 3.2 to detail the architecture and training
procedure of SPEAR-1, which comprises a pre-training and
post-training stage.

3.1. SPEAR-VLM

Our approach considers the architecture of recent robotics
foundational models that are based on VLMs, pretrained on
large corpora of internet-scale text-image data The architec-
ture of those models usually consists of a vision encoder, a
vision-to-text-embedding feature projector, and a LLM. The
majority of the tasks on which VLMs are usually trained are
limited to 2D [4, 17, 25]. To extend the capabilities of a pre-
trained VLM to 3D understanding, we propose (1) extend-
ing the model architecture by adding a monocular depth en-
coder and (2) training the VLM on VQA tasks that require
explicit 3D reasoning.

SPEAR-VLM Architecture. ~ Our model builds on
PaliGemma [4] as backbone, but the same method can be
used with any late-fusion VLM [1, 11, 27]. PaliGemma
consists of three main components: (1) a SigLIP visual en-
coder [50], (2) a linear projector that maps the visual to-
kens predicted by the visual encoder to the language model
input space and (3) a Gemma language model [42]. To en-
able the model to perceive accurate depth, we integrate the
MoGe [47] depth encoder as an additional vision encoder.
We choose MoGe due to its affine-invariant modeling ap-
proach, capable of fitting cameras with different intrinsics.
Our intuition is that affine-invariant depth should general-
ize better across environments thus being better suited for
learning generalist robot control. Similar to the MoGe de-
coder inputs, we concatenate the intermediate features from
the last 4 layers of the MoGe ViT encoder along the feature
dimension and project them to the LLM embedding space
via a randomly-initialized linear projector. The visual input
to the LLM consists of the averaged outputs of the SigL.IP
and MoGe projectors. To encode 3D information into text
we extend the PaliGemma tokenizer with N = 1024 3D
tokens (see Fig. 3 and Appendix A.1.3).

3D pretraining tasks. Given the above architecture, we
propose a pre-training scheme to enable the model to lever-
age the depth information in MoGe’s encoder features and
acquire 3D spatial understanding capabilities. To embed as
much control-relevant 3D knowledge in the SPEAR-VLM
as possible, we design VQA tasks inspired by the embodied
tasks a VLA needs to learn, e.g. Output the vertices of the
3D bounding box of object X’ or 'Output the xyz compo-
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Figure 3. SPEAR-VLM overview. Left: Training data mixture, auto computed spatial annotations and example question-answer pairs
from each category. Right: High-level architecture with fusion between SigLIP and MoGe encoders and PaliGemma embeddings expansion
with 3D tokens. This design equips SPEAR-VLM with explicit 3D understanding that serves as a strong foundation for SPEAR-VLA.

nents of the distance between object X and object Y’. These

VLM pre-training tasks ensure learning semantic 3D local-

ization, object-to-object spatial relations, and 3D coordinate

system geometry (Fig. 3). For a full list of question-answer

pairs, see Appendix A.1.1.

3D Vision-Question-Answering Data. As few open

datasets contain the annotations needed for the proposed

training scheme, we devise the following semi-automatic

annotation pipeline to enrich existing datasets with the nec-

essary annotations: object-level segmentation masks, se-

mantic labels and projected 3D point cloud. Importantly,

our pipeline requires only 2D images as input and off-the-

shelf vision foundation models:

1. Use Gemini [9] to detect 2D bounding boxes and seman-
tic labels for the objects in the image.

2. Prompt SAM2 [36, 37] with the detected bounding
boxes to produce instance-level segmentation masks.

3. Obtain 3D point cloud annotations for the entire image

via MoGe direct point cloud predictions [47].

To construct a training example, we randomly sample
a templated text prompt and a set of objects from the im-
age. We then filter the annotated MoGe 3D point cloud with
the object mask to obtain the object 3D point cloud. Based
on the segmented point cloud, we compute the oriented 3D
bounding box and construct the question-answer pair.

We focus on indoor environments and annotate the
“cooking” and “’bike repair” parts of EgoExo4D [13] that
already have segmentation masks, resulting in 200k images.
For visual diversity, we further annotate 30k frames of the
Bridge-V2 [45] robot demonstration dataset, downsampled
to 10% in the VLM training data mixture.

Training process. Similar to LLaVa [25], we train
SPEAR-VLM in two stages. In the first stage, we initialize
from PaliGemma and MoGe weights, with the MoGe pro-

jector and the LLM 3D token embeddings initialized ran-
domly. We train only the randomly initialized weights and
SigLIP projector, keeping everything else frozen. In the
second and longer stage, we keep only SigLIP and MoGe
encoders frozen and we scale the next-token-prediction loss
for 3D tokens by a factor A = 2.

3.2. SPEAR-1

SPEAR-1 follows a similar overall architecture as mg [5],
however, we build on SPEAR-VLM, use a rotation formu-
lation in flow matching on the S? manifold of unit quater-
nions, and several data & engineering improvements. De-
sign decisions were ablated on small-scale experiments on
BridgeData V2 [45] due to the cost of training on the entire
OpenX mixture. We summarize these key decisions and
learning in the following.

Preliminaries. Formally, we aim to learn a function (")
mapping an observation o; to a sequence of robot actions
A = [as,a441, ... g—1] over a horizon H. The obser-
vation is defined as o, = [I, ..., I?, ps, 1], where I! is the
i-th image observation from an uncalibrated camera, p; is
a vector containing the robot state comprising of the end-
effector pose and gripper state, 1, is a vector of language
tokens representing the language instruction.
Architecture. We follow the broadly accepted architecture
introduced in my: a Flow Matching action expert that pro-
cesses proprioception observations and predicts the robot
actions by attending to the VLM’s intermediate key-value
pairs. For full details, see Appendix A.2.2 and mq [5].
Flow Matching Formulation. The action sequence pre-
diction is supervised via conditional flow matching [23, 24,
28]. The model takes as input the observation o;, the flow-
matching step 7 € [0,1] and a sequence of noisy actions
A7 = [a],...,a], y_,] and predicts a denoising vector



vyg(AT,0:). We denote the decomposed action of transla-
tion, rotation and gripper components as a; = [X¢, q¢, |-
We use the square brackets operator -] on the predicted de-
noising vector vy and the denoising vector field u to denote
a specific component, e.g. u[x¢| corresponds to the transla-
tion component of the denoising vector field.

We follow a flow matching formulation in linear space
for translation and on the S® manifold of unit quaternions
for rotation. For simplicity, we omit the gripper component
as it follows the same linear formulation as translation.

During training, we sample a random timestep 7 ~
B(a,8) and random noise x. ~ N(0,I),q. ~ U(S?).
“Noisy actions” are computed by linear interpolation for
translation x] = 7x; + (1 — 7)x. and spherical linear in-
terpolation on the S* manifold for quaternion rotation

B sin((1 —7)0)
t sin 0 ¢

sin(70)

sin 0

qs, (])

with § = cos™1(q. - q;). The “noisy action sequence” A7

is passed as input to the model and trained to output the de-
T
t

noising vector field u(A7|A;) = . Training is super-
vised with the conditional flow-matching loss, equivalent to

the MSE loss for translation
Las(0) = [[vo(AT, 0)[X,] — u(AT A X" @)

For rotations, we combine a cosine loss between the veloc-
ity predictions vy(A7,0;)[q] € R? and the denoising vec-
tor field u(A7|A;)[q]. and a geodesic loss [12, 14] between
a target quaternion q; "° € S* computed from Eq. (1) at
time ¢ + 9, and a quaternion prediction qgj[‘S =q; ®qy, €
S%, with g}, € S* computed by integrating vg[q,] € R*
over a small integration step & ~ #(0.01,1 — 7). The total
loss is the sum of the translation and rotation loss

L(0) =Ep(a,jon),q(a7|A,) [Lrs(0) + Ls3(0)] . (3)

During inference, we generate actions by integrating the
learned vector field from 7 = 0 to 7 = 1, starting with
random noise xg ~ N(0,I),qg ~ U(S?) and using Euler
integration in linear space for translations

x; 70 = x] + Vi (A7, 0,), &)
and on the S® manifold for rotations
q; " = qf ® 4} (Vi (A7, 01)). 5)

See Appendix A.2.3 for more details on flow matching.

Image Resolution. We select a resolution of 280 x 210 for
the main external camera and 112 x 112 for the wrist cam-
era, and resize images either by a central crop or padding.
Importantly, unlike prior work [19], we do not distort the
aspect ratio of the images by naive resizing as this also

distorts camera intrinsics and negatively affects depth and
point cloud estimates. As wrist cameras contain less infor-
mation than the external camera, we use a lower resolution,
without losing important details, and reduce training and in-
ference compute.

Fine-tuning vision encoders. As previously observed by
ReVLA [10], robotics training can degrade the represen-
tations of the pre-trained vision encoders. We experiment
with various configurations of vision encoder training and
find the optimal setting to keep both SigLIP and MoGe
vision encoders trainable during VLM training, but freeze
MoGe in the VLA training stage.

Control frequency & Data normalization. We use an
action chunk of size H = 5 and frequency of SHz. For
datasets not providing observations at SHz we resample the
action targets via linear interpolation. We design data nor-
malization to encourage learning motion across datasets, in-
stead of “memorizing” each dataset separately. For target
control normalization, we use global quantile normalization
with statistics computed across the entire training mixture.

Rotations. We investigate various rotation representations
including Euler angles, rotation matrices and unit quater-
nions. This is run in combination of using different rotation
losses, including MSE or cosine for velocity predictions
and geodesic and/or chordal loss [14] for integrated rotation
predictions, as well as end-effector or robot base reference
frames. We use Gram-Schmidt orthonormalization [12] to
ensure valid rotation matrix predictions, but we find half-
space unit quaternions to produce better results overall. We
also find our proposed formulation on the manifold of unit
quaternions S — S? to be more stable and effective than
linear flow matching R* — S3.

Evaluation and Checkpointing. We ablate all design
choices by evaluating on the SIMPLER WidowX environ-
ments [22]. We set the same seed and enable deterministic
CUDA operations for all VLA ablations to reduce training
variance. We further resort to exponential moving average
(EMA) checkpointing, which significantly stabilizes final
checkpoint performance. For further details and ablations,
see Appendix A.2.4.

4. Experimental evaluation

We evaluate the performance of SPEAR-1 as a general-
ist policy for robot manipulation and compare it to open-
weights state-of-the-art VLA models. Our experiments aim
to answer the following research questions:
1. Does 3D VLM pretraining improve the downstream
VLA performance on robot control tasks?
2. How well does SPEAR-1 compare against state-of-the-
art VLA models?
To answer these questions, we evaluate SPEAR-1 on
a variety of manipulation tasks in simulation and multiple
real-world environments on several robot embodiments.
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4.1. Implementation details

VLM training. We train SPEAR-VLM with a batch size
of 512 for 2k steps during the first stage and 10k steps for
the second, for a total of 18hrs on 16 Nvidia H200 GPUs.
VLA pre-training. For VLA training, we start from
SPEAR-VLM and randomly initialized action expert. We
provide two camera views as inputs to the model: exter-
nal, with resolution 280x210, and wrist, with resolution
112x112. When the wrist camera is not available, we feed
a black image. We train on 32 H200 GPUs with batch size
2048 for 300k steps (~6 days) on a data mixture compris-
ing 24 datasets (see Appendix A.2.1) from the Open X-
Embodiment (OXE) collection [32].

VLA post-training. For WidowX real-world and SIM-
PLER simulation and Franka real-world experiments, we

additionally fine-tune our OXE pre-trained SPEAR-1 for
50k steps on the Bridge V2 [45] and DROID [18] datasets
respectively. We refer to these versions as SPEAR-1
(Bridge) and SPEAR-1 (DROID) respectively.

4.2. 3D ablations: SPEAR-VLM vs PaliGemma

We first evaluate whether 3D VLM pretraining improves
VLA performance on downstream tasks and what design
choices matter. Due to the cost of training on the entire
OXE mixture (Tab. 4), we train only on specific subsets.

SIMPLER WidowX experiments. We perform an ablation
study by training on a subset of the Bridge V2 [45] dataset,
containing demonstrations only from a single kitchen sink
environment, and evaluate the models in the SIMPLER [22]
WidowX environments (see Appendix A.2.5 for details).
This induces a distribution shift, which allows to demon-



VLM VLM training | VLA training | pyt Carrot  Put Eggplantin  Put Spoon  Stack Green Block | Avg. Success
Experiment Architecture ‘ 3D tasks ‘ SigLIP  MoGe | SigLIP MoGe | on Plate Yellow Basket  on Towel on Yellow Block Rate
1. no 3D PaliGemma None train - train - 25% 0% 54% 4.1% 20.8%
2. no OBJ SPEAR-VLM | points | frozen frozen | train  frozen 37.5% 0% 45.8% 4.1% 20.8%
3. no VLM-T SPEAR-VLM | objects | frozen frozen | train  frozen 41.7% 0% 70.8% 0% 29.1%
4. no VLA-MF SPEAR-VLM objects | frozen frozen | train train 29.1% 0% 41.7% 4.1% 18.8%
5. SPEAR-VLM | SPEAR-VLM objects | train  train | train  frozen 50% 0% 79.1% 12.5% 35.4%

Table 1.

SPEAR-VLM 3D ablations. Ablations on a single environment subset of Bridge V2 [45] to show the impact of 3D VLM

pretraining. Without object-level 3D tasks (OBJ), 3D VLM pretraining does not show improvement over PaliGemma (1 vs. 2). Training
MoGe during VLA training (VLA-MF) significantly degrades performance (3 vs. 4). Our study shows that the best training configuration
is obtained when both SigLIP and MoGe are trained during VLM pretraining (5), followed by the frozen MoGe during VLA training.

Carrot on Carrot on Marker in | Avg. Task
Method Plate (Dist)  Plate (Elev.) Cup (Dist) | Progress
mo-PaliGemma (DROID) 0% 32% 67% 34%
mo- SPEAR-VLM (DROID) 2% 52% 43% 46%

Table 2. SPEAR-VLM vs. PaliGemma for the downstream
VLA tasks. The experiments were conducted on the Franka
(DROID) platform and the models were from trained from scratch
on DROID. SPEAR-VLM achieves noticeable improvements.
”Carrot on Plate” is not a part of DROID. This indicates SPEAR-
VLM leads to better generalization.

strate the benefits of 3D pretraining when evaluating in un-
seen environments. In contrast, training on entire Bridge
V2 leads to nearly the same performance for all models due
to the close match between training and evaluations.

Results are reported in Tab. 1. First, we note that sim-
ply using SPEAR-VLM architecture and training without
object-level prompts, but only 3D coordinates of random
pixels (row 2), does not lead to any meaningful change
in VLA performance over the baseline my model based on
PaliGemma (row 1). However, training SPEAR-VLM on
all 3D object-level tasks (Fig. 3), we observe a significant
improvement in performance (row 3 and 5 vs. row 1). We
also observe the importance of training SigL.IP and MoGe
encoders both during VLM and VLA training (row 3-5),
with the best performance achieved when both are fine-
tuned during VLM training and frozen MoGe during VLA
training (row 5). We hypothesize this is because SigL.IP has
been trained only for image level semantics, while MoGe
has been trained for dense and detailed depth prediction,
which is much closer to the nature of robotic manipulation.

Real-world Franka experiments. To further validate the
benefits of 3D VLM pretraining, we run comparisons by
training on the DROID dataset [18]. Due to the higher
cost, we train only 2 models: one initialized from the
base PaliGemma VLM and the other from our 3D-aware
SPEAR-VLM. We refer to the resulting models as mg-
PaliGemma (DROID) and m3- SPEAR-VLM (DROID) re-
spectively. We compare the performance of both VLAs on
three of the four tasks from our Franka experiments (Sec-
tion 4.4). The results are reported in Tab. 2. We can observe

that mo- SPEAR-VLM (DROID) is able to outperform the
baseline by more than 10% on average. We note that the
task “Carrot on plate” is not a part of the DROID training
dataset, thus shows the improved generalization capabilities
of SPEAR-VLM. The lower scores of both models on the
variations tabletop/elevations are likely due to workspace
3D position being out-of-distribution. Even in this case, -
SPEAR-VLM (DROID) is able to successfully complete the
task in some cases while 7y-PaliGemma (DROID) fails ev-
ery time.

4.3. Simulation experiments

We evaluate SPEAR-1 on the WidowX environments of the
SIMPLER simulation benchmark [22], and compare it with
OpenVLA [19] and Spatial VLA [35]. We report the results
in Tab. 3. Our model is able to outperform the baselines
by more than 10%. In our experience, we found SIMPLER
simulation results only to be indicative of relative perfor-
mance of the models on the real WidowX robot, but not
necessarily of absolute performance. Therefore, we focus
on real-world evaluations.

Put Carrot Put Eggplant Put Spoon  Stack Green Block | Avg. Success
Model onPlate  in Yellow Basket  on Towel on Yellow Block Rate
OpenVLA 0% 4.1% 0% 0% 1.0%
Spatial VLA 25.0% 100.0% 16.7% 29.2% 42.7%
SPEAR-1 (ours) 58.3% 62.5% 62.5% 45.82% 57.3%

Table 3. SIMPLER [22] simulation evaluations. Spatial VLA
numbers are from [35]. SPEAR-1 outperforms the considered
baselines by more than 10%.

4.4. Real-world experiments

We conduct evaluations on a total of 10 manipulation tasks
across two robot platforms: WidowX and Franka Research
3. The tasks are designed to assess the ability of the eval-
uated models to generalize to unseen environments and ob-
jects. We design the tasks to be challenging for all models.
For more details about the selected tasks see Appendix A.3.
Evaluation protocol. For each task we define M initial con-
ditions by varying the starting position of the objects in the
scene. We execute N trials for each initial condition, for a
total of NxM trials per task. For each model, we evaluate



and report the average task progress across all tasks, config-
urations, and trials. To that end, following previous works
[3, 32], we define a scoring rubric with partial scoring for
each task (see Appendix A.3 for scoring rubrics details).

WidowX experiments. Our hardware setup for this set of
experiments closely matches the Bridge V2 setup [45], with
a single external camera positioned on the side of the robot
arm, pointing toward the workspace. For this set of exper-
iments, 5 tasks are evaluated, with M = 4, N = 3, for a to-
tal of 60 trials per model. We compare the performance of
SPEAR-1 with OpenVLA [19], using the publicly released
implementation and model weights. In this setting, we do
not compare against 7y [5], mo-FAST [33] and 7 5 [6] due
to the lack of publicly accessible weights for the WidowX
platform. The results are reported in Fig. 4. SPEAR-1 is
able to achieve 10% higher average task progress across all
tasks than OpenVLA, a very strong baseline in this setting.

Franka experiments. Our hardware setup for this set of
experiments is similar to that of DROID [18]. We design
5 tasks, with M = 5 and N = 3, for a total of 75 trials per
model. We found that the wrist camera view is crucial for
training and deployment on DROID. To ensure a fair com-
parison, we compare against open-weights models that use
both the external and wrist camera. Specifically, we com-
pare SPEAR-1 with the DROID-finetuned variants of 7g-
FAST [5, 33], a strong autoregressive baseline, and 7 5 [6],
one of the latest state-of-the-art robotic foundation model
optimized for open-world generalization.

The results of our real-world experiments are reported in
Fig. 5. Without any fine-tuning on the target environment,
SPEAR-1 is able to significantly outperform my-FAST, and
match 7 5. We note that both baselines do not integrate any
sort of specialized 3D-aware training and are trained on at
least 900M more robot demonstration frames collected in
diverse environments. In contrast, SPEAR-1 is trained on
~45M frames, approximately 20 x less robotics data. These
results indicate the importance of 3D-based knowledge and
pretraining for VLA’s generalization. As an architecturally
close comparison, my-FAST integrates a specialized action
tokenization compared to 7y and was the first generalist pol-
icy trained on the DROID [18] to be successfully evaluated
zero-shot in unseen environments, without fine-tuning. In
comparison, SPEAR-1, which also follows the 7y archi-
tecture, can reach ~5x higher performance than 7y-FAST
without fine-tuning and without the large-scale robotic data
used by mo-FAST.

Apart from architectural enhancements and co-training
on top of my-FAST, 7 5 integrates high-level semantic sub-
task prediction and robotic data mixture explicitly focused
on environment diversity and generalization. Qualitatively
and quantitatively, we find 7y 5 to perform better at environ-
ment generalization than 7y-FAST and match SPEAR-1’s
performance on our set of evaluation tasks. This suggests

that 3D VLM pretraining on non-robotic data from diverse
environments is a more scalable way to boost robotic mod-
els’ generalization capabilities without the need for large-
scale robotic data collection in diverse environments.

5. Discussion and Limitations

As highlighted by our experimental evaluation, SPEAR-1
achieves state-of-the-art performance in multiple zero-shot
robot control scenario, both in simulation and in the real-
world. Nevertheless, our approach still presents several lim-
itations. The proposed 3D VLM pre-training strategy is not
well suited for deformable objects or objects with complex
shapes.

Future work could explore the use of different 3D pri-
ors to better capture the geometry of such objects. Addi-
tionally, the coordinates of the 3D bounding boxes labels
computed using MoGe’s affine-invariant depth predictions
are not in metric space. Further investigation is required
to analyze the implications of this design choice on down-
stream performance, as well as to explore how ground truth
point cloud labels or state-of-the-art metric-depth estima-
tors could be integrated to help resolve this limitation.

While we have showed the benefits of 3D VLM pre-
training on downstream robot control tasks, the scaling laws
relating the latter to the quantity and quality of 3D pre-
training data are still not well understood. Due to resource
and time constraints, we leave this investigation for future
work. Another limitation of SPEAR-1 is the need to fine-
tune on the target embodiment to achieve satisfactory re-
sults. We plan to explore how to alleviate this requirement
in future work. It also remains to be seen how well SPEAR-
1 generalizes to orders of magnitude more tasks and en-
vironments against models such as 7 5 trained on signif-
icantly more diverse robot data.

6. Conclusion

In this work we introduced SPEAR-1 and SPEAR-VLM
that demonstrate a path towards building generalist robot
policies from data beyond robot teleoperation only.

Our method targets the VLM backbone with SPEAR-
VLM, a 3D-aware VLM trained on 2D images from non-
robotic datasets enriched with 3D annotations. To embed
control-relevant 3D knowledge in SPEAR-VLM, we train
it on VQA questions, inspired by embodied tasks. Stepping
on this foundation, we built SPEAR-1, a robotic foundation
model that can be deployed robustly across multiple robot
platforms and environments, and matches or outperforms
state-of-the-art foundation models which have been trained
on 20x more robot demonstrations.

Our work supports the hypothesis that enhancing VLM
capabilities with non-robotic embodied knowledge is a scal-
able way to reduce dependence on hard-to-collect robot



demonstrations and build future robotic foundation models.
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A. Appendix

The appendix is organized as follows:

e In Sec. A.1 we provide more details on the VLM pre-
training including VQA tasks, encoder fusion strategies,
3D tokenization and data annotation pipeline.

* In Sec. A.2 we provide more details on the VLA training
including data mixture, architecture, flow matching and
design decision ablation results.

e In Sec. A.3 we provide the scoring rubrics for real-world
evaluation tasks

* In Sec. A.4 we discuss the differences between Bridge V2
and DROID datasets for zero-shot control evaluations in
unseen environments.

Dataset Weight
austin_buds_dataset 0.5
austin_sailor_dataset 2.0
austin_sirius_dataset 0.5
berkeley_autolab_ur5 1.0
berkeley_cable_routing 0.1
berkeley_fanuc_manipulation 1.0
bridge 18.0
dlr_edan_shared_control 0.1
droid 35.0
fmb 1.5
fractal20220817 _data 12.0
furniture_bench_dataset 1.5
iamlab_cmu_pickup_insert 0.3
kuka 4.0
language _table 1.5
nyu_franka_play_dataset 0.3
roboset (kinesthetic) 2.0
roboset (teleoperation) 5.0
roboturk 3.0
stanford_hydra_dataset 3.0
taco_play 2.0
toto 1.5
ucsd_kitchen_dataset 0.2
utaustin_mutex 3.0
viola 1.0

Table 4. Open X-Embodiment data mixture for SPEAR-1 pre-
training

A.1. VLM training

A.1.1. VQA tasks for VLM pre-training

The Visual Question Answering (VQA) tasks used during
VLM pre-training are inspired by VLA embodied tasks and
aim to embed as much control-relevant 3D information into
the VLM as possible. We use templated question-answer
pairs grouped in the following categories:

* 3D Kkeypoints prediction: Output the 3D coordinates of
the closest, furthest and center points of an object with
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respect to the camera frame.

3D bounding prediction: Output the vertices of the 3D
bounding box of an object.

Object-to-object distance prediction: Output the direct
distance between object X and object Y in 3D space as
well as its zyz components.

Object-to-object bounding box prediction: Output the
distance between the bounding box vertices and the cen-
ters of object X and object Y.

Backprojection: Locate the vertices of the 3D bounding
box of an object on the 2D image.

Chain-of-thought comparisons: What is the distance
from the camera to object X? What is the distance from
the camera to object Y? Which object is closer to the cam-
era?

To further encourage the model to "reason’ over the in-

formation provided and attend to the right objects, in a sin-
gle training example we use a random number (between 1
and 4) of question-answer pairs corresponding to different
prompts and objects in the scene. To resolve ambiguities, if
two instances of the same type of object appear in the im-
age, we filter them out and never ask questions about them.

A.1.2. VLM encoder fusion strategies

We experimented with 2 different strategies to combine the
outputs of the Sigl.IP and MoGe encoders:

1.

Concatenating the visual features predicted by both en-
coders and projecting them via a linear layer to the LLM
embedding space. In particular, for SigLIP we take only
the tokens at the last layer of the vision encoder, while
for MoGe we take the tokens at the last 4 layers of the
encoder, following the approach used by MoGe architec-
ture to decode the features to a 3D point cloud.

. Using MoGe’s predicted 3D point cloud P in the

camera ego pose (in an affine-invariant space) and
adding them to the SigLIP encoder features, similar to
Spatial VLA [35]. In particular, MoGe’s 3D point cloud
output P € RH*W>3 i5 embedded to P’ € Rh>*wxd
through a projector %(:), composed of normaliza-
tion, convolution, sinusoidal embedding ~(z)
(z,sin(207z), cos(2%7z), . . ., sin(2F 1 7x), cos(2E 1 7x))
[30] and an MLP. Finally, the features F/ = F + P’
are fed to PaliGemma’s SigLIP linear projector, where

F € R'"w*d denotes the features at the SigLIP encoder
output.

During our preliminary VLM evaluations we found the

first strategy to demonstrate qualitatively better perfor-

mance on bounding box prediction tasks.

In particular,

models trained with the second approach struggled to con-
sistently output “grammatically” correct bounding boxes,
e.g. they would output 22 or 23 3D tokens instead of the
required 24. We therefore used the first approach for all
VLM pre-training experiments in the main paper.



Dataset Domain / Subset # Annotated Images Segmentation Masks
EgoExo04D [13] Cooking & Bike Repair ~200k GT

Bridge [45] Robot Demonstrations ~30k SAM2 Generated
Total ~230k

Table 5. Annotated image counts for training dataset construction, with segmentation mask availability.

Task 0.25

0.50

0.75 1.00

Carrot on Plate

(w/ distractors & elevations) Reach carrot

Marker in Cup
(w/ distractors) Reach marker
Cover the Pot -

Apple in drawer and close Pick up the apple

Pick up carrot

Pick up marker
Pick up lid
Put the apple in the drawer

Drop on/near plate ~ Correctly place on plate

Drop on/near cup Place inside cup

Drop lid on pot Correctly cover pot

Half-close the drawer  Fully close the drawer

Table 6. Scoring rubric for Franka evaluation tasks.

Task 0.25 0.50

0.75 1.00

Eggplant in pot Reach the eggplant

Pink cup on blue plate Reach the pink cup
Chess piece on board -
Lobster in the pan -

Corn between cups -

Pick up the eggplant

Pick up the pink cup

Go to the brown chess piece

Pick up the lobster
Pick up the corn

Drop the eggplant near the pot Drop the eggplant on the pot

Drop the pink cup near the plate Place the pink cup correctly
Pick up the brown chess piece Drop it on the board
Drop the lobster near the pan Place the lobster inside the pan

- Place the corn between the cups

Table 7. Scoring rubric for WidowX evaluation tasks.

A.1.3. 3D tokenization

To encode 3D information into text we extend the
PaliGemma tokenizer with N = 1024 3D tokens, as 3D co-
ordinates are conceptually different from the existing visual
and language tokens. This is in line with PaliGemma’s ap-
proach of extending Gemma’s tokenizer to pixel locations.
Each 3D token corresponds to a quantized distance value in
the range [Zmin, Zmax)>» Where Zmin and zmax are computed
as the 1st and 99th quantiles of the 3D point cloud distribu-
tion along any of the zyz coordinates.

We found the distance values in the data to approxi-
mately follow a Normal distribution. Therefore, to allow
for more accurate tokenization, we compute non-uniform
bins with fine-grained discretization around the mean and
spread out widths near the tails such that the distribution of
3D tokens is approximately uniform.

We initialize the new token embedding weights from a
multivariate normal distribution that has the mean and co-
variance of the pretrained embeddings [15, 16].

A.1.4. VQA data annotation pipeline

We follow the method described in Section 3.1 in order
to enrich 2D images with semantics, segmentation masks
and 3D point clouds. We also experimented with Ground-
ingDINO [29] instead of Gemini, but we found the semantic
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labels produced by GroudingDINO to be a lot less accurate
and consistent. We found that prompting SAM?2 [36] with
2D bounding boxes near the target objects, leads to segmen-
tation masks of high quality.

We also found that MoGe [47] outputs depths at differ-
ent scales depending on the input image size. Therefore,
we resize all our images to 840x630 for MoGe point cloud
annotations.

For 3D bounding box estimation, after filtering the 3D
point cloud with a segmentation mask, we run statistical
outlier removal and esitmate an oriented 3D bounding box
around the remaining points using Open3D [52]. To facili-
tate learning, we order all 8 bounding box vertices in a con-
sistent way, starting based on their spatial coordinates with
respect to the camera frame.

A.2. VLA training

A.2.1. Data mixture

We report the VLA training data mixture in Tab. 4. The
sampling weights are chosen manually based on dataset
size, visual and task diversity, and quality of language an-
notations.



(a) Training environment: (b) SIMPLER: (c) SIMPLER: (d) SIMPLER: (e) SIMPLER:
Toykitchen 2 Put Carrot on Plate Put Eggplant in Yellow Basket Put Spoon on Towel Stack Green Block on Yellow Block

Figure 6. 3D ablation environments on WidowX. (a) Training data subset from Bridge V2 [45]. (b) - (¢) SIMPLER evaluation environ-
ments.

A.2.2. VLA training details S? and its time derivative ¢;; € R*, we can compute the an-
Reference Frames. In this work we focus on learning po- gular velocity of rotation via w; = 2.0-Im(q; ®q¢) € R.
sition control of fixed-base single-arm manipulators. Each For a small time step At, the corresponsing delta rotation is
control in the sequence Ay = [ay, ay41, .. .8, 1] is de- given by a rotation vector around the unit axis w =w /||wl|
fined as a delta with respect to the current end-effector carte- over an angle A¢ = ||w[|At. The corresponding delta
sian pose Agpr = [A7, Ag]. The translation component, quaternion is given by
Ar is in robot base frame and the rotation component, A g, A
o ) o ¢ . [A¢
is in end-effector frame. The gripper action is binary. Aq = [cos <—> ,wsin (—)} (6)

Action Chunking. During VLA training we use an ac- 2
tion chunk of size H = 5 and frequency of SHz. As not The integrated unit quaternion is then given by qi1a; =
all datasets in Open X-Embodiment provide action labels at q: ® Aq € S3,
SHz, we downsample or upsample the actions accordingly Rotation losses. The denoising vector field for quater-
via linear interpolation. This is done with the goal to en- nions u,(q7|q;) € R?* is computed as:
courage the model to share knowledge across datasets with
different control frequencies and embodiments instead of .
’memorizing’ each dataset separately. w(qf|q:) = daj —

Architecture. Similar to 7o [5], SPEAR-1 combines a dr (7)
VLM, which processes the image-language inputs, with an - .9 [_ cos((l _ 7)9) Q. + cos (79) qt] )
action expert module, which processes robot proprioception sin ¢

observations and predicts the robot action sequence con-
ditioned on the VLM transformer’s intermediate key-value
pairs. The action expert has the same architecture and num-

The cosine loss is applied directly on the velocity predic-
tions and has the form:

ber of layers as the Gemma [42] transformer and configu- L5%(0) =1 —vo(AT,0¢)[a] - u(A7|Ay)[q]. (8)
ration downsized to token_size = 4096, hidden_size =

4096, for a total of ~300M parameters, which is ex- The geodesic loss is applied on an integrated rotation pre-
actly the same as my [5]. Corresponding layers in the diction qgié € S3, derived by integrating the noised
VLM and the action expert have a shared attention op- input quaternion q; with the predicted rotation velocity
eration with block-wise causal attention over the blocks vg(A7,04)[q] over a small time step 5. We follow the inte-
[It, 1], [Pt), [@t+1, - - -, arr—1). Within each block, there gration method described above. The target is given by the
is full bidirectional attention and the tokens in each block ground truth interpolated quaternion at time ¢ + J, denoted
can attend to tokens in previous blocks, but cannot attend to asq; ™° € S%. The closed form geodesic loss is given by:

the tokens in future blocks. During training, only the action
sequence prediction is supervised and gradient updates are
propagated back to the VLM parameters through the shared
attention layers.

L5°(0) = min|q] ™ + 5}’ )

The complete rotation loss is given by:

. . t+H
A.2.3. Flow m:iltchmg details . Los(8) = Z [ £5°°(0) + ﬁieo ( 9)] . (10)
To address the inherent double coverage of 3D rotations by et
the unit quaternion group S, we ensure that all quaternions
used during training and inference lie in the same half-space A.2.4. VLA design decisions details
defined by R(q) = q., > 0. We present more details and results on the design choices
Quaternion integration. Given a unit quaternion q; € we explored for VLA training.
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Put Carrot Put Eggplant Put Spoon  Stack Green Block | Avg. Success
Experiment | onPlate  in Yellow Basket on Towel on Yellow Block Rate
224x224 70.8% 70.8% 79.1% 8.3% 57.25%
280x210 62.5% 75.0% 83.3% 12.5% 58.3%

Table 8. Image resultion ablations. Different resolutions lead to
comparable results on SIMPLER WidowX tasks.

Put Carrot Put Eggplant Put Spoon  Stack Green Block | Avg. Success
Experiment onPlate  in Yellow Basket  on Towel on Yellow Block Rate
trainable SigLIP 75.0% 100.0% 79.1% 72.9%

frozen SigLIP
frozen-trainable SigLIP
lower Ir SigLIP

62.5%
66.6%
58.3%

54.1%
83.3%
58.3%

83.3%
100.0%
79.1%

25% 56.3%
70.8%

56.3%

33.3%
29.1%

37.5%

Table 9. Vision encoder training. Trainable SigLIP outperforms
other strategies on SIMPLER WidowX tasks. Frozen SigLIP fol-
lowed by switching on gradients is comparable.

Put Carrot Put Eggplant Put Spoon  Stack Green Block | Avg. Success
Experiment onPlate  in Yellow Basket  on Towel on Yellow Block Rate
99-th quantile 54.1% 79.1% 79.1% 33.3% 61.5%
min-max const 66.6% 87.5% 87.5% 20.8% 65.6%
mean-std 45.8% 79.1% 45.8% 25.0% 49.0%
Table 10. Translation controls normalization. Normalizing

translation controls with min-max constants outperforms other
strategies on SIMPLER WidowX tasks.

Flow  Velocity Rotation | PutCarrot ~ Put Eggplant  PutSpoon  Stack Green Block | Ave. Success
matching  Loss loss onPlate in Yellow Basket onTowel  on Yellow Block Rate
linear MSE  geodesic | 41.6% 100.0% 41.6% 16.6% 50.0%
linear cos geodesic 41.6% 87.5% 50.0% 29.1% 52.1%

s MSE  geodesic | 45.8% 62.5% 75.0% 45.8% 57.3%
s cos geodesic | 45.8% 79.1% 66.6% 45.8% 59.4%

Table 11. Linear vs S Flow Matching for rotations. S® flow
matching consistently outperforms linear flow matching on SIM-
PLER WidowX tasks.

Image Resolution. Image resolution ablations are pre-
sented in Tab. 8. We observe that square vs 4:3 aspect ratio
does not significantly affect performance.

Fine-tuning vision encoders. Ablations on fine-tuning vi-
sion encoders are presented in Tab. 9. Trainable SigLIP
strongly outperforms a frozen SigLIP as well as SigLIP with
a lower learning rate compared to the rest of the weights.
Freezing SigLIP and fine-tuning for additional 2k steps
(frozen-trainable Sigl.IP) leads to comparable performance
to trainable SigLIP, but requires an additional hyperparam-
eter tuning.

Controls normalization. Ablations on translation controls
normalization are presented in Tab. 10. Mean-std normal-
ization is significantly worse than other forms of normaliza-
tion. Min-max normalization with const values is slightly
better than per-dataset min-max normalization with 1st and
99th quantiles.

Rotations. Partial ablations on rotation representations are
presented in Tab. 11. S3 flow matching consistently out-
performs linear flow matching. Cosine distance leads to
slightly better performance than MSE for rotation velocity
prediction.
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A.2.5. 3D ablation details

SIMPLER WidowX experiments. For SIMPLER [22] 3D
ablations on WidowX, we train on a subset of the Bridge
V2 [45] dataset, containing demonstrations only from a sin-
gle kitchen sink environment. The resulting subset com-
prises ~ 41% of the original Bridge V2 dataset. We train
each VLA for 30k steps with batch size 512. Example
images from the training and evaluation environments are
shown in Fig. 6.

Franka experiments. For the 3D ablations on a real-
world Franka robot, we train on the entire DROID [18]
dataset for 100k steps with batch size 2048. Both models
take as input both side and wrist cameras.

A.3. Real-world robot task description and scoring

We provide the detailed task progression scoring for all real-
world evaluations on the WidowX and Franka in Tab. 6 and
Tab. 7 respectively.

A.4. Zero-shot control: Bridge V2 vs. DROID

Zero-shot control embodiments

Model in real-world unseen environment
RT-1-X [32] WidowX
RT-2-X [32] WidowX, Google Robot
Octo [31] WidowX, Google Robot?
OpenVLA [19] WidowX
Spatial VLA [35] WidowX
CogACT [21] WidowX
FLOWER [38] WidowX
MotoVLA [40] WidowX
CoT-VLA [51] WidowX

7o [5] Franka, Others?

7o-FAST [33] Franka, Others?

Franka, Mobile Fibocom,

Mobile Galaxea, Others?
Bimanual Franka,

Aloha, Apollo humanoid

mo.5 [6]

Gemini Robotics 1.5

RDT1 Bimanual URS, Aloha
RDT2 Bimanual URS5, Bimanual Franka
SmolVLA S0101
GROOT-N1.5 None

SPEAR-1 (ours) WidowX, Franka

Table 12. Most works on generalist models for robot manipula-
tion evaluate zero-shot control on Bridge V2 + WidowX using in-
distribution environments. Only few do so on DROID + Franka in
unseen environments.

Most works on generalist models for robot manipulation
[19, 21, 32, 49, 51] evaluate the zero-shot control capabili-
ties of their policies by pretraining on the Bridge V2 dataset
[45] and deploying on the WidowX robot in environments
close to the training distribution. Bridge V2, however, is
not very diverse in the number of environments, objects,



and camera viewpoints. As a result, we observe that models
pre-trained on Bridge V2 only perform well on WidowX
environments when the deployment scenario is similar to
what is seen in the dataset (e.g. in the blue toy sink environ-
ment), but are usually very sensitive to variations in camera
position and OOD backgrounds and objects. In addition, the
WidowX arm has a very low payload and short reach, which
makes it unable to manipulate objects beyond the items in
a toy kitchen set. The DROID dataset [18], on the other
hand, is significantly more diverse, and the Franka arm used
for data collection is more capable. Furthermore, DROID
demonstrations are collected primarily in real-world envi-
ronments instead of toy environments, the number of unique
scenes is 20x higher, and the camera viewpoints vary sig-
nificantly. Therefore, we posit that pretraining on DROID
and deploying on Franka is a superior experimental setup to
showcase generalization to more realistic real-world scenar-
ios, as shown by [2]. The diversity and richness of DROID,
however, is at the same time a challenge. Training general-
ist control policies on DROID that perform well zero-shot
on a Franka robot in unseen environment, is a task that, to
the best of our knowledge, has been tackled successfully
only by a handful of works so far [6, 33]. In contrast, mul-
tiple other works that pre-train on DROID, resort to mixing
or fine-tuning on demonstrations collected from the spe-
cific target environment in order to achieve good perfor-
mance [19, 21, 35, 38, 51]. Therefore, as suggested also by
[33], we argue that achieving state-of-the-art performance
on zero-shot control on the DROID setup by pre-training on
DROID is a significantly stronger result than pre-training
on Bridge V2 and deploying on WidowX.
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