
Multi-Agent Pointer Transformer: Seq-to-Seq Reinforcement Learning for
Multi-Vehicle Dynamic Pickup-Delivery Problems

Zengyu Zou1, 4, Jingyuan Wang1, 2, 3, 4, * , Yixuan Huang1, 4, Junjie Wu2, 3

1School of Computer Science and Engineering, Beihang University, Beijing, China
2School of Economics and Management, Beihang University, Beijing, China

3MIIT Key Laboratory of Data Intelligence and Management, Beihang University, Beijing, China
4MOE Engineering Research Center of Advanced Computer Application Technology, Beihang University, China

{zzy0001213, jywang, yixuanhuang, wujj}@buaa.edu.cn

Abstract

This paper addresses the cooperative Multi-Vehicle Dy-
namic Pickup and Delivery Problem with Stochastic Re-
quests (MVDPDPSR) and proposes an end-to-end centralized
decision-making framework based on sequence-to-sequence,
named Multi-Agent Pointer Transformer (MAPT). MVD-
PDPSR is an extension of the vehicle routing problem and a
spatio-temporal system optimization problem, widely applied
in scenarios such as on-demand delivery. Classical operations
research methods face bottlenecks in computational complex-
ity and time efficiency when handling large-scale dynamic
problems. Although existing reinforcement learning meth-
ods have achieved some progress, they still encounter several
challenges: 1) Independent decoding across multiple vehicles
fails to model joint action distributions; 2) The feature extrac-
tion network struggles to capture inter-entity relationships;
3) The joint action space is exponentially large. To address
these issues, we designed the MAPT framework, which em-
ploys a Transformer Encoder to extract entity representations,
combines a Transformer Decoder with a Pointer Network to
generate joint action sequences in an AutoRegressive manner,
and introduces a Relation-Aware Attention module to capture
inter-entity relationships. Additionally, we guide the model’s
decision-making using informative priors to facilitate effec-
tive exploration. Experiments on 8 datasets demonstrate that
MAPT significantly outperforms existing baseline methods
in terms of performance and exhibits substantial computa-
tional time advantages compared to classical operations re-
search methods.

Code — https://github.com/wszzyer/MAPT

1 Introduction
The Pickup and Delivery Problem is a type of vehicle rout-
ing problem that has demonstrated its importance in many
real-world applications, such as online food delivery. In real-
world scenarios, the arrival time, origin, and destination of
requests are often unpredictable, and there are strict require-
ments for service response times. Therefore, efficiently plan-
ning vehicle routes based on real-time updated informa-
tion is particularly important in solving this problem. This

*Corresponding author
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

work focuses on solving the cooperative Multi-Vehicle Dy-
namic Pickup and Delivery Problem with Stochastic Re-
quests (MVDPDPSR). Unlike the traditional Pickup and De-
livery Problem, in this problem, we need to route multiple
vehicles, and the occurrence times of all requests are un-
known in advance. Moreover, the origin and destination of
each request are only revealed after the request emerges.

Existing methods for addressing dynamic vehicle rout-
ing problems fall into three categories: heuristic meth-
ods, classical operations research methods, and reinforce-
ment learning-based algorithms. Heuristic methods have
shown some success (Sheridan et al. 2013; Fikar 2018; An-
dersson 2021) by routing vehicles through manually de-
signed heuristic rules, such as the nearest-distance rule.
Their strengths are simplicity and efficiency, fitting real-
time decision scenarios, but they have clear limits as they
depend heavily on manually designed rules and struggle
to ensure optimality. Classical operations research meth-
ods typically adopt the Rolling-Horizon paradigm, which
transforms dynamic problems into static ones. These static
subproblems are then solved using either exact algorithms
(Lu and Dessouky 2004; Liu et al. 2018; Savelsbergh and
Sol 1998) or metaheuristics (Schilde, Doerner, and Hartl
2011; Geiser, Hanne, and Dornberger 2020; Cai et al.
2022). This paradigm requires accumulating a sufficient
number of requests before initiating planning, which fails
to meet the needs of real-time dynamic decision-making.
Also, both exact and metaheuristic algorithms have high
computational complexity, greatly affecting their time effi-
ciency in practice. With technology development, reinforce-
ment learning-based algorithms have been used for multi-
vehicle routing. Multi-agent reinforcement learning meth-
ods have been proposed for the static multi-vehicle pickup
and delivery problem (Zong et al. 2022; Berto et al. 2024).
They encode the current state with an Encoder, decode inde-
pendently for each vehicle with a Decoder, and use a conflict
handler in post-processing to solve vehicle conflicts.

However, these multi-agent methods still face the follow-
ing issues: (1) Existing multi-agent reinforcement learning
methods decode each agent independently, failing to model
the joint probability distribution of agents’ actions. Further-
more, the decisions generated by these methods may con-
flict among agents (e.g., competing for the same request).
(2) Existing feature extraction networks fail to capture rela-

ar
X

iv
:2

51
1.

17
43

5v
1

 [
cs

.L
G

]
 2

1
N

ov
 2

02
5

https://arxiv.org/abs/2511.17435v1

tionships between entities (e.g., stations, vehicles, requests),
which are key components of the MVDPDPSR. (3) The joint
action space is often exponentially large, which prevents re-
inforcement learning from exploring useful actions.

To tackle these remaining issues, we propose the Multi-
Agent Pointer Transformer (MAPT), an end-to-end cen-
tralized decision-making framework based on sequence-to-
sequence to solve MVDPDPSR. Specifically, we model the
MVDPDPSR problem as a Markov Decision Process, use a
Transformer Encoder to extract entity representations, and
then combine a Transformer Decoder with a Pointer Net-
work to convert the embedding sequence into a joint action
sequence in an AutoRegressive manner. To extract relation-
ships between entities, we propose a Relation-Aware Atten-
tion module that embeds entity relationships and adds them
to the attention matrix. To address the challenge of reinforce-
ment learning exploring a vast joint action space, we design
informative priors based on load balancing and station dis-
tance, and fuse these priors with the action distribution de-
coded by the Decoder, enabling the model to select actions
with higher potential rewards.

In summary, the main contributions of our work are as
follows:
• We formalize the MVDPDPSR problem as a Markov De-

cision Process and design the Multi-Agent Pointer Trans-
former (MAPT) framework to decode joint actions and
model the joint probability.

• We design a Relation-Aware Attention module to capture
various relationships between entities.

• We design informative priors and integrate them into the
model’s decision distribution to facilitate effective explo-
ration.

• We validate the effectiveness of MAPT on 8 datasets, and
experiments show that MAPT outperforms various base-
lines and demonstrates significant computational time ad-
vantages over classical operations research methods.

2 Preliminaries
2.1 Problem Formulation
In this section, we formally define the Multi-Vehicle Dy-
namic Pickup and Delivery Problem with Stochastic Re-
quests(MVDPDPSR). A typical MVDPDPSR scenario in-
volves a fleet of vehicles (Multi-Vehicle) tasked with picking
up and delivering cargos among a set of stations. The pickup
and delivery requests arise dynamically over time, reflecting
the “Dynamic” nature of the problem. Accordingly, stations,
vehicles, and requests constitute the three fundamental com-
ponents of a MVDPDPSR. We provide their formal defini-
tions below.
Definition 1 (Stations). The stations in MVDPDPSR are
represented as a fully connected weighted graph G =
{N,E}. Here, N = {n1, . . . , ni, . . . , nI} denotes the set of
stations, where ni represents the i-th station. E ∈ R|N |×|N |

is the distance matrix, where each element eni,nj
indicates

the travel time from station ni to station nj . In the station
graph G, each station can serve as either an origin (pickup
station) or a destination (delivery station) for cargos.

Definition 2 (Vehicles). A MVDPDPSR scenario involves
K vehicles, where each vehicle vk is represented by a tuple
of four state variables:

vk = ⟨ capk, spak, tok, distk ⟩ . (1)

The meanings of these variables are as follows:

• capk (capacity): the total capacity of vehicle vk.
• spatk (space): the remaining available space of vehicle vk

at time t. For notational brevity, we omit the superscript
time index t when unambiguous (e.g. spak).

• tok (destination): the current destination station of the ve-
hicle.

• distk (distance): the remaining distance (travel time) to
reach the current destination.

If distk ̸= 0, the vehicle is en route; otherwise, it is located
at a station. Notably, the destination of a vehicle cannot be
changed while it is en route.

Definition 3 (Requests). The objective of MVDPDPSR is
to fulfill M cargo delivery requests, where each request rm
is represented by a tuple of six state variables:

rm = ⟨ fromm, tom, valm, volm, timem, statem ⟩ .
(2)

The meanings of these variables are as follows:

• fromm (origin): the origin station of request rm.
• tom (destination): the destination station of request rm.
• valm (value): the profit associated with fulfilling the re-

quest.
• volm (volume): the cargo volume required for the request,

which consumes vehicle space.
• timem (appearance time): the time at which the request

becomes visible to the system.
• statem (state): the current state of request rm.

A request becomes visible only when the current time
reaches its appearance time timem. The state vari-
able statem ∈ {unassigned, picked, delivered} indicates
whether the request has not been picked up, has been picked
up by a vehicle, or has been delivered.

In the MVDPDPSR scenario, the planning horizon is dis-
cretized into time slices t = 0, . . . , T . At the initial time
slice t = 0, all vehicles are located at their initial origin sta-
tions, and their available space equals their full capacity. At
each time slice, a scheduler performs the following actions:

1. For every visible request in the unassigned state at time
t (i.e. timem ≤ t), assign a vehicle that is currently at
the same station and has sufficient space (spak ≥ volm)
to load the request’s cargo. Update the state of the re-
quest to picked and reduce the vehicle’s available space
accordingly: spak := spak − volm.

2. For each vehicle at a station (distk = 0), select its next
destination station and dispatch it. Set the vehicle’s travel
distance distk to the distance between the current station
and the selected destination.

3. For every vehicle in transit (distk ̸= 0), decrease its re-
maining travel distance by one unit: distk := distk − 1.

4. For each vehicle arriving at its destination (distk = 0),
unload all cargos whose destination matches the cur-
rent station. Update the state of each delivered request
to delivered and restore the vehicle’s available space:
spak := spak + volm for each delivered request.

In this scenario, cargo delivery requests emerge dynamically
over time, characterizing MVDPDPSR as a dynamic pickup-
and-delivery problem.

A MVDPDPSR instance terminates when the planning
horizon reaches the upper limit T . The goal of scheduling
is to maximize the total profit of requests completed within
the time limit while minimizing the aggregate travel cost.

2.2 Markov Decision Process (MDP)
MVDPDPSR is a sequential decision-making problem over
time, and we model its decision process as a Markov deci-
sion process, defined as follows:
Definition 4 (Observation/State). Since we have a central-
ized decision system, the system can fully observe all state
information at the current time step. The state at time step t
includes the distance between stations eni,nj

, all vehicle in-
formation vk, and all appeared requests rm where timem ≤
t. Notably, within a centralized decision-making system, the
relationship relvk,rm ∈ {unassigned, picked, delivered}
between each vehicle vk and request rm at time t must be
explicitly tracked. This relationship indicates the request has
not been picked up, has been picked up by the vehicle, or has
been delivered by the vehicle.
Definition 5 (Action). The decision includes decisions for
requests and decisions for vehicles.
• Request decisions. For the set of unassigned requests
Rt = {rm | statem = unassigned ∧ timem ≤ t}, we
need to decide which vehicle to assign them to. The as-
signed vehicle’s current location must be the same as the
request’s origin, i.e.,

At
rm ∈ {vk | distk = 0 ∧ tok = fromm} ∪ {τ}, (3)

where τ denotes the action of temporarily deferring the
request assignment. The assignment must ensure that the
vehicle’s capacity meets the requirements.

• Vehicle decisions. For the set of vehicles that have reached
their destinations Vt = {vk | distk = 0}, we need to
decide their next destination station, i.e.,

At
vk
∈ {n1, . . . , nI}. (4)

The final joint action space is the Cartesian product of all
sub-action spaces:

At =
∏({

At
rm | rm ∈ R

t
}
∪
{
At

vk
| vk ∈ Vt

})
(5)

Definition 6 (Transition). For vehicles vk ∈ Vt, we need
to update their destination station tok and remaining time to
reach the new destination station distk based on At

vk
, and

update their remaining space based on unloaded and newly
loaded goods. For vehicles vk /∈ Vt, the remaining time to
reach their destination stations decreases by one unit. For
all requests assigned to vehicles, their statem and relvk,rm
changes to picked, and for all requests that have reached
their destinations, their statem and relvk,rm changes to
delivered.

Definition 7 (Objective/Reward). The objective is to opti-
mize the overall routing solution quality by maximizing the
profit from completed requests while accounting for vehicle
travel costs. Formally, we define the objective at time T as:

objT =
∑
t<T

∑
k

 ∑
m∈Dt

k

valm − cost · etotk,tot+1
k

 , (6)

where Dt
k denotes the set of requests delivered by vehicle vk

by time t, and cost represents the cost per unit distance. The
single-step reward at each decision point is then defined as
the incremental change in the objective value:

rwdt = objt − objt−1. (7)

3 Methodology
3.1 System Overview
We propose the Multi-Agent Pointer Transformer (MAPT),
which is built on the Transformer (Vaswani et al. 2017)
Encoder-Decoder architecture. At each time step of the
MDP, the current state is fed into MAPT for decision-
making. The Encoder processes the states of all entities and
incorporates a Relation-Aware Attention module to capture
inter-entity relationships. The Decoder generates actions for
each entity in an AutoRegressive manner. To enhance ex-
ploration during reinforcement learning, we integrate infor-
mative priors into the action selection process. The overall
architecture is illustrated in Figure 1.

3.2 Encoder
Feature Representation with Dense Vectors First, we
transform the raw input into dense vectors for unified rep-
resentation. We compute some augmented inputs to enhance
the model’s perception capabilities, namely orii and desti,
which represent the number of requests originating from sta-
tion ni, and the number of requests destined for station ni,
respectively. Next, we concatenate the raw inputs of stations,
requests, and vehicles and pass them through a linear layer
to transform them into dense vectors:

dni
= [orii∥desti]W n, dni

∈ Rhs (8)

dvk = [capk∥spak∥distk]W v, dvk ∈ Rhs (9)

drm = [valm∥volm]W r, drm ∈ Rhs (10)

where ∥ denotes the concatenation operation for scalars, and
hs is the model’s hidden size. Additionally, we transform
global information into a dense vector, where mt represents
the current number of requests, as follows:

dg = [t∥mt]W
g, dg ∈ Rhs. (11)

Relation-Aware Attention Although there are some neu-
ral network models for solving the Vehicle Routing Prob-
lem, these models cannot effectively capture the relation-
ships between entities. To overcome these limitations, this
study designs a Relation-Aware Attention module aimed at
incorporating relationship information between entities into
the embeddings. For any two entities (stations, requests,

Decode Stage Informative PriorEnvironment Encode Stage

Transformer Encoder

Relation-Aware Attention

K

Q

V

Relation
Embedding

Sample
Action

 vehicles

requests

stations from
to

unassigned
picked

destination

dist

distdist calculate Informative Prior

Dot-Product
Softmax

Embeddings

Auto-
Regressive

Transformer
Decoder

Informative
Prior

Decoder Prob

Fused ProbInput seq

seq'

Markov Decision Process
Based Planning

planning planning planning

Observation/State at each time

Figure 1: The framework of MAPT. The blue arrow indicates that the elements in the sequence are generated in an AutoRe-
gressive manner. The elements marked with * are the actions that need to be decoded.

Relation Vehicle Request Station

Vehicle distance
unassigned

picked
delivered

is destination
isn’t destination

Request
unassigned

picked
delivered

distance
from

to

Station
is destination

isn’t destination
from

to distance

Table 1: Relation Types between Vehicle, Request and Sta-
tion.

vehicles), there are some relationships between them, as
shown in Table 1. We design a relation encoding network
Relation-Embedding(u, v) ∈ R. If the relationship between
entities u and v is a distance relationship, we use a linear
layer to project it; for other relationships, we use a learnable
parameter as their embedding. We denote the relationship
matrix between entities as R ∈ R|Q|×|K|, which is calcu-
lated as follows:

Ru,v = Relation-Embedding(qu, kv), (12)

where qu represents the u-th entity in Query sequence (Q),
and kv represents the v-th entity in Key sequence (K). Fol-
lowing the definition of the standard Transformer (Vaswani
et al. 2017), we represent the Query sequence as Q, the Key
sequence as K, the Value sequence as V and the head di-
mension as dk. The Relation-Aware Attention is expressed
as:

Rel-Aware-Attn(Q,K,V ,R) = softmax

(
QKT +R√

dk

)
V .

(13)
We incorporate relationship information into the attention

mechanism, enabling the model to capture relationships be-
tween entities when generating entity embeddings.

Encode with Relation-Aware Attention We use a stan-
dard Transformer Encoder and replace its attention layer

with Relation-Aware Attention. We concatenate the dense
vectors of all stations, requests, vehicles, and global infor-
mation into a sequence and input them into the Encoder to
obtain their respective embeddings:

[or1 , . . . ,orM ,ov1 , . . . ,ovK ,on1 , . . . ,onI ,og] =

Encoder([dr1 , . . . ,drM ,dv1 , . . . ,dvK ,dn1 , . . . ,dnI ,dg]).
(14)

3.3 Decoder
Decoder Model We use a standard Transformer Decoder
and replace its attention layer with Relation-Aware At-
tention. The cross-attention layer needs to perform cross-
attention on the output of the Encoder to perceive all in-
formation about the current problem. Additionally, we add
learnable positional encoding before the Decoder.

AutoRegressive Decoding We model the joint probabil-
ity distribution At using chain rule decomposition, which is
order-agnostic:

P (At) =

M∏
m

P (At
rm

| At
r1...rm−1

)

×
K∏
k

P (At
vk

| At
v1...vk−1

, At
r1...rM

). (15)

From this formula, we can see that each request needs to
refer to the decision results of previous requests when mak-
ing decisions; each vehicle needs to refer to the decision re-
sults of previous vehicles and all requests when making de-
cisions. Due to this sequential decision-making process, we
adopt an AutoRegressive approach to generate the decision
sequence and model it in a sequence-to-sequence frame-
work, as also observed by Wen et al. (2022). We combine the
Transformer’s ability to capture long-distance dependencies
with the Pointer Network’s (Vinyals, Fortunato, and Jaitly
2015) ability to handle entity selection, using the Trans-
former Decoder to decode actions.

We detail our decoding process, for notational conve-
nience, we omit the superscript time index t when unam-
biguous. Let our sequence be seq, initially empty. When de-

coding the action for the m-th request rm, we first append it
into the sequence, which then becomes:

seq = [r1, Ar1 , . . . , rm]. (16)
We first convert entities in the sequence to their correspond-
ing embeddings to obtain seq′ (e.g., converting request rm to
its embedding orm which is output of the Transformer En-
coder). The Decoder(seq′) produces a hidden sequence of
the same length as seq′. We take the last item of the hidden
sequence, hrm , as the query vector and use the embeddings
of all vehicles as the key vectors. By calculating the attention
scores between them, we can quantify the request’s prefer-
ence for each vehicle:
P dec(Arm = vk) = softmaxk(h

⊤
rm [ov1 , . . . ,ovK]), (17)

where softmaxk(·) denotes the k-th element of the softmax
output. We determine Arm by sampling from P dec(Arm) or
selecting the maximum probability vehicle. This decoding
result is then placed at the end of seq, providing critical ref-
erence information for subsequent decisions:

seq = [r1, Ar1 , . . . , rm, Arm]. (18)
This process can be repeated to decode all requests. We de-
code all vehicles in the same manner:

P dec(Avk = ni) = softmaxi(h
⊤
vk
[on1

, . . . ,onI
]). (19)

After all decoding is completed, the elements in the se-
quence are:

seq = [r1, Ar1 , . . . , v1, Av1 , . . . , vK , AvK]. (20)

3.4 Informative Priors
The joint action space in MVDPDPSR is often exponen-
tially large because of multiple vehicles, requests, and sta-
tions, which prevents reinforcement learning from explor-
ing useful actions. To address this, we designed manually-
computed informative priors for vehicle selection and desti-
nation selection. By multiplying the probabilities output by
the Decoder with informative priors, we guide the agent to
prioritize actions with higher potential rewards.

Informative Priors for Vehicle Selection In a multi-
vehicle scenario, the balance of vehicle load is crucial for
overall delivery efficiency and resource utilization. Based on
this, we design a load-balancing informative prior, which
is inversely proportional to the current vehicle load. The
smaller the current load of a vehicle, the higher its infor-
mative prior weight in vehicle selection, thereby guiding the
assignment of requests toward load balancing:

P pri(Arm = vk) =
spak
capk

. (21)

Although temporarily deferring request assignments may
yield positive benefits (e.g., when the current vehicle load is
high), we aim to avoid excessive occurrences of such cases,
as this would severely affect the exploration efficiency dur-
ing reinforcement learning. Therefore, we set a small prob-
ability for action τ (defined in Eq. (3)):

P pri(Arm = τ) = β. (22)
The vehicle selection probability after informative priors’

guidance is:

P (Arm = vk) = P dec(Arm = vk)·P pri(Arm = vk). (23)

Informative Priors for Destination Selection For the
destination station selection of vehicle vk, the informative
prior P pri(Avk = ni) is determined as follows:
• If station ni has requests to be delivered, P pri(Avk =
ni) = 1.

• If station ni has requests to be picked up, P pri(Avk =

ni) = 0.1×E
etok,ni

, where E denotes the average value of all
elements in the distance matrix E. This formulation pri-
oritizes stations that are closer in distance. Since the num-
ber of stations with pickup requests is significantly larger
than those with delivery requests, we use a smaller co-
efficient (0.1) to balance the vehicle’s priorities between
pickup and delivery tasks.

• For stations ni that do not fall into the above two cate-
gories, P pri(Avk = ni) = 0.

The destination selection probability after informative pri-
ors’ guidance is:

P (Avk = ni) = P dec(Avk = ni) · P pri(Avk = ni). (24)

3.5 Optimization via PPO
We use Proximal Policy Optimization (Schulman et al.
2017) to train MAPT. Our value function is defined as
V (st) = MLP(og), where MLP transforms global informa-
tion into a scalar. We use Generalized Advantage Estimation
(Schulman et al. 2015) to balance the bias and variance of
advantage estimation:

ÂGAE
t =

∞∑
l=0

(γλ)l(rwdt+l + γV (st+l+1)− V (st+l)).

(25)
The Actor loss is defined as

ρt(θ) =
πθ(A

t|st)
πθold(A

t|st)
, (26)

LCLIP(θ) = Et

[
min

(
ρt(θ)Â

GAE
t ,

CLIP(ρt(θ), 1− ϵ, 1 + ϵ)ÂGAE
t

)]
,

(27)

where πθ(A
t|st) is the joint probability defined in Eq. (15).

The Critic loss is defined as

LCritic = (V (st)− (rt+1 + γV (st+1)))
2
. (28)

The final total loss is

L = LCLIP + αLCritic. (29)

4 Experiments
4.1 Experimental Scenarios
To validate the effectiveness of the MAPT framework, we
conducted experiments on 8 datasets, including both syn-
thetic and real-world datasets, for comprehensive evaluation.
A brief description of the datasets is provided below.
• Synthetic Dataset: We generated synthetic datasets with

different scales of stations I ∈ {20, 50, 300}, correspond-
ing to dataset suffixes -S, -L, and -XL, respectively. For
these datasets, the number of requests and vehicles were

Scenario synth-S synth-S-cost synth-L synth-L-cost dhrd-tpe dhrd-sg dhrd-se synth-XL
Metric Obj.↑ Comp.↑ Obj.↑ Comp.↑ Obj.↑ Comp.↑ Obj.↑ Comp.↑ Obj.↑ Comp.↑ Obj.↑ Comp.↑ Obj.↑ Comp.↑ Obj.↑ Comp.↑

OR Tools 182.1 0.54 117.4 0.52 N/A N/A N/A N/A N/A N/A N/A N/A 55.3 0.45 N/A N/A
SA 162.5 0.52 108.1 0.52 641.1 0.28 339.3 0.29 244.9 0.31 136.7 0.30 50.4 0.41 1531.9 0.31
GA 108.7 0.30 58.3 0.29 329.4 0.14 89.5 0.12 64.1 0.08 40.9 0.13 21.3 0.17 863.8 0.17

SA* 133.0 0.42 81.2 0.42 563.1 0.25 284.8 0.24 223.3 0.28 139.6 0.30 56.6 0.46 1650.9 0.34
GA* 75.2 0.21 39.4 0.19 219.9 0.09 88.0 0.09 53.8 0.07 39.0 0.13 18.4 0.15 543.2 0.11

MAPDP* 174.9 0.53 82.0 0.49 177.6 0.08 65.2 0.08 287.5 0.36 247.2 0.35 72.9 0.56 807.0 0.16
PARCO* 178.8 0.53 86.6 0.52 177.6 0.08 65.2 0.08 391.2 0.49 267.5 0.46 64.2 0.49 1834.7 0.36

Nearest 189.2 0.57 124.1 0.57 962.6 0.41 592.3 0.41 309.2 0.39 194.5 0.40 39.8 0.32 2641.1 0.53

MAPDP 157.5 0.41 70.0 0.42 958.1 0.37 385.2 0.37 135.4 0.17 64.9 0.18 19.3 0.16 2543.1 0.50
MAPT 275.2 0.83 192.1 0.84 1875.1 0.80 1348.6 0.81 697.2 0.87 376.1 0.71 78.9 0.64 3227.5 0.65

Table 2: Overall performance comparison on synthetic datasets and real-world datasets. The best result in each column is
bolded. ”N/A” indicates that the algorithm cannot provide results within an acceptable time frame.

Scenario synth-S synth-S-cost synth-L synth-L-cost dhrd-tpe dhrd-sg dhrd-se synth-XL
Metric Obj.↑ Comp.↑ Obj.↑ Comp.↑ Obj.↑ Comp.↑ Obj.↑ Comp.↑ Obj.↑ Comp.↑ Obj.↑ Comp.↑ Obj.↑ Comp.↑ Obj.↑ Comp.↑

MAPT 275.2 0.83 192.1 0.84 1875.1 0.80 1348.6 0.81 697.2 0.87 376.1 0.71 78.9 0.64 3227.5 0.65
w/o Rel 270.9 0.82 190.7 0.83 1869.9 0.80 1338.4 0.81 692.1 0.87 365.3 0.69 77.1 0.63 3136.8 0.63
w/o AR 217.2 0.65 171.1 0.77 1604.0 0.68 1074.5 0.69 611.4 0.76 258.1 0.50 49.4 0.40 1905.8 0.38

w/o Priors 175.2 0.54 92.7 0.54 1089.5 0.47 529.1 0.48 511.6 0.64 250.9 0.49 56.6 0.46 1375.0 0.27

Table 3: Results of ablation studies. The best result in each column is bolded.

set as (M,K) = (110, 5), (550, 15), and (550, 50), re-
spectively. Vehicle capacity was fixed at 3. Travel cost per
unit distance is set to 0 or 0.3, with the latter case marked
by an additional suffix -cost. Requests were uniformly
sampled from stations, with appearance times sampled
from Uniform(1, T), where T was set to 58 or 128. The
profit for each request was the distance between its origin
and destination.

• Real-World Dataset: We used the DHRD dataset (As-
sylbekov et al. 2023), which contains food delivery re-
quests from three cities: Taipei (tpe), Singapore (sg),
and Stockholm (se). Each city was treated as an inde-
pendent dataset with I = 36 stations. The correspond-
ing numbers of requests and vehicles were (M,K) =
(800, 20), (700, 15), and (200, 3) for the three cities, re-
spectively. Vehicle capacity was set to 6. The dataset was
divided into 76 days for training/validation and 14 days
for testing.

4.2 Performance Evaluation
Baselines We evaluate our MAPT against several base-
lines, including Rolling-Horizon algorithms, static algo-
rithms, rule-based algorithms, and MDP-based algorithms.

• Rolling-Horizon Algorithms: The Rolling-Horizon
paradigm addresses dynamic problems by decomposing
them into static subproblems within a sliding time win-
dow. For solving these static subproblems, we employ
OR Tools, Simulated Annealing (SA), and Genetic
Algorithm (GA).

• Static Algorithms: These methods assume complete fore-
knowledge of all requests (though unrealistic), solving the
problem statically without Rolling-Horizon. MAPDP*
(Zong et al. 2022) is a MARL approach with Encoder-
Decoder for static problems, adapted to handle dis-
tance matrix inputs. PARCO* (Berto et al. 2024) is a
Transformer-based RL framework with parallel decision-
making, modified to support distance matrix inputs.
SA*/GA* are static versions of our Rolling-Horizon SA
and GA with full request information.

• Rule-Based Algorithms: These methods use predefined
rules for scheduling decisions. Nearest is a greedy ap-
proach that always selects the closest available request for
pickup or delivery.

• MDP-Based Algorithms: At each step of the MDP, we
solve the problem statically using MAPDP (Zong et al.
2022) as described in the Static Algorithms section, and
only execute the first step of the solution to ensure appli-
cability to dynamic problems.

Overall Comparison The performance results on syn-
thetic and real-world datasets are summarized in Table 2, us-
ing the objective (Obj.) and request completion rate (Comp.)
as metrics (higher is better). MAPT significantly outper-
forms all baselines across all datasets. MAPT also surpasses
the state-of-the-art MAPDP, which fails to model multi-
vehicle joint probabilities and lacks our informative priors.
As can be seen from Table 4, the decision time of MAPT
is significantly shorter than that of exact and meta-heuristic
algorithms.

Scenario synth-S synth-S-cost synth-L synth-L-cost synth-XL

OR Tools 401.727 459.143 N/A N/A N/A
SA 23.684 23.255 166.660 164.102 613.920
GA 16.654 16.448 103.147 99.864 354.789

Nearest 0.059 0.060 0.117 0.119 0.148
MAPDP 0.794 0.827 31.981 32.544 33.217
MAPT 1.420 1.416 8.300 7.888 27.434

Table 4: Comparison of inference times on the synthetic
dataset (in seconds), which is the average running time of
each instance in the dataset.

4.3 Ablation Studies
We conducted ablation studies on all datasets to validate the
effectiveness of key components:

• w/o Relation-Aware Attention (Rel): Replaces the
Relation-Aware Attention module with the original atten-
tion mechanism.

• w/o AutoRegressive Decoding (AR): Decodes each ac-
tion independently and employs a conflict handler to re-
solve conflicts where request assignments exceed vehicle
capacity.

• w/o Informative Priors (Priors): Removes informative
priors guidance for vehicle and destination selection.

The results are shown in Table 3. As can be seen from
the table, AutoRegressive Decoding and Informative Priors
significantly improve performance across all datasets, and
Relation-Aware Attention also contributes to some extent.
The ablation experiments demonstrate that all three pro-
posed components enhance the final performance, validating
their effectiveness.

4.4 Sensitivity Analysis
We conduct a sensitivity analysis on the hyperparameter β as
defined in Eq. (22). We vary β from 0 to 0.3 in increments of
0.02 and observe the resulting changes in the final objective.
The results on the 4 representative datasets are illustrated
in Figure 2. As shown in the figure, when β is small, the
performance is better and more stable, while larger values of
β lead to a gradual decline in performance. However, in the
dhrd-tpe and dhrd-se datasets, using a small but non-zero β
improves performance. This indicates that slightly deferring
request allocation can be beneficial in these cases.

5 Related Work
5.1 Dynamic Pickup and Delivery Problems
Dynamic Pickup and Delivery Problems have been studied
through exact, heuristic, metaheuristic, and learning-based
methods (Cai et al. 2023). Exact methods such as MILP
can yield optimal results but are restricted to small instances
(Liu et al. 2018; Savelsbergh and Sol 1998). Heuristic meth-
ods (Fikar 2018; Fikar, Hirsch, and Gronalt 2018; Anders-
son 2021) are efficient for large-scale dynamic problems but
cannot ensure optimality. Metaheuristics (Schilde, Doerner,
and Hartl 2011; Tirado and Hvattum 2017; Novaes et al.

0.0 0.1 0.2
β

0

1000

2000

O
bj
ec
tiv

e

(a) synthetic-L

0.0 0.1 0.2
β

0

2000

4000

O
bj
ec
tiv

e

(b) synthetic-XL

0.0 0.1 0.2
β

550

600

650

700

O
bj
ec
tiv

e

(c) dhrd-tpe

0.0 0.1 0.2
β

70

75

80

O
bj
ec
tiv

e

(d) dhrd-se

Figure 2: Sensitivity analysis of β across datasets.

2015) improve scalability but still struggle in highly dy-
namic settings. Reinforcement learning methods have been
explored (Li et al. 2021; Yu et al. 2025), but they mainly
focus on single-vehicle operations. Hybrid approaches first
learn edge costs using neural networks and then apply tra-
ditional optimization techniques (Jiang et al. 2023b; Wang,
Wu, and Zhao 2021; Wang et al. 2019; Wang, Lin, and Li
2025; Wu et al. 2019). Other studies have addressed ride-
on-demand problems with dynamic pricing (Guo et al. 2019,
2020, 2023), as well as dynamic metro scheduling (Wang
et al. 2022). There are also entity representation learning
methods that use GNNs, hyper-GNNs, contrastive learning,
transfer learning, or LLM enhancement and can be applied
to spatio-temporal system optimization (Wu et al. 2020;
Yang et al. 2025; Han et al. 2025; Jiang et al. 2023a; Li et al.
2025; Cheng et al. 2025; Zhang et al. 2024).

5.2 RL-based Methods for Vehicle Routing
Problems

Reinforcement Learning has been applied to both single and
multiple Vehicle Routing Problems. For single-vehicle prob-
lems, attention-based models (Vinyals, Fortunato, and Jaitly
2015; Bello et al. 2016; Nazari et al. 2018; Kool, Van Hoof,
and Welling 2018) and GNN-based variants (Fellek et al.
2023; Heydaribeni et al. 2023) have been proposed. For
multi-vehicle problems, multi-agent RL methods (Zhang
et al. 2020; Zong et al. 2022; Zhang, Qi, and Guan 2023)
have been developed but mainly for static settings. Recent
RL studies for dynamic settings (Anuar et al. 2022; Xiang
et al. 2024) have emerged, but they simplify the original
problem by introducing additional assumptions.

6 Conclusion
This paper presents MAPT to solve the cooperative Multi-
Vehicle Dynamic Pickup and Delivery Problem with
Stochastic Requests. MAPT utilizes the Transformer’s
Encoder-Decoder architecture combining with Pointer Net-
work to generate joint action sequences in an AutoRegres-
sive manner. By incorporating the Relation-Aware Attention
module and informative priors, the framework achieves a
better performance. Experiments show that MAPT outper-
forms existing baselines in solution quality across synthetic
datasets and real-world datasets.

7 Acknowledgments
This work is supported by the National Key R&D Pro-
gram of China (2023YFC3304700). Prof. Jingyuan Wang’s
work was partially supported by the National Natural Sci-
ence Foundation of China (No. 72222022, 72171013) and
the Fundamental Research Funds for the Central Uni-
versities (JKF-2025017226182). Prof. Junjie Wu’s work
was partially supported by the National Natural Science
Foundation of China (72242101, 72031001), the Out-
standing Young Scientist Program of Beijing Universities
(JWZQ20240201002), and the Artificial Intelligence Tech-
nology R&D Center for Exploration and Development of
China National Petroleum Corporation (2024-KFKT-22).

References
Andersson, T. 2021. A Comparative Study on a Dynamic
Pickup and Delivery Problem: Improving routing and order
assignment in same-day courier operations.
Anuar, W. K.; Lee, L. S.; Seow, H.-V.; and Pickl, S. 2022. A
multi-depot dynamic vehicle routing problem with stochas-
tic road capacity: An MDP model and dynamic policy for
post-decision state rollout algorithm in reinforcement learn-
ing. Mathematics, 10(15): 2699.
Assylbekov, Y.; Bali, R.; Bovard, L.; and Klaue, C. 2023.
Delivery Hero Recommendation Dataset: A Novel Dataset
for Benchmarking Recommendation Algorithms. In Pro-
ceedings of the 17th ACM Conference on Recommender Sys-
tems, 1042–1044.
Bello, I.; Pham, H.; Le, Q. V.; Norouzi, M.; and Bengio,
S. 2016. Neural combinatorial optimization with reinforce-
ment learning. arXiv preprint arXiv:1611.09940.
Berto, F.; Hua, C.; Luttmann, L.; Son, J.; Park, J.; Ahn, K.;
Kwon, C.; Xie, L.; and Park, J. 2024. PARCO: Learning Par-
allel Autoregressive Policies for Efficient Multi-Agent Com-
binatorial Optimization. arXiv preprint arXiv:2409.03811.
Cai, J.; Zhu, Q.; Lin, Q.; Li, J.; Chen, J.; and Ming, Z.
2022. An efficient multi-objective evolutionary algorithm
for a practical dynamic pickup and delivery problem. In
International conference on intelligent computing, 27–40.
Springer.
Cai, J.; Zhu, Q.; Lin, Q.; Ma, L.; Li, J.; and Ming, Z. 2023.
A survey of dynamic pickup and delivery problems. Neuro-
computing, 126631.
Cheng, J.; Wang, J.; Zhang, Y.; Ji, J.; Zhu, Y.; Zhang, Z.;
and Zhao, X. 2025. Poi-enhancer: An llm-based seman-
tic enhancement framework for poi representation learning.
In Proceedings of the AAAI conference on artificial intelli-
gence, volume 39, 11509–11517.
Fellek, G.; Farid, A.; Gebreyesus, G.; Fujimura, S.; and
Yoshie, O. 2023. Deep Graph Representation Learning to
Solve Vehicle Routing Problem. In 2023 International Con-
ference on Machine Learning and Cybernetics (ICMLC),
172–180. IEEE.
Fikar, C. 2018. A decision support system to investigate
food losses in e-grocery deliveries. Computers & Industrial
Engineering, 117: 282–290.

Fikar, C.; Hirsch, P.; and Gronalt, M. 2018. A decision sup-
port system to investigate dynamic last-mile distribution fa-
cilitating cargo-bikes. International Journal of Logistics Re-
search and Applications, 21(3): 300–317.
Geiser, T.; Hanne, T.; and Dornberger, R. 2020. Best-match
in a set of single-vehicle dynamic pickup and delivery prob-
lem using ant colony optimization. In Proceedings of the
2020 the 3rd International Conference on Computers in
Management and Business, 126–131.
Guo, S.; Chen, C.; Wang, J.; Ding, Y.; Liu, Y.; Xu, K.; Yu,
Z.; and Zhang, D. 2020. A force-directed approach to seek-
ing route recommendation in ride-on-demand service us-
ing multi-source urban data. IEEE Transactions on Mobile
Computing, 21(6): 1909–1926.
Guo, S.; Chen, C.; Wang, J.; Liu, Y.; Xu, K.; Yu, Z.; Zhang,
D.; and Chiu, D. M. 2019. Rod-revenue: Seeking strategies
analysis and revenue prediction in ride-on-demand service
using multi-source urban data. IEEE Transactions on Mobile
Computing, 19(9): 2202–2220.
Guo, S.; Shen, Q.; Liu, Z.; Chen, C.; Chen, C.; Wang, J.;
Li, Z.; and Xu, K. 2023. Seeking based on dynamic prices:
Higher earnings and better strategies in ride-on-demand ser-
vices. IEEE Transactions on Intelligent Transportation Sys-
tems, 24(5): 5527–5542.
Han, C.; Wang, J.; Wang, Y.; Yu, X.; Lin, H.; Li, C.; and Wu,
J. 2025. Bridging traffic state and trajectory for dynamic
road network and trajectory representation learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 39, 11763–11771.
Heydaribeni, N.; Zhan, X.; Zhang, R.; Eliassi-Rad, T.; and
Koushanfar, F. 2023. HypOp: Distributed Constrained Com-
binatorial Optimization leveraging Hypergraph Neural Net-
works. arXiv preprint arXiv:2311.09375.
Jiang, J.; Pan, D.; Ren, H.; Jiang, X.; Li, C.; and Wang, J.
2023a. Self-supervised trajectory representation learning
with temporal regularities and travel semantics. In 2023
IEEE 39th international conference on data engineering
(ICDE), 843–855. IEEE.
Jiang, W.; Zhao, W. X.; Wang, J.; and Jiang, J. 2023b. Con-
tinuous trajectory generation based on two-stage GAN. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 37, 4374–4382.
Kool, W.; Van Hoof, H.; and Welling, M. 2018. At-
tention, learn to solve routing problems! arXiv preprint
arXiv:1803.08475.
Li, X.; Luo, W.; Yuan, M.; Wang, J.; Lu, J.; Wang, J.; Lü, J.;
and Zeng, J. 2021. Learning to optimize industry-scale dy-
namic pickup and delivery problems. In 2021 IEEE 37th in-
ternational conference on data engineering (ICDE), 2511–
2522. IEEE.
Li, Y.; Wang, J.; Yu, X.; Wang, P.; and Huang, Q. 2025.
Cross City Traffic Flow Generation via Retrieval Aug-
mented Diffusion Model. In The Thirty-ninth Annual Con-
ference on Neural Information Processing Systems.
Liu, S.; Tan, P. H.; Kurniawan, E.; Zhang, P.; and Sun, S.
2018. Dynamic scheduling for pickup and delivery with time

windows. In 2018 IEEE 4th World Forum on Internet of
Things (WF-IoT), 767–770. IEEE.
Lu, Q.; and Dessouky, M. 2004. An exact algorithm for the
multiple vehicle pickup and delivery problem. Transporta-
tion Science, 38(4): 503–514.
Nazari, M.; Oroojlooy, A.; Snyder, L.; and Takac, M. 2018.
Reinforcement Learning for Solving the Vehicle Routing
Problem. In Bengio, S.; Wallach, H.; Larochelle, H.; Grau-
man, K.; Cesa-Bianchi, N.; and Garnett, R., eds., Advances
in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc.
Novaes, A. G.; Bez, E. T.; Burin, P. J.; and Aragão Jr, D. P.
2015. Dynamic milk-run OEM operations in over-congested
traffic conditions. Computers & Industrial Engineering, 88:
326–340.
Savelsbergh, M.; and Sol, M. 1998. Drive: Dynamic routing
of independent vehicles. Operations Research, 46(4): 474–
490.
Schilde, M.; Doerner, K. F.; and Hartl, R. F. 2011. Meta-
heuristics for the dynamic stochastic dial-a-ride problem
with expected return transports. Computers & operations
research, 38(12): 1719–1730.
Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; and
Abbeel, P. 2015. High-dimensional continuous control
using generalized advantage estimation. arXiv preprint
arXiv:1506.02438.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Sheridan, P. K.; Gluck, E.; Guan, Q.; Pickles, T.; Balcıog,
B.; Benhabib, B.; et al. 2013. The dynamic nearest neighbor
policy for the multi-vehicle pick-up and delivery problem.
Transportation Research Part A: Policy and Practice, 49:
178–194.
Tirado, G.; and Hvattum, L. M. 2017. Improved solutions to
dynamic and stochastic maritime pick-up and delivery prob-
lems using local search. Annals of Operations Research,
253: 825–843.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017.
Attention is All you Need. In Guyon, I.; Luxburg, U. V.;
Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and
Garnett, R., eds., Advances in Neural Information Process-
ing Systems, volume 30. Curran Associates, Inc.
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer net-
works. Advances in neural information processing systems,
28.
Wang, J.; Lin, Y.; and Li, Y. 2025. GTG: Generalizable
Trajectory Generation Model for Urban Mobility. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 39, 834–842.
Wang, J.; Wu, N.; and Zhao, W. X. 2021. Personalized route
recommendation with neural network enhanced search al-
gorithm. IEEE Transactions on Knowledge and Data Engi-
neering, 34(12): 5910–5924.

Wang, J.; Wu, N.; Zhao, W. X.; Peng, F.; and Lin, X. 2019.
Empowering A* search algorithms with neural networks for
personalized route recommendation. In Proceedings of the
25th ACM SIGKDD international conference on knowledge
discovery & data mining, 539–547.
Wang, Z.; Pan, Z.; Chen, S.; Ji, S.; Yi, X.; Zhang, J.; Wang,
J.; Gong, Z.; Li, T.; and Zheng, Y. 2022. Shortening pas-
sengers’ travel time: A dynamic metro train scheduling ap-
proach using deep reinforcement learning. IEEE Transac-
tions on Knowledge and Data Engineering, 35(5): 5282–
5295.
Wen, M.; Kuba, J.; Lin, R.; Zhang, W.; Wen, Y.; Wang, J.;
and Yang, Y. 2022. Multi-Agent Reinforcement Learning is
a Sequence Modeling Problem. In Koyejo, S.; Mohamed,
S.; Agarwal, A.; Belgrave, D.; Cho, K.; and Oh, A., eds.,
Advances in Neural Information Processing Systems, vol-
ume 35, 16509–16521. Curran Associates, Inc.
Wu, N.; Wang, J.; Zhao, W. X.; and Jin, Y. 2019. Learn-
ing to effectively estimate the travel time for fastest route
recommendation. In Proceedings of the 28th ACM Interna-
tional Conference on Information and Knowledge Manage-
ment, 1923–1932.
Wu, N.; Zhao, X. W.; Wang, J.; and Pan, D. 2020. Learn-
ing effective road network representation with hierarchical
graph neural networks. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery
& data mining, 6–14.
Xiang, C.; Wu, Z.; Tu, J.; and Huang, J. 2024. Centralized
Deep Reinforcement Learning Method for Dynamic Multi-
Vehicle Pickup and Delivery Problem With Crowdshippers.
IEEE Transactions on Intelligent Transportation Systems.
Yang, Y.; Wang, J.; Yu, X.; and Tang, Y. 2025. HygMap:
Representing All Types of Map Entities via Heterogeneous
Hypergraph. In Proceedings of the Thirty-Fourth Inter-
national Joint Conference on Artificial Intelligence, 9438–
9446.
Yu, X.; Wang, J.; Yang, Y.; Huang, Q.; and Qu, K. 2025.
BIGCity: A universal spatiotemporal model for unified tra-
jectory and traffic state data analysis. In 2025 IEEE 41st In-
ternational Conference on Data Engineering (ICDE), 4455–
4469. IEEE.
Zhang, K.; He, F.; Zhang, Z.; Lin, X.; and Li, M. 2020.
Multi-vehicle routing problems with soft time windows: A
multi-agent reinforcement learning approach. Transporta-
tion Research Part C: Emerging Technologies, 121: 102861.
Zhang, W.; Wang, J.; Yang, Y.; et al. 2024. VecCity:
A taxonomy-guided library for map entity representation
learning. arXiv preprint arXiv:2411.00874.
Zhang, Z.; Qi, G.; and Guan, W. 2023. Coordinated multi-
agent hierarchical deep reinforcement learning to solve
multi-trip vehicle routing problems with soft time windows.
IET Intelligent Transport Systems, 17(10): 2034–2051.
Zong, Z.; Zheng, M.; Li, Y.; and Jin, D. 2022. Mapdp: Co-
operative multi-agent reinforcement learning to solve pickup
and delivery problems. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 36, 9980–9988.

A Example Problem Instance
Figure 3 presents a representative problem instance in our
study. This instance consists of 2 pickup stations and 4 de-
livery stations, where each request is associated with one
pickup station and one delivery station. It also includes 2
vehicles (yellow and blue) and 5 requests — each request
is identified by a pair of pickup (pn) and delivery (dn) sta-
tions (with n = 1, 2, 3, 4, 5), and has timestamps like 9:00,
9:10, etc. The yellow vehicle follows a sequential route:
p1 → p2 → d1 → d2 → p3 → d3 — as visualized by the
orange arrows connecting these stations in the figure. It first
handles early requests p1 (pickup at 9:00) and p2 (pickup
at 9:10), then completes their deliveries (d1 at 9:20, d2 at
9:30). When p3 (pickup at 9:40) dynamically arrives later,
the yellow vehicle is scheduled to re-route back to the top-
left pickup station to fulfill this new request — highlighting
how our problem requires adapting to dynamically arriv-
ing requests. Meanwhile, the blue vehicle executes another
sequence: p4 → d4 → p5 → d5 — as shown by the blue
arrows. Here, p4 (pickup at 9:00) and d4 (delivery at 9:10)
are processed first, followed by p5 (pickup at 9:20) and d5
(delivery at 9:30).

When the blue vehicle reaches the upper-middle pickup
station, Request 4 (e.g., p4, the pickup for Request 4) is as-
signed to it, while Request 2 (e.g., p2, the pickup for Request
2) is deferred and then assigned to the yellow vehicle upon
its subsequent arrival — demonstrating the core challenge of
vehicle-request assignment: we need to decide which vehi-
cle each request should be assigned to.

B Difference between Rolling Horizon and
Markov Decision Process

Rolling Horizon is often used in classical operations re-
search methods. It transforms dynamic problems into static
subproblems by accumulating a sufficient number of re-
quests over a time window before planning begins (top of
Fig. 4). During this accumulation already-arrived requests
stay unprocessed causing unavoidable time waste. These
static subproblems are then solved with exact algorithms
or metaheuristics but their high computational complexity
further hinders time efficiency. In contrast Markov Deci-
sion Process (MDP) triggers planning at each time step (bot-
tom of Fig. 4) and makes decisions right as requests arrive.
The former fails to meet real-time dynamic decision-making
needs due to its batch-based approach while the latter pri-
oritizes real-time adaptation through frequent smaller-scale
planning.

C Dataset Details
In the MVDPDPSR problem addressed in this paper, the
problem scale is not solely determined by the number of sta-
tions but also depends on the number of requests, as we need
to determine the assignment relationship between requests
and vehicles. In the largest dataset, the number of requests
reaches 800, which already exceeds the problem scale of
most prior studies on static pickup-and-delivery problems,
such as (Zong et al. 2022). Below, we provide details of the

p1 9:00
p3 9:40
p5 9:20

p2 9:10
p4 9:00 d1 9:20

d2 9:30d3 9:50
d5 9:30

d4 9:10

Vehicle

Delivery Station

Pickup Station

p1→p2→d1→d2→p3→d3

p4→d4→p5→d5

p1 pickup of request 1
d1 delivery of request 1

Figure 3: Schematic illustration of the MVDPDPSR prob-
lem.

cumulative
requests

planning planning

cumulative
requests

planning planning planning planning planning planning

Rolling
Horizon

Markov
Decision
Process

Figure 4: Comparison between Rolling Horizon and Markov
Decision Process paradigms. The Rolling Horizon paradigm
requires accumulating a sufficient number of requests be-
fore invoking a static solver for vehicle routing optimization,
while the Markov Decision Process paradigm enables real-
time decision-making as requests arrive.

synthetic datasets and the real-world datasets. Their statis-
tics are summarized in Table 5.

• Synthetic Dataset: We first synthesize some datasets to
validate the effectiveness of the algorithm. We gen-
erated I ∈ {20, 50, 300} stations, with I = 20,
50, and 300 corresponding to dataset suffixes -S, -L,
and -XL, respectively. The distance between stations is
sampled from Uniform{0, 1, . . . , 10} for -S datasets,
from Uniform{0, 1, . . . , 30} for -L datasets and from
Uniform{0, 1, . . . , 20} for -XL datasets. Then, the short-
est path algorithm is applied. The capacity of each vehi-
cle was set to 3, and the number of vehicles was K ∈
{5, 15, 50}. Travel cost per unit distance is set to 0 or 0.3,
with the latter case marked by an additional suffix -cost.
The origin and destination of each request were uniformly
sampled from the I stations, and the request’s appearance
time was sampled from Uniform{1, 2, . . . , T}, where T is
set to 58 for -S datasets and 128 for -L and -XL datasets.

The profit for each request was the distance between its
origin and destination.

• Real-World Dataset: We used the DHRD(Assylbekov
et al. 2023) dataset, which consists of millions of food
delivery requests from three cities: Taipei (tpe), Singa-
pore (sg), and Stockholm (se). We treated each city as
an independent dataset. In this dataset, we treated each
geographical area as a station, with areas divided by 5-
character geohash granularity. After excluding stations
with almost no requests, each dataset had I = 36 stations.
The distance between two areas was defined as the min-
imum number of areas that needed to be traversed. The
capacity of each vehicle was set to 6, and the number of
vehicles for the three cities was set to K ∈ {20, 15, 3}. In
this dataset, we did not consider the cost of vehicle travel,
only the total profit of completed requests. The origin and
destination of each request were the stations correspond-
ing to their respective geographical areas. We divided a
day into T = 48 time slots, corresponding to T time steps
in the simulation environment. The time step of a request’s
appearance was determined by its real-time slot. The profit
for each request is set to 1. We divided the dataset into 76
days for training and validation, and 14 days for testing.

D Computational Complexity Analysis
The computational efficiency of MAPT is crucial for its
practical application in dynamic vehicle routing scenar-
ios, where real-time decision-making is essential. Our ar-
chitecture maintains the fundamental structure of Trans-
former models while introducing minimal additional over-
head through the Relation-Aware Attention and Informa-
tive Prior modules. The encoder stage processes all enti-
ties (stations, requests, and vehicles) as a single sequence.
For each encoder block with hidden dimension H , the com-
plexity is dominated by the self-attention mechanism and
feed-forward network operations. The self-attention com-
putation scales as O((I + M + K)2H) where I , M , and
K represent the number of stations, requests, and vehicles
respectively, while the feed-forward network contributes
O((I +M +K)H2) per layer.

During decoding, we employ the KV-Cache technique
commonly used in large language models to optimize au-
toregressive generation. This approach caches previously
computed key-value pairs, significantly reducing redun-
dant computations when processing sequential decisions.
Each decoder block involves three main components: self-
attention over the partially constructed solution (complexity
O((M + K)2H)), cross-attention between the decoder in-
puts and encoder outputs (O((M + K)(I + M + K)H)),
and the feed-forward network operations (O((M+K)H2)).

So the overall computational complexity of MAPT is
O(L[(I +M +K)2H + (I +M +K)H2]), where L rep-
resents the number of transformer layers. While this demon-
strates quadratic scaling with respect to the number of enti-
ties, the parallel processing capabilities of modern GPUs en-
able efficient computation even for large problem instances.
This efficiency is particularly important for our target appli-
cation, where the system must respond to dynamic requests

Scenio Stations Reqs. Veh. T Cost Profit

synthetic-S 20 110 5 58 0 distance
synthetic-S-cost 20 110 5 58 0.3 distance

synthetic-L 50 550 15 128 0 distance
synthetic-L-cost 50 550 15 128 0.3 distance

synthetic-XL 300 550 50 128 0 distance

dhrd-tpe 36 800 20 48 0 1
dhrd-sg 36 700 15 48 0 1
dhrd-se 36 200 3 48 0 1

Table 5: Statistics of experimental datasets. cost is the cost
per unit distance; profit is the profit per request (either
distance-based or fixed).

in real-time while maintaining solution quality.

E Training Algorithm
The main part of our training algorithm follows the original
Proximal Policy Optimization (PPO) algorithm (Schulman
et al. 2017), and we have incorporated some learning rate
schedule strategies. We summarize our training process in
Algorithm 1.

F Implementation Details
For the model architecture, we employ a Transformer with
6 encoder layers and 2 decoder layers. The hidden size is
set to 128, and the number of attention heads is 2. Regard-
ing the optimizer configuration, we utilize the Adam opti-
mizer with a learning rate schedule that includes a warm-up
phase and a decay phase. Specifically, the learning rate in-
creases linearly during the first quarter of the total training
steps, reaching the target learning rate, and subsequently un-
dergoes linear decay for the remaining steps. For the Prox-
imal Policy Optimization (PPO) algorithm, we set the dis-
count factor γ = 0.99, the clipping coefficient ϵ = 0.2,
and the Generalized Advantage Estimation (GAE) parame-
ter λ = 0.99. Critic loss coefficient α is set to 1. The number
of PPO epochs is fixed at 1. The hyperparameter β is set to
0.03. During training, we monitor the model’s performance
on the validation set and retain the best-performing model
as the final model. Additional dataset-specific hyperparame-
ters are provided in Table 6. All experiments are conducted
using Python 3.10 and PyTorch 2.5.

G Difference between Non-AutoRegressive
and AutoRegressive Decoding

We use a simple VRP example to illustrate the difference
between the Non-AutoRegressive method with independent
decoding and our AutoRegressive method in terms of decod-
ing, as shown in Figure 5. Suppose two vehicles, v1 and v2,
are at the same location and need to collaboratively visit sta-
tions n1 . . . n4. The optimal solution is achieved when both
vehicles move left and right respectively, while a suboptimal
solution is obtained when they move up and down respec-
tively. Let the actions of the two vehicles be Av1 and Av2 ,

1 2

4 3

1 2

4 3

1 2

4 3

Non-AutoRegressive Decoding

sample action
from
and

handcraft Conflict
Handler

(Non-differentiable)

1 2

4 3

1 2

4 3

1 2

4 3

sample action
from

(masked) sample
action from

Worse Solution

Better Solution

AutoRegressive Decoding

Figure 5: Comparison between Non-AutoRegressive Decoding(up) and AutoRegressive Decoding(down).

Dataset Total Rollout MiniBatch LR

synth-S 16K 256 256 1e-4
synth-S-cost 16K 256 256 1e-4
synth-L 4K 64 64 2e-5
synth-L-cost 4K 64 64 5e-5
synth-XL 4K 64 64 2e-5
dhrd-se 8K 256 256 2e-5
dhrd-tpe 2K 64 64 2e-5
dhrd-sg 2K 64 64 1e-5

Table 6: Dataset Specific Hyper-parameters. Total indicates
the overall training budget. Rollout specifies the experi-
ence collection per iteration. Minibatch determines the SGD
batch size. LR controls the policy update step size.

representing the next station they move to at the first step,
and π represent a scheduling policy. However, for the Non-
AutoRegressive independent decoding method, it can only
model the probability distribution of each vehicle’s individ-
ual actions π(Av1 | v1, v2) and π(Av2 | v1, v2), but fails
to model the joint probability distribution of the two vehi-
cles’ actions π(Av1 , Av2 | v1, v2). Consequently, it cannot
guarantee that both vehicles move left and right respectively.
Moreover, since a conflict handler is applied afterward, its
gradient cannot be backpropagated, making it impossible to
optimize the neural network parameters using conflict in-
formation when conflicts occur, which limits the capability
of such methods. For AutoRegressive decoding, we first de-
code the action Av1 of v1 according to π(Av1 = n1 . . . n4 |
v1, v2), then use Av1 as an additional condition to decode the
action Av2 of v2, i.e., π(Av2 = n1 . . . n4 | v1, v2, Av1). At
this point, the policy can determine the direction of v2 based

on whether Av1 is left or right, thus achieving the optimal
solution. Additionally, we can mask out Av1 when decoding
Av2 to avoid conflicts.

H Does MAPT Overly Rely on Informative
Prior?

To verify whether MAPT excessively relies on the Infor-
mative Prior, we compare the experimental results between
MAPT and using only the Informative Prior as the decision-
making algorithm, as shown in Table 7. In synthetic datasets,
problem instances are randomly generated, making it diffi-
cult to form complex and realistic distributions. As a result,
the generated problem instances tend to be simpler, lead-
ing to cases where the difference between the Informative
Prior and MAPT is small. However, for real-world datasets,
our model (MAPT) shows significant improvements over
the Informative Prior, with enhancement rates of 14% for
dhrd-tpe, 16% for dhrd-sg, and 19% for dhrd-se. In Figure
6, we show the distribution of request origins and destina-
tions in the dhrd-tpe dataset, which differs significantly from
the Uniform distribution of synthetic data. Reinforcement
learning can learn more complex distributions based on the
Informative Prior, which is why its improvement on real-
world datasets is more significant than on synthetic datasets.
Moreover, even for the large-scale synthetic-XL dataset, our
model achieves a notable 37% improvement over the Infor-
mative Prior. These results demonstrate that our model does
not overly rely on Informative Priors.

I Generalization
Since our decision-making does not strictly depend on the
number of vehicles and requests, we expect our model to

Scenario synth-S synth-S-cost synth-L synth-L-cost dhrd-tpe dhrd-sg dhrd-se synth-XL
Metric Obj. ↑Comp. ↑Obj. ↑Comp. ↑ Obj. ↑ Comp. ↑ Obj. ↑ Comp. ↑Obj. ↑Comp. ↑Obj. ↑Comp. ↑Obj. ↑Comp. ↑ Obj. ↑ Comp. ↑

Infor Prior 267.1 0.81 185.0 0.81 1858.9 0.79 1305.5 0.79 614.1 0.77 323.7 0.62 66.1 0.54 2340.7 0.47
MAPT 275.2 0.83 192.1 0.84 1875.1 0.80 1348.6 0.81 697.2 0.87 376.1 0.71 78.9 0.64 3227.5 0.65

Table 7: Performance comparison between Informative Prior and MAPT.

Algorithm 1: PPO Training Algorithm for MAPT

1: Initialize:
2: Policy network πθ with parameters θ.
3: Replay buffer B.
4: Environment E , episode length T .
5: Learning rate scheduler with warmup and linear de-

cay.
6: Rollout iterations K, rollout threads N .
7: for iteration k = 1, 2, . . . ,K do
8: for thread n = 1, 2, . . . , N do
9: Reset environment E and initialize observations s0.

10: for step t = 0, 1, 2, . . . , T − 1 do
11: Collect Data:
12: Sample actions at from policy πθ(at|st).
13: Execute actions at in environment E .
14: Observe next state st+1 and reward rt.
15: Store transition (st, at, rt, st+1) in buffer B.
16: end for
17: end for
18: Compute Advantages:
19: Compute advantages using Generalized Advantage

Estimation (25).
20: for epoch e = 1, 2, . . . , E do
21: Optimize Surrogate Objective:
22: Sample mini-batch of transitions from buffer B.
23: Compute critic loss by (28) and policy loss by

(27).
24: Update policy πθ using gradient descent on joint

loss (29).
25: end for
26: Update Old Policy:
27: θold ← θ
28: update learning rate through scheduler.
29: end for

have some generalization ability. To this end, we conducted
a series of experiments:

• synthetic-S→ synthetic-XL represents the validation of
whether a model trained on small-scale data can be used
on large-scale problems.

• synthetic-S → dhrd-se represents the validation of
whether a model trained on data from one distribution can
generalize to other distributions.

The generalization results are shown in Table 8. The exper-
iments show that models trained on small synthetic dataset
can generalize to real-world dataset and large-scale dataset
to some extent. This is due to two reasons: first, the use of
Transformer, a model structure with good generalization ca-

(a) (b)

Figure 6: Heatmap of the distribution of request origins(a)
and destinations(b) in the dhrd-tpe dataset, where darker col-
ors indicate higher quantities.

Scenario synth-S dhrd-se synth-XL
Metric Obj. ↑ Comp. ↑ Obj. ↑ Comp. ↑ Obj. ↑ Comp. ↑
synth-S 275.2 0.83 74.4 0.61 2470.2 0.50
dhrd-se 117.4 0.36 78.9 0.64 1480.0 0.30

synth-XL 109.8 0.34 52.6 0.42 3227.5 0.65

Table 8: Generalization of MAPT. The row index indicates
that the model is trained on the corresponding dataset, and
the column index indicates that the model is evaluated on the
corresponding dataset.

pabilities, and second, the inclusion of informative priors in
the model, which provides guidance in unseen distributions.
It is worth noting that when tested on real-world datasets
and large-scale datasets, our method still outperforms the
pure Informative Priors approach (see Tables 7 and 8), prov-
ing that our deep model has also learned some transferable
knowledge, rather than relying solely on the Informative Pri-
ors for generalization. Although the model trained on the
dhrd-se dataset performed best on this dataset, it performed
poorly when generalized to synthetic datasets. We speculate
that this is because the request OD distribution and station
embeddings learned from the dhrd-se dataset are not suitable
for synthetic datasets. However, there is still much to explore
in the field of generalization as part of our future research.

J Baselines Implementation
Rolling Horizon The Rolling Horizon Policy addresses
the dynamic nature of the Multi-Vehicle Dynamic Pickup
and Delivery Problem by breaking it into smaller, static sub-
problems within a sliding time window, enabling the use
of traditional optimization methods. At each decision point,
the policy determines a planning horizon based on the re-
maining time frames and the maximum allowable planning
horizon, ensuring computational tractability. The maximum

Dataset Horizon Replan

synth-S 20 10
synth-S-cost 20 10
synth-L 60 30
synth-L-cost 60 30
synth-XL 40 20
dhrd-se 30 15
dhrd-tpe 30 15
dhrd-sg 30 15

Table 9: Rolling Horizon Hyper-parameters. Horizon in-
dicates the maximum allowable planning horizon. Replan
specifies the re-planning interval.

allowable planning horizon used for each dataset is shown
in Table 9, column Horizon. The problem within this win-
dow is formulated as a static instance, where vehicles, re-
quests, and constraints (e.g., vehicle capacity, request ap-
pearance times, and preloaded requests) are fixed for the du-
ration of the window. A solver, chosen from a set of avail-
able methods (e.g., OR-Tools, Genetic Algorithm(GA), or
Simulated Annealing(SA)), is then applied to optimize the
assignment of requests to vehicles and their routes within
the window. The solver’s solution is translated into action-
able decisions, such as assigning requests to vehicles and
determining the next hop for each vehicle, while ensuring
feasibility with respect to constraints like vehicle capacity
and request uniqueness. The policy periodically re-evaluates
and re-plans at predefined intervals to adapt to new informa-
tion and changing conditions. The re-planning interval used
for each dataset is shown in Table 9, column Replan. By it-
eratively solving these static subproblems and updating the
solution as the horizon shifts, the Rolling Horizon Policy ef-
fectively handles the dynamic and stochastic nature of the
problem, balancing computational efficiency with solution
quality.

OR-Tools We address the Multi-Vehicle Dynamic Pickup
and Delivery Problem with Stochastic Requests using the
Google OR-Tools CP-SAT solver. The problem involves a
fleet of vehicles K, a set of requests M , and a set of stations
N over a time horizon T . Each vehicle k ∈ K has a start-
ing location startk, a capacity capacityk, and a join time
jointimek indicating when it becomes available for the first
decision-making. Requests m ∈M appear at time appearm
and must be picked up from fromm and delivered to tom.
Some requests may be pre-loaded on vehicles, denoted by
preloadk,m, and vehicles are en route until their join time,
during which they cannot perform any actions. For the con-
venience of modeling, we assume that the volume of each
request is 1.

Decision Variables:

• pickupk,m,t: Binary variable indicating whether vehicle k
picks up request m at time t.

• deliveryk,m,t: Binary variable indicating whether vehicle
k delivers request m at time t.

• loadk,t: Integer variable representing the load of vehicle k

at time t.
• lock,t: Integer variable representing the location of vehicle
k at time t.

• noactk,t: (No Action) Binary variable indicating whether
vehicle k is not performing any action at time t, e.g. the
vehicle is en route.
Constraints:

• Pre-Loaded Requests: For pre-loaded requests, the
pickup action is enforced at t = −1:

pickupk,m,−1 = preloadk,m ∀k ∈ K,m ∈M (30)

loadk,−1 =
∑
m

preloadk,m ∀k ∈ K (31)

• Load Dynamics: The load of each vehicle is updated
based on pickup and delivery actions:

loadk,t = loadk,t−1 +
∑
m∈M

pickupk,m,t−∑
m∈M

deliveryk,m,t∀k ∈ K, t ∈ [0, T]
(32)

• Location Dynamics: The location of each vehicle is up-
dated based on pickup, delivery, and no-action variables:

lock,t =


startk if t ≤ jointimek
lock,t−1 if noactk,t−1 = 1

tom if deliveryk,m,t = 1

fromm if pickupk,m,t = 1

∀k ∈ K, t ∈ [0, T],m ∈M

(33)

• No-Action Constraints: If no pickup or delivery occurs
at time t, the no-action variable is set to 1:

noactk,t = 1 ⇐⇒∑
m∈M

pickupk,m,t +
∑
m∈M

deliveryk,m,t = 0

∀k ∈ K, t ∈ [0, T]

(34)

• Request Assignment: Each request must be picked up
and delivered by at most one vehicle:∑

k∈K

∑
t∈[−1,T]

pickupk,m,t ≤ 1 ∀m ∈M (35)

∑
k∈K

∑
t∈[−1,T]

deliveryk,m,t ≤ 1 ∀m ∈M (36)

• Pickup-Delivery Sequence: A request must be picked up
before it can be delivered:∑
t′∈[−1,t]

pickupk,m,t′ = 1 =⇒ deliveryk,m,t = 1

∀k ∈ K,m ∈M, t ∈ [−1, T]
(37)

• Capacity Constraints: The load of each vehicle must not
exceed its capacity:

loadk,t ≤ capacityk ∀k ∈ K, t ∈ [0, T] (38)

• Time-Distance Constraints: The time between consecu-
tive actions must be sufficient to travel between locations:

t1 − t0 ≥ distlock,t0
,lock,t1

∀k ∈ K, t0, t1 ∈ [0, T], t0 < t1
(39)

• Join Time Constraints: Vehicles cannot perform any ac-
tions before their join time:

noactk,t = 1 ∀k ∈ K, t ∈ [0, jointimek − 1] (40)

Objective Function: The objective is to maximize the total
profit of delivered requests while minimizing travel costs:

Maximize
∑
m∈M

∑
k∈K

∑
t∈[0,T]

deliveryk,m,t · valuem

−
∑
k∈K

∑
t∈[0,T−1]

costlock,t,lock,t+1

(41)

Simulated Annealing The Simulated Annealing (SA) al-
gorithm for solving the Multi-Vehicle Dynamic Pickup and
Delivery Problem with Stochastic Requests starts by gener-
ating an initial solution through random request assignments
to vehicles, ensuring constraints such as initial positions,
displacement, location consistency, request uniqueness, ca-
pacity, request appearance times, and vehicle start times are
satisfied. To construct a neighbor solution, the algorithm ran-
domly selects a request and removes its current assignment
from the vehicle’s path. Then the selected request is reas-
signed to a new vehicle, and both pickup and delivery times
are randomly selected within their respective feasible win-
dows, ensuring the pickup occurs after the request’s appear-
ance time and the delivery occurs after the pickup plus the
travel time. The annealing process iteratively explores the
solution space by accepting better solutions or probabilisti-
cally accepting worse solutions based on the current temper-
ature, which gradually decreases according to a predefined
cooling rate. The initial temperature is set to 1000, the final
temperature is set to 1, the cooling rate is set to 0.99, and the
maximum number of iterations is set to 5000.

Genetic Algorithm The Genetic Algorithm (GA) for
solving the Multi-Vehicle Dynamic Pickup and Delivery
Problem with Stochastic Requests begins by generating an
initial population of feasible solutions, where requests are
randomly assigned to vehicles while ensuring constraints
such as initial positions, displacement, location consistency,
request uniqueness, capacity, request appearance times, and
vehicle start times are satisfied. Each individual in the pop-
ulation represents a solution, and its fitness is evaluated us-
ing an exponential transformation of the objective function,
which combines the total profit of served requests and the
cost of vehicle movements. The algorithm evolves the pop-
ulation through selection, crossover, and mutation opera-
tions. During selection, individuals are chosen probabilis-
tically based on their fitness, favoring better solutions. The
crossover operation randomly selects a request and swaps
its assignment between two parent solutions, ensuring fea-
sibility by updating vehicle locations and loads. The muta-
tion operation randomly selects a request and reallocates it

to a different vehicle or adjusts its pickup and delivery times,
maintaining feasibility through constraint checks. The pop-
ulation iteratively evolves over a predefined number of gen-
erations, with the best solution being tracked and updated
based on fitness. The population size is set to 10, and the
number of generations is set to 500.

