arXiv:2511.17427v1 [cs.LG] 21 Nov 2025

Towards fully differentiable neural ocean model with
Veros

Etienne Meunier' Said Ouala? Hugo Frezat® Julien Le Sommer® Ronan Fablet?
"nria Paris, France 2IMT Atlantique, France 3IGE, Grenoble, France

Abstract

We present a differentiable extension of the VEROS ocean model [Hifner et al.
[2018]), enabling automatic differentiation through its dynamical core. We describe
the key modifications required to make the model fully compatible with JAX’s
autodifferentiation framework and evaluate the numerical consistency of the result-
ing implementation. Two illustrative applications are then demonstrated: (i) the
correction of an initial ocean state through gradient-based optimization, and (ii)
the calibration of unknown physical parameters directly from model observations.
These examples highlight how differentiable programming can facilitate end-to-end
1earninﬁ]and parameter tuning in ocean modeling. Our implementation is available
online

1 Introduction

Earth system models (ESMs) are widely used to study climate changes resulting from both an-
thropogenic and natural perturbations. Over the past years, significant advances have been made
through the development of new numerical schemes, refined physical parameterizations, and the use
of increasingly powerful computers. Despite these advances, tuning ESMs to accurately reproduce
historical data remains largely a manual process |Hourdin et al.|[2017]], and persistent errors and
biases continue to challenge their accuracy.

Recent advances in scientific machine learning motivated the development of new learning-based
methods for the design and calibration of ESMs Irrgang et al.|[2021]], Nguyen et al.|[2023]], Ouala et al.
[2024], Dheeshyjith et al.|[2025]). In this context, one promising way of building climate models that
are informed with Machine Learning (ML) is based on Differentiable Programing (DP) paradigms
Gelbrecht et al.| [2023]], [Sapienza et al.| [2024]. In particular, DP methods allow for designing
calibration methods that can be trained end-to-end |Frezat et al.| [2022]], Kochkov et al.| [2024] which,
in turn, has the potential to unify and solve various challenges in climate modeling including, model
bias correction, parameter tuning and the design of subgrid-scale parameterizations that are informed
by observations. However, most existing climate models are implemented in programming languages
that do not natively support automatic differentiation. Moreover, they are often based on design
choices aimed towards memory efficiency (e.g., in-place operations), which prevents the use of
automatic differentiation methods.

Despite these limitations, recent studies have explored the development of dynamical cores that
natively support automatic differentiation and can be trained end-to-end [e.g. [Kochkov et al.| [2024]
for atmospheric simulations]. In this work, we take a step in this direction by exploring ocean model
calibration within a differentiable programming framework. Specifically, we use the VERsatile
Ocean Simulator (VEROS) Hifner et al.| [2018]], which contains a JAX backend, to evaluate the
ability of using DP to ocean model tuning. We show how we adapted VEROS to support JAX’s
automatic differentiation and present examples demonstrating the use of both forward and reverse
mode differentiation for state and parameter calibration.

Uhttps://github.com/Etienne-Meunier/Veros- Autodiff

Preprint.

https://arxiv.org/abs/2511.17427v1

2 Differentiability properties in Veros

2.1 Modifications to Veros

To enable differentiation through the Veros step function, we implemented several key modifications
to ensure compatibility with JAX’s automatic differentiation framework.

Functionally pure step function. The original Veros step function employs in-place operations that
directly modify state variables, which violates the functional purity requirements of JAX automatic
differentiation. To address this incompatibility, we developed a wrapper function that creates a
copy of the input state and returns the updated state without modifying the original input. This
approach ensures functional purity for both forward- and reverse-mode gradient computations. We
also implemented a selective differentiation wrapper that freezes all variables except for a specified
subset, limiting gradient computation to only the parameters of interest.

Handling functions with singular gradients. While most operations in Veros are inherently
differentiable, certain functions exhibit undefined or singular gradients that can lead to numerical
instabilities. For example, the square root function f(z) = \/z has an undefined gradient at 2 = 0.
To address this, we preserve the original forward computation but define custom backward passes.
Specifically, for the square root, we implement the regularized gradient f’(x) = (21/max(z,¢)) ™!
where € > 0 is a small regularization parameter that prevents singularities at the origin. JAX’s custom
gradient functionality enables this selective modification of backward passes.

Computational graph preservation. We eliminated in-place type conversions that could break the
computational graph required for automatic differentiation. These modifications primarily affected
diagnostic routines. Additionally, we replaced standard Python assert statements with JAX’s
checkify frameworkE] to maintain compatibility with JAX transformations.

2.2 Forward behaviour

We rigorously verified that our modifications preserve the original forward simulation behavior.
All control flow structures and operations were replaced with JAX-compatible equivalents where
necessary, and when adjustments were required, only gradient definitions were modified while
preserving forward computations unchanged. To validate forward compatibility, we compared
temperature fields after 3000 integration steps between our modified implementation and the original
Veros code. The relative error was approximately 10~19, which we attribute to floating-point precision
differences between backends. The computational performance of forward simulation remains
virtually unchanged, as the core numerical operations are identical to the original implementation.

2.3 Backward behaviour

We validated the correctness of computed gradients through comparison with finite-difference ap-

proximations. For a composite function ¢ £ g(s(z)) : RS — R, where s represents the Veros step
function and g is a scalar aggregation operator, we compute the gradient validation error:

lw + ek) — f(w — ek)
2e

£ = Hvr%:w'k— (2 g(s(z): RS - R

2

Here, V¢ is computed using automatic differentiation, k is a random unit vector, w is the evaluation
point, and ¢ ~ 10~* is the finite-difference step size. Over single-step Veros evaluations, this
validation yields errors on the order of 10~7, confirming the accuracy of our gradient implementation.
Additional details regarding accuracy across multiple time steps are provided in the Appendix.

https://docs. jax.dev/en/latest/debugging/checkify_guide.html

https://docs.jax.dev/en/latest/debugging/checkify_guide.html

Temperature field prior integration
Learning through 4 iterations

10 variable

— loss B
distance 1

08
1

06
jt
0.4 E
1
02 y
00 —_— 9

0 2000 4000 6000 8000 10000 Reference Perturbed Corrected
epoch

value
E R & R G &

5

Figure 1: Results from the initial field reconstruction experiment. Left: Loss and distance metrics
during optimization. Right: Temperature field snapshots showing the reference field, initial perturbed
field, and final reconstructed field after optimization.

2.4 Toy experiment: gradient-based correction of initial states

To validate our gradient implementation and demonstrates practical utility for data assimilation, we
design an inverse problem that reconstructs an original temperature field from a perturbed initial
condition through optimization across multiple Veros steps.

Setup : Starting from a reference initial temperature field T.¢(t = 0), we create a perturbed version
by adding a spatial Gaussian perturbation centered in the domain. We then minimize the L2 loss
between temperature fields after | = 4 integration steps: £(Tp) = |[|S(Tp) — S™ (Tir)||3 where
S represents Veros integration step and T is the optimized initial field. Gradient descent is used:

T = 1P — avg, ().
Results : Figure[I|shows a successful field reconstruction. The left panel displays the loss function

(L(T))) and distance metric (HTék) — Thef||3) during optimization—both converge to near-zero. The
right panel shows temperature snapshots: reference, perturbed initial, and final reconstructed fields,
visually confirming successful recovery of the original distribution.

3 Application to model calibration problems

3.1 Idealised Antarctic Circumpolar Current (ACC) model configuration

We use the ACC model configuration from the VEROS setup gallery at an eddy-permitting resolution
of 1/4°. The configuration consists of a zonally re-entrant channel representing an idealized ACC,
connected to a northern ocean basin enclosed by land, representing the Atlantic ocean. The model
domain extends from 0° to 60°E and from 40°S to 40°N, with 15 vertical levels resolving the
water column down to 2000 m depth. The circulation is forced by a meridionally-varying eastward
wind stress over the ACC region, combined with a surface temperature relaxation. More details on
simulation parameters are provided in the appendix.

This simulation setup is used to demonstrate the potential of automatic differentiation for parameter
calibration in ocean models. We focus on the lateral viscosity (A},) and bottom friction coefficients
(Tbot), as these parameters strongly influence resolved mesoscale variability. Bottom friction is a
primary energy sink for mesoscale kinetic energy, which alters the vertical structure of resolved
eddies, and can change their amplitude and scales |Arbic and Scott|[2008]]. Lateral viscosity controls
small-scale dissipation and numerical stability, therefore affecting eddy lifetimes, spectral slopes
and the cascade of energy/enstrophy Pearson et al.|[2017]. The calibration of these two parameters
provide a framework to mimic calibration experiments based on satellite observations.

A reference simulation is first generated using prescribed values for these parameters (see Tab. [I]for
details). We then demonstrate that automatic differentiation enables the recovery of these reference
values when starting from mis-specified parameter choices, relying solely on observations of the
barotropic streamfunction (BSF), which, in this idealized setup, serves as a proxy for large-scale
circulation features that are typically inferred from satellite observations of sea surface height (SSH).

3.2 Sensitivity analysis for parameter calibration

The left panel of Fig. [2] shows the gradient of the loss function with respect to both parameters,
computed using forward-mode automatic differentiation. The loss is defined as the mean squared
error between the simulated and reference BSF. The gradient field is visualized using a quiver plot,
where arrows indicate the direction and magnitude of the steepest descent in parameter space. Overall,
the gradient magnitudes differ significantly between the two parameters. The loss function exhibits
stronger sensitivity to variations in A;, (horizontal direction) compared to 1, (vertical direction),
as shown by the predominance of gradient vectors in the horizontal orientation for most regions of
the parameter space. This anisotropy suggests that lateral viscosity has a more direct influence on
the large-scale circulation patterns captured by the BSF. Beyond this scale difference in gradient
magnitudes, the direction of the gradient vectors generally points toward a convergence region that is
consistent with the location of the true parameter values (marked by red crosses), which suggests that
gradient-based optimization is suitable for recovering the true values of these parameters.

112 Barotropic streamfunction (md/s)
1o
TN G | [|
W) 1| |y
- N7 P T
E cas | Zaeso _ - o
H -l H
£ 2 o g
g 2 I g . " o
H 2 Cuw 3
12 ST P Y STAN A%
s \« %/\./\; ‘ " @.op\), s
s ,’W ‘
" 5200 5400 5600 5800 6000 6200 6400 6600 - S . , L
10 Timne (day) Longitude (°E)

Figure 2: Left: Loss landscape for the calibration task. Color indicates the loss for each combination
of parameter and vector field gradients direction. Right: Results of calibration experiment. ACC
transport (Sverdrup) and Snapshots of the barotropic streamfunction.

3.3 Calibration experiment analysis

In this experiment, we evaluate the ability of using gradient-based optimization to tune model
parameters using observations of the BSF. As highlighted in right panel of Fig.[2] the uncalibrated
model uses values of A;, and 7, that result in quantitative changes in the ACC transport and in the
distribution of mesoscale eddies, illustrated by the BSF anomaly relative to the long-term mean.

Overall, the gradient-based calibration yields parameter values that are very close to the reference
values, and the resulting calibrated simulation closely reproduces the reference run, both in terms of
ACC transport strength and the spatial distribution of mesoscale eddies.

4 Conclusion and future work

In this work, we introduce modifications to the Veros ocean simulator to enable automatic differentia-
tion capabilities. We demonstrate gradient computation through two examples: correcting an initial
state and calibrating physical parameters based on a reference simulation. This provides essential
tools for online learning of parameterizations and model correction in ocean modeling.

Our implementation successfully computes accurate gradients through the complex nonlinear dy-
namics of Veros in the demonstrated scenarios, opening possibilities for data assimilation, parameter
estimation, and physics-informed machine learning in oceanography. The validation experiments
confirm gradient accuracy and practical utility, though further investigation is needed to assess
performance over extended simulation horizons.

Future work will focus on optimizing gradient computation performance, particularly memory usage
and processing time for long rollouts. Key directions include implementing implicit differentiation
schemes |[Blondel et al.|[2022] through iterative solvers in vertical mixing schemes, which currently
represent computational bottlenecks. We also plan to explore hybrid approaches combining automatic
differentiation with adjoint sensitivity methods Pontryagin|[2018]] for improved efficiency in long-
horizon problems, while conducting experiments to validate gradient accuracy over extended temporal
scales.

Acknowledgments and Disclosure of Funding

This study is a contribution to AI4PEX (Artificial Intelligence and Machine Learning for Enhanced
Representation of Processes and Extremes in Earth System Models), a project supported by the
European Union’s Horizon Europe research and innovation programme under grant agreement no.
101137682. This study also contributes to EDITO Model Lab, a project supported by the European
Union’s Horizon Europe research and innovation programme under grant agreement no. 101093293.

This study has received funding from Agence Nationale de la Recherche - France 2030 as part of the
PEPR TRACCS programme under grant number ANR-22-EXTR-0006 and ANR-22-EXTR-0007.

References

Brian K. Arbic and Robert B. Scott. On quadratic bottom drag, geostrophic turbulence, and oceanic
mesoscale eddies. Journal of Physical Oceanography, 38(1):84—-103, January 2008. ISSN 0022-
3670. doi: 10.1175/2007jp03653.1. URLhttp://dx.doi.org/10.1175/2007JP03653. 1.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-Lopez,
Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. Advances
in neural information processing systems, 35:5230-5242, 2022.

Surya Dheeshjith, Adam Subel, Alistair Adcroft, Julius Busecke, Carlos Fernandez-Granda, Shubham
Gupta, and Laure Zanna. Samudra: An ai global ocean emulator for climate. Geophysical Research
Letters, 52(10):e2024GL114318, 2025.

Hugo Frezat, Julien Le Sommer, Ronan Fablet, Guillaume Balarac, and Redouane Lguensat. A
posteriori learning for quasi-geostrophic turbulence parametrization. Journal of Advances in
Modeling Earth Systems, 14(11):€2022MS003124, 2022.

Maximilian Gelbrecht, Alistair White, Sebastian Bathiany, and Niklas Boers. Differentiable pro-
gramming for earth system modeling. Geoscientific Model Development, 16(11):3123-3135,
2023.

Dion Hifner, René Lgwe Jacobsen, Carsten Eden, Mads RB Kristensen, Markus Jochum, Roman
Nuterman, and Brian Vinter. Veros v0. 1-a fast and versatile ocean simulator in pure python.
Geoscientific Model Development, 11(8):3299-3312, 2018.

Frédéric Hourdin, Thorsten Mauritsen, Andrew Gettelman, Jean-Christophe Golaz, Venkatramani
Balaji, Qingyun Duan, Doris Folini, Duoying Ji, Daniel Klocke, Yun Qian, et al. The art and
science of climate model tuning. Bulletin of the American Meteorological Society, 98(3):589-602,
2017.

Christopher Irrgang, Niklas Boers, Maike Sonnewald, Elizabeth A Barnes, Christopher Kadow,
Joanna Staneva, and Jan Saynisch-Wagner. Towards neural earth system modelling by integrating
artificial intelligence in earth system science. Nature Machine Intelligence, 3(8):667-674, 2021.

Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie Smith, Griffin Mooers, Milan
Klower, James Lottes, Stephan Rasp, Peter Diiben, et al. Neural general circulation models for
weather and climate. Nature, pages 1-7, 2024.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. Climax:
A foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023.

Said Ouala, Bertrand Chapron, Fabrice Collard, Lucile Gaultier, and Ronan Fablet. Online calibration
of deep learning sub-models for hybrid numerical modeling systems. Communications Physics, 7
(1):402, 2024.

Brodie Pearson, Baylor Fox-Kemper, Scott Bachman, and Frank Bryan. Evaluation of scale-aware
subgrid mesoscale eddy models in a global eddy-rich model. Ocean Modelling, 115:42-58, July
2017. ISSN 1463-5003. doi: 10.1016/j.0cemo0d.2017.05.007. URL http://dx.doi.org/10!
1016/j.ocemod.2017.05.007.

Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Routledge, 2018.

http://dx.doi.org/10.1175/2007JPO3653.1
http://dx.doi.org/10.1016/j.ocemod.2017.05.007
http://dx.doi.org/10.1016/j.ocemod.2017.05.007

Facundo Sapienza, Jordi Bolibar, Frank Schifer, Brian Groenke, Avik Pal, Victor Boussange, Patrick
Heimbach, Giles Hooker, Fernando Pérez, Per-Olof Persson, et al. Differentiable programming for
differential equations: A review. arXiv preprint arXiv:2406.09699, 2024.

Appendix

4.1 Experimental configuration

Our experiments utilize Veros with the JAX backend and the scipy_jax solver for linear systems.
We enable the energetically consistent kinetic energy (EKE) parameterization while disabling both
the turbulent kinetic energy (TKE) and neutral diffusion parameterizations to focus on the core
differentiable dynamics.

4.2 Gradient validation

To assess the effect of repeated time-stepping on gradient accuracy, we compute a‘zﬁ)‘ , where 7y

is the bottom drag coefficient tuned in our first experiment. As shown in Fig. 4] the discrepancy
between gradient estimation methods increases with the number of time steps.

. .) .
Gradient (;?) vs Iterations Accuracy of autodiff methods
01 e -+ numerical diff 1.000 | 6000pge—0————o——__§ o ¢
\o\ jvp (forward) —_
. -+ vjp (backward) o7 0975
-1 e =
g=
EIS o0.9504
i
2 .
[N £12 0.025 1
£
HE 3
S . | 09007
e —
- — 08754
>
4 g
.. 5 08504
o
o
-5 . < oeasy vp (forward)
' —e— vjp (backward)
| | 1 | | - 0.800 ; v ¢ r T
0 10 20 30 40 50 0 10 20 30 40 50
Number of iterations Number of iterations

Figure 3: Gradient of the loss with respect to 7ot and the accuracy of automatic differentia-
tion methods over iterations. Left: Evolution of L/dry for different methods. Right: Ac-
curacy of forward-mode (JVP) and reverse-mode (VJP) automatic differentiation, computed as
1 — |autodiff grad — finite diff| /|finite diff], highlighting the agreement with numerical gradients over
iterations.

4.3 Gradient computational cost

We analyze the computational overhead of gradient computation by measuring the cost of vector-
Jacobian products (VJP) through Veros integration steps using the experimental setup from Section[2.4]
Figure 4] demonstrates that gradient computation cost scales linearly with the number of integration
steps.

Backward compute time (Quadro P6000 - ACC 1°)

40

30 4

204

time (seconds)

T T T T T T T T
0 10 20 30 40 50 60 70
veros_step

Figure 4: Gradient computation time using vector-Jacobian products (VJP) for optimizing the initial
temperature field with respect to a loss function evaluated after multiple Veros integration steps.

4.4 ACC model configuration

Table 1: Model configuration parameters for the idealized ACC simulation. Parameters marked with
* are the calibration targets in our experiments. For detailed descriptions of these variables, refer to
the VEROS documentation.

Parameter Value
Domain configuration

Resolution 1/4°

Domain extent 0°-60°E, 40°S—40°N
Vertical levels 15

Maximum depth 2000 m

Time stepping

At mom 1200 s

Atyacer 1200 s

Run length 4 years
Friction and mixing parameters
A} 3435.5036038313715 m?/s
Tiot 107551

Ko 62.5 m2/s
KGM 62.5 rn2/s
Eddy kinetic energy (EKE)

¢ (EKE) 0.4

c: (EKE) 0.5

EKE .x 625 m?/s?
Lmin I m

Turbulent kinetic energy (TKE)

¢ (TKE) 0.1

¢ (TKE) 0.7

QTKE 30.0

i 2 x 1074 m?/s
i 2 x 107° m?/s

	Introduction
	Differentiability properties in Veros
	Modifications to Veros
	Forward behaviour
	Backward behaviour
	Toy experiment: gradient-based correction of initial states

	Application to model calibration problems
	Idealised Antarctic Circumpolar Current (ACC) model configuration
	Sensitivity analysis for parameter calibration
	Calibration experiment analysis

	Conclusion and future work
	Experimental configuration
	Gradient validation
	Gradient computational cost
	ACC model configuration

