arXiv:2511.17439v1 [cs.LG] 21 Nov 2025

InTAct: Interval-based Task Activation Consolidation for Continual Learning

Patryk Krukowski
Jagiellonian University
IDEAS NCBR

patryk.krukowski@doctoral.uj.edu.pl

Jacek Tabor
Jagiellonian University

Abstract

Continual learning aims to enable neural networks to acqu-
ire new knowledge without forgetting previously learned
information. While recent prompt-based methods perform
strongly in class-incremental settings, they remain vulnera-
ble under domain shifts, where the input distribution chan-
ges but the label space remains fixed. This exposes a per-
sistent problem known as representation drift. Shared re-
presentations evolve in ways that overwrite previously use-
ful features and cause forgetting even when prompts iso-
late task-specific parameters. To address this issue, we in-
troduce InTAct, a method that preserves functional beha-
vior in shared layers without freezing parameters or storing
past data. InTAct captures the characteristic activation ran-
ges associated with previously learned tasks and constra-
ins updates to ensure the network remains consistent within
these regions, while still allowing for flexible adaptation el-
sewhere. In doing so, InTAct stabilizes the functional role of
important neurons rather than directly restricting parame-
ter values. The approach is architecture-agnostic and inte-
grates seamlessly into existing prompt-based continual le-
arning frameworks. By regulating representation changes
where past knowledge is encoded, InTAct achieves a prin-
cipled balance between stability and plasticity. Across di-
verse domain-incremental benchmarks, including Domain-
Net and ImageNet-R, InTAct consistently reduces represen-
tation drift and improves performance, increasing Average
Accuracy by up to 8 percentage points over state-of-the-art
baselines.

1. Introduction

Continual learning enables neural networks to acquire new
knowledge over time while retaining previously learned in-
formation. Human beings achieve this naturally by balan-

Jagiellonian University

Pawet Wawrzynski
IDEAS Research Institute

Piotr Helm
Jagiellonian University

Jan Miksa

Przemystaw Spurek
Jagiellonian University
IDEAS Research Institute

cing stability, the preservation of past knowledge, and pla-
sticity, the ability to learn new tasks. Deep neural networks,
however, struggle to maintain this balance [21]. When ad-
apting to new data, their internal representations often drift,
altering the learned features that were important for earlier
tasks and ultimately leading to catastrophic forgetting [34].
Many existing approaches mitigate forgetting by constra-
ining parameter updates, yet few explicitly control how the
network’s function itself evolves across tasks. Uncontrolled
changes in these representations remain a key source of in-
stability.

This challenge of internal representation drift is espe-
cially evident in prompt-based continual learning [11,
47, 53, 54]. These methods currently achieve state-of-the-
art performance in both class-incremental and domain-
incremental settings, but their reliance on shared compo-
nents makes them vulnerable to representational drift. In
class-incremental learning (CIL), where tasks introduce
new classes, prompt-based models approach optimal per-
formance. Contrary, in domain-incremental learning (DIL),
where the label space is fixed but input distributions shift,
these models often degrade as internal features drift. Altho-
ugh prompting reduces interference at the embedding level,
it does not explicitly regulate how shared representations
evolve within trainable modules, leaving the model’s inter-
nal function unconstrained.

Recent work such as the Kolmogorov—Arnold Classi-
fier (KAC) [17] introduces the notion of functional locality,
constraining how output heads change across tasks. Yet, this
principle has not been extended to deeper representations,
leaving open the fundamental question: how can we con-
trol where and how much a network’s internal function
should adapt during continual learning?

We address this challenge with Interval-based Task Ac-
tivation Consolidation (InTAct), a framework that enfor-
ces functional stability across all layers of the model (see

https://arxiv.org/abs/2511.17439v1

Tasks

Model

In-Layer Transformation

-~

Task N

(

Task N+1

Task N+2

\\\/

AN

()

R

\ (OO

— taskn

4 R

=

%

task n
— taskn+1

task n+1
— task n+2

VAN Y,

Rysunek 1. During training on task (N+1), InTAct preserves the functional region established by task /N (pink) while allowing the model
to learn new knowledge in a distinct region (orange). After training, these regions merge into an expanded protected region (yellow),
defining where the layer’s transformation should remain stable in future updates. The dashed curves illustrate transformations from earlier
tasks, highlighting that their behaviors remain preserved within their respective regions, while adaptation is freely allowed outside them.

Fig. 1). Rather than typical approaches, which operate in
the parameters’ space, InTAct regularizes activations direc-
tly, which preserves network behaviour. After learning each
task, it summarizes the stable activation patterns as boun-
ded regions, activation intervals, and aggregates them into
multidimensional activation hypercubes. An interval here
is a one-dimensional range capturing the lower and upper
bounds of a neuron’s typical activation values, representing
the region within which its response remains functionally
consistent. A hypercube generalizes this concept to multiple
neurons within a layer, jointly describing where the layer’s
transformation is expected to be stable.

When learning new tasks, these hypercubes act as soft
functional constraints: the model is encouraged to keep acti-
vations within established stable regions when appropriate,
yet retains flexibility to explore new regions for adaptation.
This mechanism enables continual learning that is both ro-
bust and adaptive, preserving prior functionality while sup-
porting new knowledge acquisition. By operating at the re-
presentation level, InTAct directly controls how the model’s
function evolves, instead of only constraining parameters.

When integrated into state-of-the-art prompt-based fra-
meworks, InTAct improves Average Accuracy (AA) by
up to 8 percentage points (p.p.) on challenging domain-
incremental benchmarks such as DomainNet [37] and
ImageNet-R [15]. Moreover, InTAct remains effective even
in settings without pretrained backbones, demonstrating its
versatility as a general continual learning regularization
strategy. These results show that activation-level consolida-
tion provides a general and effective approach for robust
and adaptive continual learning systems.

The main contributions of this work are:

1. We propose InTAct', a continual learning method that
preserves stable functional behavior through a novel re-
gularization guided by activation hypercubes.

. InTAct achieves a principled balance between stability
and plasticity, maintaining the model’s functionality on
past tasks while enabling flexible adaptation to new ones.

. We demonstrate that InTAct consistently improves state-
of-the-art prompt-based methods by up to 8 p.p. in AA
on challenging continual learning benchmarks.

2. Related Works

For an extended literature overview, see Supplementary Ma-
terials (SM) 6.

Continual Learning Continual learning methods [8,
33, 36] fall into replay-based, regularization-based, and
parameter-isolation-based categories. Replay-based appro-
aches store exemplars [2—4, 27, 29, 39, 50] or generate
synthetic data [46, 57] to revisit past tasks. Regularization-
based methods add loss terms to constrain parameter chan-
ges, leveraging current [20, 26] or prior data [I, 5, 21,
60], or null-space projections [22, 48, 51, 52]. Parameter-
isolation techniques allocate task-specific subnetworks,
e.g., Progressive Neural Networks [42, 43], Piggyback [32],
PackNet [31], HAT [44], and SupSup [56], but require task
IDs at inference.

ICode available at: https://github.com/pkrukowskil /

InTAct

https://github.com/pkrukowski1/InTAct
https://github.com/pkrukowski1/InTAct

/ Task N

Task N+2 \

Task N+1

class: goldfish

S
/ Query

Function

class: bird

Embedding Layer

Pretrained
Feature
Extractor

Classifier

C) InTAct

Prompt Pool

(&

Rysunek 2. Integration of InTAct with prompt-based methods. In-
TAct stabilizes features within the pretrained extractor and con-
strains activation changes in the classifier, mitigating representa-
tion drift across tasks.

Prompt-Based Continual Learning Prompt-based me-
thods leverage pretrained models for rehearsal-free conti-
nual learning. L2P [11] and DualPrompt [47] optimize ad-
aptive prompts to guide frozen backbones. CoDA-Prompt
[53] decomposes attention for modularity, and C-Prompt
[54] ensures prompt stability across tasks. While prompt-
based approaches reduce forgetting, they still suffer from
drift in shared parameters, such as classifiers or learna-
ble prompts, especially in DIL scenarios. InTAct addres-
ses this by regularizing these shared parameters to prevent
drift of important features, maintaining stable representa-
tions across tasks. Figure 2 illustrates how InTAct integra-
tes with these prompt-based methods, stabilizing shared pa-
rameters and reducing representation drift across multiple
tasks in continual learning.

Interval Arithmetic in Continual Learning Interval ari-
thmetic [6, 35] has been applied in continual learning, for
example, in InterContiNet [55], which constrains weights
using intervals to ensure multi-task performance, and HINT
[24], which maps intervals in the embedding space to the
network via hypernetworks. In contrast, we use interval ari-
thmetic to define activation hypercubes that capture prior
task data, without propagating intervals and avoiding the
wrapping effect. Each layer is then regularized to keep its
transformations within these hypercubes, ensuring stable
representations across tasks.

3. Method

At its core, continual learning should allow a network to
evolve gradually, adjusting its learned representations lo-

cally to accommodate new knowledge while leaving its
functional structure intact. In practice, however, most ap-
proaches either constrain parameters globally or rely on re-
playing past data, both of which limit scalability and effi-
ciency. What is missing is a mechanism that can selectively
stabilize regions of the network’s function that matter, wi-
thout halting its capacity to adapt elsewhere.

Goal. Our method addresses this gap by preserving pre-
viously learned internal representations without freezing
parameters or using data replay. We summarize the activa-
tion distribution of each layer [from past tasks and define a
protected region, a hypercube #; capturing the central p%
of neuron activations. This region represents the critical ac-
tivation manifold to preserve. During new task learning, all
parameters remain fully trainable, but the transformation of
layer [+1 is regularized to stay stable for any input within
‘H;, while regions outside it remain free to adapt. This tar-
geted constraint maintains prior functionality and enables
new knowledge acquisition, achieving a principled balance
between stability and plasticity.

Idea Visualization. To illustrate the concept, Fig. 3
shows how InTAct incrementally learns three segments of a
Gaussian function. In the first task, the network learns to ap-
proximate the first segment and identifies the corresponding
activation hypercubes. During the second task, the model le-
arns the next segment while InTAct actively protects the ac-
tivations established in the first task (Fig. 3a) from drifting.
This exact process continues for subsequent tasks, demon-
strating how InTAct successfully balances stability (prese-
rving old segments) and plasticity (learning new ones).

The following sections describe how these activation hy-
percubes are computed and updated throughout the conti-
nual learning process.

3.1. Activation Interval Representation

We aim to summarize activation distributions from past ta-
sks without storing all raw activations. Let Sy be the set
of layer indices for which a hypercube from the preceding
layer is available. For each task ¢ and each layer | € Sy, we
build a hypercube H; ; that captures the stable activation re-
gion at that layer. Importantly, InTAct need not be applied
to every layer.

Let x; ; denote the activation vector of the [-th layer in-
dex in Sy after learning task ¢. To define the hypercube
boundaries, we capture the central p% of the activation di-
stribution by excluding the extreme o = &27”% tails, for
example, o = 5 for p = 90.

For each neuron j in the selected layer, we determine the
per-task activation range by computing its lower and upper

Ground Truth
_____________ ---- Current Interval

Ground Truth
---- Previous Interval
______________ ---- Current Interval

Ground Truth
---- Previous Interval
________________ ---- Current Interval

(a) Task 1: learning the first segment of the Gaus-

sian. preserving the first.

(b) Task 2: adapting to the second segment while

(c) Task 3: completing the Gaussian while reta-
ining prior mappings.

Rysunek 3. The model learns a Gaussian function in three sequential tasks. At each stage, InTAct constrains activations within previously
established hypercubes, allowing new segments to be learned without overwriting prior knowledge.

bounds, which together define the characteristic hypercube:

Hl,t = [&l’tv El,t}a (1)

where
xy,[j] = percentile o (z1,¢[]) , 2
Ty, [j] = percentile ;g oo (1,6 []) - 3)

Importantly, these hypercubes are computed only after a
task has been fully learned, ensuring they reflect stable ac-
tivation patterns rather than transient learning dynamics.

Cumulative Hypercube Update. As the model learns se-
quentially, we must preserve the functional regions from
all previous tasks. We define a cumulative hypercube, ’Hl(t) ,
which represents the total protected region for layer index
[€ Sy after learning ¢ tasks.

After the new task ¢ is learned and its hypercube H; ;
is computed, we merge it with the previous cumulative hy-
percube 'Hl(t_l)
expansion:

. The update rule is a simple elementwise

_(t—1) —

H[(t) — |:Hlln (gl(t_l)7£l,t)7 max (le ’xl’t):| ’ (4)

where and fl(t_l) are the bounds of the cumula-

tive hypercube from the previous step, and the min(-) and
max(-) operations are applied elementwise.

As new tasks arrive, these cumulative hypercubes gra-
dually expand to cover the full range of activations obse-
rved across all tasks. This compact representation ensures
that each layer retains the functional regions essential for
solving past tasks while leaving room for adaptation.

(t=1)
1

3.2. Functional Preservation via Regularization

In this subsection, we describe our regularization method.
The central idea is to permit parameter updates (A#) only
if they do not alter the network’s output function for inputs
corresponding to previous tasks. Our approach targets this
goal directly in the activation space.

Internal Representation Drift Loss. When training on
a new task ¢, parameter updates Af can alter the output
of each layer. This representation drift changes the overall
function and degrades performance on past tasks.

Our method constrains the transformation f(-;6;) of
each layer index [€ Sy . We require that for any input
drawn from the protected cumulative hypercube of the pre-
vious layer index, ”Hl(t:ll), the layer’s output remains inva-
riant to the parameter update A6;. This condition is forma-
lized as:

F@:60,+ A6) = f(2:6), YeeH V. ©)

Consider an affine layer followed by an activation:
f(xz;01) = o(Wiz + by), where 0, = {W,, b}, and W,
and b; are learnable parameters. A direct and robust way to
satisfy Eq. (5) is to enforce invariance at the pre-activation
level. If the pre-activation remains constant, the output of
standard activation functions (e.g., ReLU) will also be inva-
riant. This yields a simpler, stricter constraint:

(Wi + AW)x + (b + Aby) = Wiz + by, Vo € Hl(t—_ll)’

which simplifies to:
AWz + Ab =0, VoeHY. 6)

While formulated for affine layers, this principle is readily
extended to other types, such as convolutional layers (see
SM 13).

Enforcing this pointwise constraint over all = € ’Hl(t__ll)
is intractable. Our key insight is to leverage interval ari-
thmetic to enforce the constraint over the entire hyper-

cube Hl(t:ll) simultaneously. We represent the hypercube

t—1) _(t—1)
as [£§—1 y Ly

as:

} and reformulate the constraint (Eq. (6))

AW, [z, 70T + Ab = [0,0]. (7)

To translate this constraint into a differentiable loss, we
compute the bounds of the resulting hypercube. Using stan-
dard interval arithmetic (detailed in SM 12), the output in-

terval for the i-th neuron is [@1 + Aby Zi + Abm], where:

I; = (AwlT,i)+§z(i_11) -
7 = (Aw[) T2 -

(Awl) T, ®
(Awl) 250 ©)

Here, (Aw)';)" and (Aw,;)~ denote the element-wise po-
sitive and negative parts of the i-th row of AW;. The loss
is applied only to layers for which an input hypercube is
available. Let /; denote the first such layer. Earlier layers
cannot be regularized because no input hypercube exists for
them. For each | € Sy, \ I3, we use the following penalty:

ny

Linrift = AlntDrift Z Z [(@i+Abr;)?+

1€Sx\l1 i=1

(2;+Ab;)?].

(10)
This constrains the network within preserved activation re-
gions while allowing updates outside them.

Remaining Challenges. The proposed Liypyi; 10ss effec-
tively stabilizes internal representations operating within
the protected activation hypercubes of preceding layers. Ho-
wever, two key challenges remain. First, early feature lay-
ers, those before the first defined hypercube H,,, are not
constrained by this mechanism. To ensure full feature stabi-
lity, a complementary regularization strategy is required, as
introduced in the next section. Second, as tasks accumulate,
cumulative hypercubes (Eq. (4)) may expand into empty re-
gions between disjoint activation spaces, potentially over-
constraining the model and reducing plasticity.

How InTAct Differs from Existing Regularizers.
Unlike parameter-based regularizers (e.g., EWC, SI) that
penalize weight changes, Lyypyf directly constrains func-
tional change in activation space, ensuring that the ne-
twork’s behavior, not just its parameters, remains consi-
stent. In contrast to output-level methods like LwF or those
relying on discrete point sampling [7], our interval-based
formulation enforces stability across continuous activation
regions, offering a principled and tractable guarantee of
functional preservation. Hypercubes act as compact, data-
free summaries of past tasks, avoiding replay or architec-
tural overhead and making InTAct lightweight, privacy-
preserving, and easily integrable into existing continual le-
arning frameworks.

Activation Compactness Regularization. To prevent the
excessive growth of activation hypercubes and improve re-
presentational efficiency, we introduce a compactness regu-
larization term. This loss, Lv,;, encourages activations from
the current task to remain concentrated in a smaller, denser
region of the feature space.

For a layer index | € Sy and the N, samples of the
current task ¢, let z; ;1 be the input to the layer with index
[for sample 7 (i.e., the activation from the layer with index
I —1). We compute the empirical mean activation fl(t) using

the current model f(; 91“)):

Ny
TONER 0!
=5 ;:1 F(@ia-130,"). (11

The activation dispersion Vl(t) is the mean squared deviation
from this mean:

v = Zfoul,o“’ ‘“H (12)

The compactness regularization is the sum of these disper-
sions over the relevant layer indices:

Lve = Avare 3 VY, (13)

leSy

where Ay, > 0 controls the strength of the penalty. Minimi-
zing Ly, forces tighter clustering of activations, resulting in
more compact hypercubes. This ensures our functional re-
gularization (Lyprify) Operates over smaller, more meaning-
ful regions, mitigating hypercube over-expansion and pre-
serving model plasticity for future tasks.

Inter-Task Alignment Regularization. The cumulative
hypercube update rule (Eq. (4)) is prone to over-regularizing
inactive space, particularly when activation regions from se-
quential tasks are disjoint. If a new task’s hypercube is far
from the previous cumulative region, the rule expands to co-
ver the wide gap between them, unnecessarily constraining
a "free"region that contains no meaningful activations. This
severely restricts plasticity, especially in deeper layers.

To prevent this and promote smoother transitions, we in-
troduce an inter-task alignment regularization term, £jign.
This loss encourages the centers of the newly learned acti-
vation hypercubes (#; ;) to remain close to the centers of
the hypercubes calculated from preceding tasks (H; ¢—1).

We define the center of a hypercube H; as ¢; = (T; +
x;)/2, and the radius as r; = (Z; — x;)/2. The alignment
loss penalizes the squared distance between the new center
c1,; and the previous center ¢ ;_1:

2
||Cl t— t—1||2

Lalign = Mlign Z ?5 (14)

€Sy lLt—1

Here, ¢ is a small constant for numerical stability, and the
denominator provides an adaptive scaling mechanism. We
use the mean radius of the previous task’s hypercube across

. o d
its d; dimensions, r}s*" = - 7L l(Jt) .-

Intuitively, the radius r}}™" reflects the spread of past
representations. A small radius indicates that past tasks oc-
cupied a narrow, critical region, thus scaling the penalty up
and enforcing stricter alignment. Conversely, a large radius
implies widely spread representations, weakening the con-
straint and granting the model more freedom to adapt. This
adaptive scaling efficiently stabilizes the model’s represen-
tational space while preserving flexibility.

Feature Distillation Loss. To stabilize the early feature
layers (those with indices [<), we introduce a feature
distillation loss, Lpea. This loss is applied at the layer with
index ls¢qre, where the first hypercube #;_, ., is defined.
For each input sample x;, we compare its feature represen-
tation from the current model féﬁ}n (x;) against the frozen re-

presentation from the previous model féé; 2 (x;). Crucially,
we do this only on a subset of feature dimensions indicated
by a binary mask M:

2

t t—1
£ _)\Fea[gt: ‘(ée?ll(ml) - f]:(:ea[)(:I:’L)) @ MH2
Feat Nt s s+e)

15)
where s is the number of active entries (1s) in M, and s + €
normalizes the loss magnitude.

Unlike standard knowledge distillation, which often
over-restricts the model by constraining the entire feature
vector, Lre, implements a selective stabilization. It prese-
rves only a controlled subset of features deemed important
from past tasks, leaving the remaining dimensions free to
adapt to the new task. This targeted approach preserves le-
arned structure while maintaining the flexibility required to
acquire new information.

Final Regularization Objective. Our full training objec-
tive combines the base continual learning loss L, with the
proposed regularization terms:

ETotal = ETask + EIntDrif{ + EVar + EAlign + EFeat- (16)

Each component targets a different aspect of the stabi-
lity—plasticity trade-off: Lpypyr constrains changes in the
model’s internal function across tasks, Ly, keeps activa-
tion distributions compact to prevent representational over-
expansion, £ ajign regulates the growth of protected hypercu-
bes over time, and L, stabilizes early feature layers while
allowing adaptation in later ones. Their effects are illustra-
ted in Fig. 4.

Because these regularizers act directly on activations, In-
TAct can be seamlessly integrated into diverse continual le-
arning methods. An algorithm of the training procedure ap-
pears in SM 14, and ablations isolating each term are repor-
ted in Section 4.

4. Experiments

We evaluate the effectiveness of InTAct across multi-
ple benchmarks under both CIL and DIL scenarios. Our
experiments compare InTAct with regularization-based and
prompt-based continual learning methods, demonstrating
consistent performance gains across different architectures
and learning paradigms. Additional results showing the ef-
fectiveness of InTAct without pretrained backbones are pro-
vided in SM 15. Moreover, SM 16 presents a comparison
with a broader range of methods for the CIL scenario.

4.1. Experimental Setup

Datasets. We evaluate the effectiveness of InTAct on
several datasets. (1) For regularization-based approaches:
Split MNIST, Split FMNIST, and Split CIFAR-10; (2) For
prompt-based approaches: Split CIFAR-100, DomainNet,
and ImageNet-R. Except for Split CIFAR-100, we evalu-
ate performance under both CIL and DIL scenarios. Full
dataset and task details are provided in SM 8.

Architectures. For the Split MNIST and Split FMNIST
datasets, we use a multilayer perceptron (MLP) with three
hidden layers of 400 neurons each. For Split CIFAR-10, we
employ a pretrained ResNet-18 [14] as the feature extrac-
tor, where the last residual block is unfrozen and adapted
during continual learning. For Split CIFAR-100, ImageNet-
R, and DomainNet, we follow the CODA-Prompt, using a
ViT-B/16 encoder [9] pretrained on ImageNet-1K [41]. We
apply our method to activations of the last layer before Soft-
max as presented on Figure 2. Additional architectural and
implementation details are provided in SM 8.

Metrics. We evaluate the performance of our method
using two standard continual learning metrics: Average Ac-
curacy (AA) and Average Forgetting (AF). Formal defini-
tions of these metrics are provided in SM 11.

4.2. Results

This subsection discusses evaluation results of InTAct
across diverse continual learning benchmarks. Overall, the
results highlight InTAct’s ability to enhance stability while
preserving plasticity across varied scenarios.

Results for Prompt-based Methods (DIL). Overall, In-
TAct consistently delivers the strongest performance across
all prompt-based methods in the DIL setting, substantially
improving both AA and reducing AF. The detailed results
are reported in Tab. | for the 6-task DomainNet benchmark,
where tasks share labels but differ in visual domains. Inte-
grating InTAct yields gains of 4—6 percentage points in AA
and decreases AF by up to 60%, with the largest impro-
vements observed when combined with DualPrompt (AA:

Lotal = Lask ‘|‘[£IntDrift + EFeat]"‘[EVar "" [EAlign}

/

\ \

InTAct

men | L AT

Task N+1| N~ o ﬂ
‘ RN 2 I

InTAct

InTAct

Rysunek 4. Tllustration of how the InTAct loss components (Eq. 23) regulate representation updates between consecutive tasks. Linprire and
Lrea preserve previously learned in-layer transformations within protected activation hypercubes (pink), maintaining consistency of past
feature space while allowing adaptation in new regions. Ly, constrains the expansion of activation hypercubes so that new regions (orange)
remain compact and balanced across tasks, preventing uncontrolled growth. Lajigen enforces smooth transitions by aligning consecutive
hypercubes and avoiding fragmentation of functional regions. Purple outlines denote the InTAct-regularized case, where the representation

remains stable and well-aligned across tasks.

50.87% — 56.83%, AF: 12.13 — 4.66). Similar trends
for L2P and CODA-Prompt confirm that InTAct stabilizes
shared prompt representations effectively across different
prompting strategies without additional replay mechanisms
or architectural overhead.

Tabela 1. Results on the 6-task (345 classes each) DomainNet
benchmark (DIL setting). We report the mean and standard de-
viation of AA and AF averaged over 3 random seeds.

Method AA () AF ()

Upper-Bound 79.65 -
L2P 48.44 £0.09 14.56 £ 0.05
w/ InTAct 53.44+0.02 6.95+0.99
DualPrompt 50.87 £ 0.31 12.134+0.2
w/ InTAct 56.83 +£0.28 4.66+0.11
CODA-P 52.52+0.22 11.54+0.16
w/ InTAct 57.36 £ 0.25 6.49+0.11

Tab. 2 further shows consistent benefits on the 15-task
ImageNet-R benchmark, a more challenging scenario with
greater domain diversity and more incremental steps. Note
that integrating InTAct not only preserves prior knowledge
but can also enhance performance on earlier tasks (e.g., AF
drops from 1.01 to —0.36 with DualPrompt), highlighting
the method’s ability to stabilize representations in prompt-
based architectures. Across both benchmarks, InTAct im-
proves stability while maintaining plasticity, all without re-
play buffers, replay, or architectural changes.

Across both DomainNet and ImageNet-R in the DIL set-
ting, InTAct consistently enhances stability without hinde-
ring plasticity. These gains are achieved without additional
replay mechanisms or architectural modifications.

Tabela 2. Results on the 15-task (200 classes each) ImageNet-R
benchmark (DIL setting). We report the mean and standard devia-
tion of AA and AF averaged over 5 random seeds.

Method AA () AF ({)
Upper-Bound 77.13 -
L2P 50.34 £0.26 1.46 £0.19

w/ InTAct 58.34 +0.24 0.02 + 0.1
DualPrompt 53.31 £0.36 1.01 £0.17

w/ InTAct 61.85+0.45 —0.36+0.17

CODA-P 61.21 +£0.49 0.68 £0.11

w/ InTAct 66.11 + 0.24 0.35 + 0.07

Results for Prompt-based Methods (CIL). Tab. 3 re-
ports AA and AF on ImageNet-R for 10- and 20-step CIL
scenarios. Across all baselines, integrating InTAct consi-
stently improves or matches performance, confirming its
robustness and plug-and-play compatibility with diverse
prompt-based continual learning frameworks. For L2P, In-
TAct delivers clear AA gains and lower standard devia-
tions, indicating that our regularization stabilizes optimiza-
tion and promotes smoother learning. DualPrompt also be-
nefits, maintaining high accuracy with reduced forgetting
and improved consistency. The largest improvements ap-
pear for CODA-Prompt, where InTAct boosts AA by nearly
one point in both settings, showing that functional preserva-
tion effectively complements prompt-based methods.

This improvement is most pronounced in CODA-Prompt
due to its shared, trainable prompt pool, composed of
prompt tokens (F,,), keys (K,,), and attention vectors
(A,,), which are jointly updated across tasks. During con-
tinual learning, this shared structure can easily drift, cau-
sing instability in both the generated prompts and the clas-

Tabela 3. Results on the ImageNet-R dataset (CIL setting). We
report the mean and standard deviation of AA and AF averaged
over 5 random seeds.

Method 10 steps 20 steps
AA (1) AF ({) AA (1) AF ({)
Upper-Bound 77.13 - 77.13 -

L2P 69.29 £0.73 2.03 £0.19 | 65.89 £1.30 1.24 +0.14
w/InTAct |69.44 +0.45 2.89 £0.46 (66.18 +0.36 1.30£0.13
DualPrompt |71.32 £0.62 1.71 +£0.24 |67.87 +1.39 1.07 £ 0.14
w/InTAct | 70.98 £0.60 1.68 + 0.07 |67.89 £ 0.66 1.19 +0.18
CODA-P 75.45 +0.56 1.60 £+ 0.20 | 72.37 = 1.19 1.00 + 0.15
w/ InTAct |76.40 +0.16 2.07 £0.16 [73.30 4 0.41 1.56 = 0.26

sifier head. InTAct counteracts this by jointly stabilizing the
prompt-generation process and the classifier’s decision bo-
undaries through its regularization losses (LIntDrift, LFeat,
Lalign). This coordinated stabilization reduces internal re-
presentation drift and prevents interference between evo-
lving prompts and classification layers.

Overall, InTAct enhances the stability and consistency of
CODA-Prompt, demonstrating that even advanced prompt-
based approaches remain vulnerable to internal functional
drift. By precisely regulating how and where a model’s re-
presentations evolve during continual learning, InTAct pro-
vides a principled and broadly applicable solution. Consi-
stent findings are observed on the CIFAR-100 dataset, with
additional results reported in SM 15.

4.3. Ablations

In Tab. 4, we report an ablation study analyzing the con-
tribution of each component of InTAct. The experiment is
conducted on the Split CIFAR-10 benchmark under the DIL
setting. We report the AA averaged over five seeds for the
full model and three seeds for each ablated variant, where
a single component is removed at a time. The results show
that excluding any term consistently degrades performance,
demonstrating that all components of InTAct contribute in
a complementary manner. The most significant drop oc-
curs when Ly, is removed, highlighting its importance in
controlling the compactness of activation intervals. Without
this term, the network’s representations are regularized over
excessively large hypercubes, as described in Eq. (5), which
weakens the effectiveness of our regularization. Moreover,
we also investigate how different values of Ay, affect AA,
and present these results in SM 15.

We also observe that removing Lajign slightly decreases
AA. This component prevents distant activation regions
from merging into excessively large hypercubes when tasks
are related (see Eq. (4)). Without it, two small but separate
regions can combine into a much larger one, causing the
model to regularize a substantial amount of irrelevant space

Tabela 4. Ablation study of different components in InTAct. The
results are averaged over 3 random seeds for ablations.

Method AA

InTAct 75.84 + 0.63
Ablate Liyprift 71.63 +£1.34
Ablate Lyar 67.43 +1.32
Ablate Llign 74.37 £ 0.46
Ablate Lreat 71.04 £ 0.54

and limiting its ability to adapt effectively to new tasks.

4.4. Additional Experiments

Impact of Apyprie on AA in DIL setting. Fig. 5 il-
lustrates how different values of Apprre affect the sta-
bility—plasticity trade-off when InTAct is integrated into
CODA-Prompt under the DIL scenario on the Domain-
Net dataset. While accuracy naturally decreases as new ta-
sks are introduced, the strength of the regularization plays
a key role in controlling this decline. A significant value
(Amwmrift = 0.1) overconstrains the model, hindering adap-
tation to new tasks, whereas a very small value (Aiyprise =
0.0001) provides insufficient functional stability. The best
performance is obtained for A\pprirg = 0.001, which yields
the highest AA across tasks by achieving a balanced trade-
off.

—— Aintorit = 0.01
Anntorift = 0.1

80 —— Aintoritt =0.001

—s— Aintorift = 0.0001

85

75

70

AA [%]

65

60

55

50

Task ID

Rysunek 5. Impact of the Ammrire hyperparameter on AA for the
CODA-Prompt method. Results are averaged over 2 random seeds.

These results confirm that our regularization does not
overconstrain the model and effectively mediates the sta-
bility—plasticity balance. All other hyperparameters are fi-
xed to the optimal configuration previously determined for
CODA-Prompt on DomainNet under the DIL setting to iso-
late the effect of Apyprige- For clarity, the reported values cor-
respond to the scaled coefficient A\ pin = % where
C is the total number of classes in the benchmark (here,
C = 345).

5. Conclusions

We introduced InTAct, a continual learning method that
preserves knowledge at the activation level. Rather than
constraining parameters or replaying data, InTAct protects
key activation ranges that encode past knowledge, keeping
transformations consistent within these regions while al-
lowing flexibility elsewhere. This prevents representation
drift without reducing adaptability. InTAct is lightweight,
model-agnostic, and integrates easily with existing architec-
tures, improving stability and accuracy across benchmarks
such as DomainNet and ImageNet-R, and narrowing the gap
to the multi-task upper bound.

Limitations. Current activation regions are represented as
hypercubes, which may not capture the full complexity of
activation geometries. Future work will explore more fle-
xible region representations and improved mechanisms for
consolidating knowledge across tasks.

Literatura

[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,
Marcus Rohrbach, and Tinne Tuytelaars. Memory aware sy-
napses: Learning what (not) to forget, 2018. 2, 1

[2] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide
Abati, and Simone Calderara. Dark experience for general
continual learning: a strong, simple baseline. In Advances in
neural information processing systems, pages 15920-15930,
2020. 2, 1

[3] Arslan Chaudhry, Marc’ Aurelio Ranzato, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient lifelong learning with a-
gem. In International Conference on Learning Representa-
tions, 2018. 7

[4] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhose-
iny, Thalaiyasingam Ajanthan, Puneet K. Dokania, Philip
H. S. Torr, and Marc’Aurelio Ranzato. On tiny episo-
dic memories in continual learning, 2019. arXiv preprint
arXiv:1902.10486. 2, 1

[5] Zhikang Chen, Abudukelimu Wuerkaixi, Sen Cui, Haoxuan
Li, Ding Li, Jingfeng Zhang, Bo Han, Gang Niu, Houfang
Liu, Yi Yang, Sifan Yang, Changshui Zhang, and Tianling
Ren. Learning without isolation: Pathway protection for con-
tinual learning. In International Conference on Machine Le-
arning, 2025. 2, 1

[6] Germund Dahlquist and Ake Bjorck. Numerical methods in
scientific computing, volume 1. SIAM, 2008. 3, 2

[71 MohammadReza Davari, Nader Asadi, Sudhir Mudur, Rahaf
Aljundi, and Eugene Belilovsky. Probing representation for-
getting in supervised and unsupervised continual learning,
2022. 5

[8] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Pa-
risot, Xu Jia, Ales Leonardis, Gregory Slabaugh, and Tinne
Tuytelaars. A continual learning survey: Defying forgetting
in classification tasks. IEEE transactions on pattern analysis
and machine intelligence, 44(7):3366-3385, 2021. 2, 1

(9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mo-
stafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth
16x16 words: Transformers for image recognition at scale,
2021. 6,2, 4

Arthur Douillard and Timothée Lesort. Continuum: Simple
management of complex continual learning scenarios, 2021.
4
Zhanxin Gao, Jun Cen, and Xiaobin Chang. Consistent
prompting for rehearsal-free continual learning. In Proce-
edings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 28463-28473, 2024. 1, 3

Dipam Goswami, Yuyang Liu, Barttomiej Twardowski, and
Joost van de Weijer. Fecam: Exploiting the heterogeneity of
class distributions in exemplar-free continual learning, 2024.
1

Dipam Goswami, Albin Soutif-Cormerais, Yuyang Liu, San-
desh Kamath, Bart Twardowski, and Joost van de Weijer. Re-
surrecting old classes with new data for exemplar-free conti-
nual learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 28525—
28534, 2024. 2

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 6, 4
Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt,
and Justin Gilmer. The many faces of robustness: A critical
analysis of out-of-distribution generalization. ICCV, 2021.
2,4

Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and
Zsolt Kira. Re-evaluating continual learning scenarios: A
categorization and case for strong baselines, 2019. 4
Yusong Hu, Zichen Liang, Fei Yang, Qibin Hou, Xialei Liu,
and Ming-Ming Cheng. Kac: Kolmogorov-arnold classifier
for continual learning, 2025. 1

Paul Janson, Wenxuan Zhang, Rahaf Aljundi, and Moha-
med Elhoseiny. A simple baseline that questions the use of
pretrained-models in continual learning. In NeurIPS 2022
Workshop on Distribution Shifts: Connecting Methods and
Applications, 2022. 1

Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter.
Applied Interval Analysis: With Examples in Parameter and
State Estimation, Robust and Control. Springer, London,
2001. 6,7

Sanghwan Kim, Lorenzo Noci, Antonio Orvieto, and Tho-
mas Hofmann. Achieving a better stability-plasticity trade-
off via auxiliary networks in continual learning. In Proce-
edings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11930-11939, 2023. 2, 1

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-
maran, and Raia Hadsell. Overcoming catastrophic forget-
ting in neural networks. Proceedings of the National Aca-
demy of Sciences, 114(13):3521-3526, 2017. 1,2

(22]

(23]

[24]

[25]

(26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

Yajing Kong, Liu Liu, Zhen Wang, and Dacheng Tao. Ba-
lancing stability and plasticity through advanced null space
in continual learning. In European Conference on Computer
Vision, pages 219-236, 2022. 2, 1

Alex Krizhevsky. Learning multiple layers of features from
tiny images. University of Toronto, 2012. 4

Patryk Krukowski, Anna Bielawska, Kamil Ksigzek, Pawet
Wawrzynski, Pawet Batorski, and Przemystaw Spurek. Hint:
Hypernetwork approach to training weight interval regions in
continual learning. Information Sciences, 717:122261, 2025.
3,2

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing
continuous prompts for generation, 2021. 2

Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEFE transactions on pattern analysis and machine intelli-
gence, 40(12):2935-2947,2017. 2, 1, 11

Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free
low-rank adaptation for continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 23638-23647, 2024. 2, 1

Xuan Liu and Xiaobin Chang. Lora subtraction for drift-
resistant space in exemplar-free continual learning. In Pro-
ceedings of the IEEE/CVF conference on Computer Vision
and Pattern Recognition, pages 15308-15318, 2025. 2
David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient epi-
sodic memory for continual learning, 2022. 2, 1

Tamasha Malepathirana, Damith Senanayake, and Saman
Halgamuge. Napa-vq: Neighborhood-aware prototype au-
gmentation with vector quantization for continual learning.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 11674-11684, 2023. 1

Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-
tiple tasks to a single network by iterative pruning. In Pro-
ceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 7765-7773, 2018. 2, 1

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-
back: Adapting a single network to multiple tasks by learning
to mask weights. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 67-82, 2018. 2, |

Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel
Menta, Andrew D. Bagdanov, and Joost van de Weijer.
Class-incremental learning: survey and performance evalu-
ation on image classification. /IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(5):5513-5533, 2022.
2,1

Michael McCloskey and Neal J. Cohen. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. pages 109-165. Academic Press, 1989. 1

Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud.
Introduction to interval analysis. SIAM, 2009. 3,2, 5,7, 8
German I. Parisi, Ronald Kemker, Jose L. Part, Christopher
Kanan, and Stefan Wermter. Continual lifelong learning with
neural networks: A review. Neural Networks, 113:475-480,
2019. 2, 1

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE International

(38]

(39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

(47]

(48]

(49]

(50]

Conference on Computer Vision, pages 1406-1415, 2019. 2,
4

Grégoire Petit, Adrian Popescu, Hugo Schindler, David Pi-
card, and Bertrand Delezoide. Fetril: Feature translation for
exemplar-free class-incremental learning. In Proceedings of
the IEEE/CVF winter conference on applications of compu-
ter vision, pages 3911-3920, 2023. 2

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu,
Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning to learn
without forgetting by maximizing transfer and minimizing
interference. In International Conference on Learning Re-
presentations, 2018. 2, 1

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P.
Lillicrap, and Greg Wayne. Experience replay for continual
learning, 2019. 11

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition challenge,
2015. 6

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Ra-
zvan Pascanu, and Raia Hadsell. Progressive neural ne-
tworks, 2016. arXiv preprint arXiv:1606.04671. 2, 1

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Ra-
zvan Pascanu, and Raia Hadsell. Progressive neural ne-
tworks, 2022. 2, |

Joan Serra, Didac Suris, Marius Miron, and Alexandros Ka-
ratzoglou. Overcoming catastrophic forgetting with hard at-
tention to the task. In International Conference on Machine
Learning, pages 4548-4557, 2018. 2, 1

Wuxuan Shi and Mang Ye. Prototype reminiscence and
augmented asymmetric knowledge aggregation for non-
exemplar class-incremental learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 1772-1781, 2023. 1

Hanul Shin, Jung Kwon Lee, Jaechong Kim, and Jiwon Kim.
Continual learning with deep generative replay. In Advances
in neural information processing systems, 2017. 2, 1

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola
Cascante-Bonilla, Donghyun Kim, Assaf Arbelle, Rameswar
Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Con-
tinual decomposed attention-based prompting for rehearsal-
free continual learning, 2023. 1, 3,7, 10, 11, 12

Shixiang Tang, Dapeng Chen, Jinguo Zhu, Shijie Yu, and
Wanli Ouyang. Layerwise optimization by gradient de-
composition for continual learning. In Proceedings of the
IEEE/CVF conference on Computer Vision and Pattern Re-
cognition, pages 9634-9643, 2021. 2, 1

Marco Toldo and Mete Ozay. Bring evanescent representa-
tions to life in lifelong class incremental learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16732-16741, 2022. 1
Edoardo Urettini and Antonio Carta. Online curvature-aware
replay: Leveraging 2nd order information for online conti-
nual learning. In International Conference on Machine Le-
arning, 2025. 2, 1

[51]

(52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Tra-
ining networks in null space of feature covariance for conti-
nual learning. In Proceedings of the IEEE/CVF conference
on Computer Vision and Pattern Recognition, pages 184—
193, 2021. 2, 1

Zhen Wang, Liu Liu, Yiqun Duan, Yajing Kong, and Da-
cheng Tao. Continual learning with lifelong vision transfor-
mer. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 171-181, 2022.
2,1

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun,
Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Dualprompt: Com-
plementary prompting for rehearsal-free continual learning,
2022. 1,3

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ru-
oxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer
Dy, and Tomas Pfister. Learning to prompt for continual le-
arning, 2022. 1, 3

Maciej Wolczyk, Karol Piczak, Bartosz Wdjcik, Lukasz Pu-
stelnik, Pawet Morawiecki, Jacek Tabor, Tomasz Trzcinski,
and Przemystaw Spurek. Continual learning with guarantees
via weight interval constraints. In International Conference
on Machine Learning, pages 23897-23911. PMLR, 2022. 3,
2

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Ani-
ruddha Kembhavi, Mohammad Rastegari, Jason Yosinski,
and Ali Farhadi. Supermasks in superposition. In Advan-
ces in Neural Information Processing Systems, pages 15173—
15184, 2020. 2, 1

Chenshen Wu, Luis Herranz, Xialei Liu, Yaxing Wang, Joost
van de Weijer, and Bogdan Raducanu. Memory replay gans:
Learning to generate new categories without forgetting. In
Advances in Neural Information Processing Systems, 2018.
2,1

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine le-
arning algorithms, 2017. 4

Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz,
Kai Wang, Yongmei Cheng, Shangling Jui, and Joost van de
Weijer. Semantic drift compensation for class-incremental
learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 6982—6991,
2020. 1

Friedemann Zenke, Ben Poole, and Surya Ganguli. Conti-
nual learning through synaptic intelligence, 2017. 2, 1
Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan
Zhan. Expandable subspace ensemble for pre-trained model-
based class-incremental learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Re-
cognition, pages 2355423564, 2024. 2

InTAct: Interval-based Task Activation Consolidation for Continual Learning

Supplementary Material

6. Extended Overview of Related Works

This section provides an extended literature review of
continual learning methods. It first categorizes classical
approaches into replay-based, regularization-based, and
parameter-isolation techniques. Subsequently, the focus shi-
fts to modern parameter-efficient methods like prompt-
based continual learning (e.g., L2P, DualPrompt, CODA-
Prompt) and contemporary strategies for managing feature
drift in the representation space. Finally, we review recent
applications of interval arithmetic in continual learning,
contrasting these ideas with our proposed approach of re-
gularizing functional transformations across model layers.

Continual Learning. Continual learning methods [8, 33,
36] can generally be divided into three categories: replay-
based, regularization-based, and parameter-isolation-based.
Replay-based methods employ memory or rehearsal me-
chanisms to recall past tasks during training, thereby ma-
intaining low loss on those tasks. Two primary strategies
are exemplar replay, which stores selected training samples
[2—4, 27, 29, 39, 50], and generative replay, where models
synthesize previous data using generative models [46, 57].
Regularization-based methods typically introduce a regu-
larization term into the loss function to constrain parame-
ter changes for previously learned tasks. This regulariza-
tion may be defined by the current task data [20, 26] or
previous tasks data [1, 5, 21, 60] variants. Recent methods
limit weight updates to null space of previous data feature
covariance [22, 48, 51, 52]. Liang and Li [27] leverage gra-
dient information from old tasks to construct a subspace
for LoRA’s dimensionality reduction matrix, thereby redu-
cing interference between the current task and the previous
ones. Parameter-isolation methods learn task-specific sub-
networks within the model. Techniques such as Progressive
Neural Networks [42, 43], Piggyback [32], PackNet [31],
HAT [44] and SupSup [56] allocate and combine parame-
ters for individual tasks. While effective in task-aware set-
tings, these methods are based on assigning test samples to
tasks, which may be problematic in some continual learning
scenarios.

Prompt-Based Continual Learning. These methods are
philosophically rooted in parameter-efficient learning,
where the vast majority of the model (the backbone) rema-
ins unchanged to prevent catastrophic forgetting. The core
mechanism involves introducing a small set of new, learna-
ble parameters called prompts for each task. These prompts
are typically vectors that are prepended to the input sequ-

ence embeddings or inserted into intermediate layers. This
effectively steers the frozen model’s behavior towards the
new task’s objective without overwriting knowledge from
previous tasks.

A key innovation in this area is the concept of a prompt
pool. Rather than learning a single, monolithic prompt for
each task, methods like L2P [11] learn a collection of shared
prompt vectors. During inference, the model uses a query-
based mechanism (e.g., matching input features to prompt
keys) to select a sparse combination of prompts from this
pool that are most relevant to the current input instance. This
approach not only adapts to the current task but also allows
the model to potentially recognize and handle inputs from
previous tasks by selecting the appropriate "old"prompts,
enabling a form of rehearsal-free task routing.

Further refinements focus on the structure and function
of the prompts themselves. For instance, DualPrompt [47]
introduced the idea of learning two distinct sets of prompts:
a general prompt shared across all tasks to capture com-
mon knowledge, and a set of fask-specific prompts to cap-
ture task-unique features. CoDA-Prompt [53] builds on this
by using a decomposed attention mechanism, allowing the
model to explicitly query general versus task-specific know-
ledge encoded in the prompts, thereby improving modula-
rity and reducing interference between task-specific instruc-
tions.

Despite their success in parameter-efficient, rehearsal-
free learning, these methods face a fundamental limita-
tion, particularly in domain-incremental learning (DIL):
they struggle to adapt the classifier to distributional shifts
between tasks. While the backbone features remain largely
fixed, the learned prompts or adapters often fail to capture
semantic drift in task labels or decision boundaries. Con-
sequently, when a new task comes from a domain substan-
tially different from previous ones, the classifier may mi-
srepresent the task despite informative backbone features.
This highlights the need for future approaches that strategi-
cally update classifier parameters or the backbone itself, or
develop more flexible prompt-tuning strategies capable of
handling evolving task distributions.

Addressing Feature Drift in Continual Learning. A
critical challenge in continual learning is the feature drift
of old classes when new tasks are learned without access to
previous samples. Methods often define prototypes of clas-
ses [12, 18] in the feature space and prevent their drift. SDC
[59] and [49] estimate and compensate for feature drift with
current-task data following each training phase. NAPA-VQ
[30] and Prototype Reminiscence [45] reshape old prototy-

pes through topological information with current-data sam-
ples. FeTrIL [38] introduces a feature translation strategy
that aligns new and old class feature distributions. ADC [13]
generates adversarial pseudo-exemplars of new classes to
adjust prototypes of earlier classes. EASE [61] introduces a
semantic-guided prototype complement strategy that resha-
pes prototypes of old classes in the feature space adjusted by
the current task’s data. Liu and Chang [28] defines a drift-
resistant space in which the model weights can be adjusted
to the new task without interfering with old data features. In
this work, we do not refer to the concept of prototype. In-
stead, we mitigate the feature drift by enforcing each layer
to preserve its performed transformation on its subdomain
defined by the previous tasks’ data.

Interval Arithmetic in Continual Learning. Interval
arithmetic [6, 35] has been applied to continual learning in
InterContiNet [55], where the key idea is to employ inte-
rval constraints on the weights associated with successive
tasks. The intersection of these intervals defines the subset
of weights that yield satisfactory performance across all ta-
sks. HINT [24] employs intervals in the embedding space
and leverages a hypernetwork to map them to the weight
space of the target network. In contrast, we propose a novel
approach, also grounded in interval arithmetic: each layer
of the neural network is regularized to preserve its transfor-
mation within a subdomain delineated by a hyper-interval,
which encapsulates data from previously learned tasks.

Parameter-Isolation Approaches. Another strategy is to
prevent interference across tasks by isolating parameters.
Progressive Neural Networks [43] expand the architecture
with task-specific columns and lateral connections, reusing
prior knowledge without overwriting it. While this elimi-
nates forgetting by construction, network growth scales li-
nearly with the number of tasks, making these approaches
impractical for long task sequences or large-scale settings.

Regularization-Based Methods. Regularization-based
approaches constrain weight updates to preserve infor-
mation from earlier tasks. Elastic Weight Consolidation
(EWC) [60] introduces a Fisher information—based penalty
to protect important parameters, while Synaptic Intel-
ligence (SI) [26] and Memory Aware Synapses (MAS)
[21] estimate weight importance through gradient flow.
Learning Without Forgetting (LwF) [1] further anchors
predictions of past tasks using knowledge distillation.
Despite their success, these methods focus primarily on the
parameter space, leaving internal representations vulnera-
ble to drift. As a result, preserving weight importance does
not necessarily maintain the functional behavior of learned
features.

Representation-Level Stability. A complementary di-
rection emphasizes stabilizing learned representations ra-
ther than weights. Approaches inspired by interval analysis
[35] and activation regularization aim to limit representa-
tion drift by constraining activations to remain within task-
specific bounds. However, these ideas have seen limited ad-
option in continual learning due to the difficulty of summa-
rizing activation distributions efficiently.

7. Preliminaries

This section presents the key technical concepts underlying
prompt-based continual learning. We begin by explaining
how parameter-efficient prefix tuning allows a frozen pre-
trained feature extractor to be adapted without modifying
its weights. We then provide an overview of three represen-
tative prompt-management frameworks, L2P, DualPrompt,
and CODA-Prompt, which illustrate how modern methods
organize and select prompts to support rehearsal-free lear-
ning while minimizing interference across tasks.

Prompt-Based Continual Learning. Recent work
explores continual learning through prompts, leveraging
the representational capacity of pretrained vision models.
The core idea is to introduce a small set of learnable prompt
tokens, which guide a frozen network backbone to adapt
to new tasks, significantly reducing catastrophic forgetting
without requiring rehearsal of old data. We now detail the
mechanics and principal architectures of these methods.

Let fy denote a pretrained encoder (e.g., a Vision Trans-
former [9]) with frozen parameters 6. We denote the input
token embeddings to the I-th layer as b)) € RE*P, where
L is the sequence length (tokens) and D is the embed-
ding dimension. In prompt-based continual learning, each
task is associated with a set of learnable prompt vectors,
p € RE»*P where L,, is the prompt length. These prompts
serve as additional tokens that condition the model’s self-
attention, allowing it to adapt to new tasks without modify-
ing the shared backbone parameters 6.

A common and widely used implementation of prompt
injection is prefix-tuning [25]. In a standard multi-head self-
attention (MSA) layer, the input h(") is linearly projected
into Query (Q), Key (K), and Value (V') matrices using fro-
zen projection matrices Wq, Wi, Wy, Prefix-tuning intro-
duces a layer-specific prompt p(©) composed of two sets of
vectors, p(ll(), pg) € RL»*P_ These vectors are prepended
(concatenated) to the K and V' matrices, respectively, re-
placing the standard MSA operation with a prompted one:

Q=n"wq,

K’ = [pid; hOwi),

V' =[5 h O,
R = MSA(Q, K7, V'),

a7

Where MSA(-) denotes the standard multi-head self-
attention operation, [;] is concatenation along the sequence
dimension, and Wq, Wi, Wy are the frozen projection ma-
trices. K’ and V' are the augmented Key and Value ma-
trices incorporating the prompt components pg? and pg).
where [;] denotes concatenation along the sequence length
dimension. This design enables task-specific adaptation pu-
rely through the small set of learnable prompts p(*) while
keeping the entire backbone fy frozen. Additionally, the
model includes a trainable classifier head (a linear layer)
whose weights are optimized alongside the prompts to map
the prompt-adapted feature representations to the specific
class logits.

Prompt Selection and Memory Structure. A central
challenge is managing and selecting the correct prompts
when the task identity is unknown at test time (task-agnostic
continual learning). Learning to Prompt (L2P) [54] addres-
ses this by storing prompts in a shared prompt pool (or me-
mory) P = {(k;,pi;)}}£,, where M is the pool size. Each
prompt p; is associated with a corresponding learnable key

k; € RP.

During training on each task, a subset of the key-prompt
pairs is optimized via backpropagation to capture task-
relevant knowledge, while fy remains frozen. At inference
time, L2P uses a two-stage mechanism to process an input
x
1. Query Pass (Prompt Selection): The input z is first

passed through the frozen, unprompted encoder fy. The

resulting output embedding of the [CLS] token, g(z) =

Jo(w)cLs), is used as a query. This query is compared

to all keys k; € P using a similarity function (e.g., co-

sine similarity) to select a subset containing the /N most
relevant prompts.

2. Execution Pass (Task Processing): The N selected
prompts {p; }jcs, with S C {1,..., M}, are first aggre-
gated into a single final prompt, typically via averaging:
Pfinal = |—é‘ > jes Pj» where |S| denotes cardinality of
S. The input x is then processed by the encoder fy a se-
cond time, where g, is injected into the self-attention
layers (e.g., using Eq. 17).

This mechanism allows the model to retrieve the most rele-

vant knowledge from memory based on the input features.

During training, only the NV selected key—prompt pairs are

updated, while the rest of the pool remains unchanged.

Optimization Objective. Since the prompt retrieval me-
chanism (e.g., Top-K selection) is typically discrete and
non-differentiable, gradients from the primary classifica-
tion objective cannot flow back to update the keys {k;}.
To address this, prompt-based methods employ a compo-
site loss function. The learnable prompt vectors p and the
classifier head are optimized via the standard task loss Lyysx

(e.g., Cross-Entropy). Simultaneously, the keys k are opti-
mized via an auxiliary surrogate loss L, (e.g., a mat-
ching loss) that minimizes the distance between the query
and the selected keys. The total objective is formulated as
Lol = Luask + ALaux, ensuring that the keys learn to cap-
ture the input distribution while the prompts learn to mini-
mize the prediction error.

Complementary and Decomposed Prompting. Dual-
Prompt [53] extends L2P by dividing the prompt space into
two functional parts: a shared G-Prompt (g), which captu-
res task-invariant knowledge, and a task-specific E-Prompt
(et), which captures task-unique features. DualPrompt in-
serts E-Prompts e; = {egl)} into a set of shallow layers
(e.g., layers [1,..., L.]) and the G-Prompt g = {g(V} into
deeper layers (e.g., layers [L. + 1,..., Lg]). The forward
pass is a sequential application of prompted blocks:

O]
BU+D _ {Block(h() e)) forle[l,L.] (18)

Block(h®, gW) forl € [L.+1,L,]

where Block(h,p) denotes a Transformer block using
prompt p in its MSA (via Eq. 17). Unlike L2P’s shared
pool, DualPrompt learns a discrete set of key-prompt pa-
irs {(k¢,e:)} (one for each task t). At inference, the query
q(x) is used to find the best-matching key k; via cosine si-
milarity, and its corresponding E-Prompt e; is selected.

CODA-Prompt [47] generalizes this mechanism by com-
posing the final prompt from a weighted sum of M learna-
ble prompt components P = {P,,}}_,. The query ¢()
computes a set of attention weights a(z) = {ay,(z)}M_,;
over the components, representing a continuous composi-
tion over the memory:

€xp (<Q(x) O A, Km>/7—)
S exp ((g(2) © Aj, Kj) /)

where K,,, A, € RP are learnable keys and query-
modulation vectors, ® is the Hadamard product, and 7 is a
temperature parameter. The final prompt p(z) is then com-
posed as:

am(x) = (19)

M
p(z) = Z O (2) Py (20)
m=1

This continuous, differentiable composition increases flexi-
bility, allows capacity to scale by adding new components
when needed, and uses orthogonality regularization to re-
duce interference.

8. Implementation Details

This section provides all necessary implementation and
technical details. We discuss the architectures utilized, the
construction of the dataset tasks, and the GPU resources
used for the computations.

Architectures. We perform experiments using three wi-
dely used neural architectures:

e MLP: A three-layer fully connected network with 400
hidden units per layer, used for low-dimensional datasets
(Split MNIST and Split FMNIST). This serves as a ligh-
tweight baseline.

¢ ResNet-18 [14]: A convolutional network with residual
connections, used for medium-scale datasets such as
Split CIFAR-10. We use it as a feature extractor and
unfreeze only the final residual block to allow limited ad-
aptation. As a head, we employ a lightweight MLP clas-
sifier consisting of a single hidden layer with 400 units.

* ViT [9]: A Vision Transformer that operates on patch to-
kens with global self-attention. It is used for larger and
more diverse benchmarks (DomainNet and ImageNet-R),
and also for Split CIFAR-100. In this setup, ViT acts
as both the feature extractor and the query function in
prompt-based frameworks, and is kept fully frozen during
training.

The classifier head is configured according to the continual
learning setting. In the CIL scenario, where each task in-
troduces new, non-overlapping classes, the classifier head is
expanded by adding output neurons for the new labels. In
the DIL scenario, the label set is shared across tasks, so the
classifier head remains fixed and only the input distribution
changes.

For prompt-based methods under CIL, the CODA-
Prompt formulation applies an output masking mechanism
that restricts predictions to classes observed so far. To en-
sure fair comparison, we adopt the same masking for all
prompt-based baselines and for InTAct in CIL experiments,
including Split CIFAR-10. We do not apply masking in the
MLP experiments, as the model is intentionally capacity-
limited and we aim to evaluate each method’s ability to mi-
tigate forgetting without additional constraints.

Datasets. We evaluate InTAct on six widely used conti-

nual learning benchmarks that vary in scale, visual comple-

xity, and type of distribution shift. All datasets are normali-
zed to the [0, 1] range. Unless stated otherwise, we consider
both the CIL and DIL scenarios.

» Split MNIST [16]: The MNIST dataset is partitioned into
five sequential tasks, each forming a binary classification
problem from two non-overlapping digit classes.

e Split FMNIST [58]: Constructed analogously to
Split MNIST using Fashion-MNIST, providing higher
visual diversity and texture across tasks.

* Split CIFAR-10 [23]: CIFAR-10 is divided into five ta-
sks, each containing two distinct object categories. This
benchmark introduces natural image variability, incre-
asing the difficulty of representation stability.

* Split CIFAR-100 [23]: CIFAR-100 is split into ten tasks,
each containing ten classes. This benchmark is evaluated

only under the CIL setting.

* DomainNet [37]: A large-scale multi-domain benchmark
with six visually distinct domains (clipart, painting, real,
sketch, quickdraw, infograph). In the DIL setting, each
domain forms one task (6 tasks total). In the CIL setting,
we split classes into 5 tasks, with all domains present in
each task. This results in domain-mixed CIL, where se-
mantic novelty, not visual style, drives task progression.

* ImageNet-R [15]: A distribution shift benchmark of 200
ImageNet classes represented as renditions (e.g., dra-
wings, sculptures, cartoons). In the DIL setting, we con-
struct sequential tasks by randomly partitioning the 200
classes into 15 or 5 partitions, while keeping the label
space constant. In the CIL setting, we evaluate two confi-
gurations with 10 and 20 tasks, where each task contains a
disjoint subset of classes, but all domains remain present
in every task.

All datasets are normalized to the [0, 1] pixel range. For
ImageNet-R, images are resized such that the shorter side
is 256px, then during training, randomly cropped to 224 x
224 with random horizontal flip, and normalized using the
ImageNet mean and standard deviation. At evaluation, the
random crop is replaced with a center crop of the same size.

Code and Reproducibility. For experiments involving
prompt-based architectures, we build directly on the offi-
cial implementation of CODA-Prompt, and we adapt the
DomainNet DIL task handlers from the KAC GitHub re-
pository. To ensure strict reproducibility and a fair compa-
rison with reported baselines, we match the software envi-
ronment used in CODA-Prompt, including the same t imm
version (0.4.12), which is essential to ensure identical pre-
trained ViT weights. Our method InTAct is integrated into
this codebase without modifying the underlying prompt se-
lection or training routines.

For all remaining experiments (i.e., non-prompt-
based settings), we implement InTAct along with other
referenced methods within a custom continual lear-
ning framework, using the following package versions:
pyrootutils 1.0.1, hydra—-core 1.3.2, omegaconf
2.3.0, torch 2.5.1, torchvision 0.20.1, 1ightning
2.5.0, lightning-fabric 2.5.0, wandb 0.19.1, and
continuum [10].

All experiments were conducted on NVIDIA A100
(80GB) and V100 (32GB) GPUs within a DGX cluster, as
well as on standalone RTX 4090 machines. Full training pi-
pelines, configuration files, and scripts for reproducing all
reported results are available in our GitHub repository.

9. Selected Hyperparameters of InTAct

This section summarizes the key hyperparameters and tra-
ining procedures used for InTAct across all benchmarks. For

transparency, we report both the selected values and the cor-
responding search ranges.

Optimization Procedure. For Split MNIST,
Split FMNIST, and Split CIFAR-10 (under both CIL
and DIL), we select hyperparameters using a Bayesian
optimization framework. The following search ranges are
used consistently:

* Batch size (grid): {512, 256, 128}.

e Number of epochs (grid): {15, 10, 5}.

* Learning rate: log-uniform in [107%,1072].

* Apea: uniform in [0, 1000].

* Amprife: uniform in [0, 1000].

* Avye: uniform in [0, 10].

We emphasize that the baseline results reported in Ta-
ble 9 and Table 10 are also obtained using Bayesian search.
For readability, the hyperparameter values reported in the
tables are rounded; the exact values used in experiments are
provided in the code. All training scripts and the final selec-
ted hyperparameters are included in the codebase.

For Split CIFAR-100, DomainNet, and ImageNet-R
(prompt-based experiments), we adopt the hyperparameter
configurations reported in CODA-Prompt wherever availa-
ble. CODA-Prompt does not provide results for Domain-
Net under DIL, nor for ImageNet-R under DIL with 5- or
15-task settings. In these cases, we transfer the best con-
figuration identified in the corresponding CIL setting for
DomainNet, and for ImageNet-R we reuse the configura-
tion tuned for the 5-task CIL scenario. Training schedules
and learning-rate schedulers remain unchanged. To accom-
modate GPUs with lower memory capacity, we reduce the
batch size from 128 to 64 in these experiments.

For InTAct integrated into prompt-based architectures
under the CIL setting, we additionally perform a grid se-
arch over:

* Avar: {0.001,0.01, 0.1, 1.0},
* Amoprife: {0.0001, 0.001, 0.01, 0.1},
* Apeat: {0.0001, 0.001, 0.01, 0.1}.

In the DIL setting, we use the same grid search, but addi-
tionally scale Apypyige by the total number of classes encoun-
tered throughout training. We found that the classifier head
to which this regularization is applied is sensitive to the ab-
solute magnitude of Appyif, making this scaling beneficial
for stable optimization.

The configuration achieving the highest validation AA is
used for all final results reported in the main paper.

Best Hyperparameters. The selected hyperparame-
ters for InTAct on Split MNIST, Split FMNIST, and
Split CIFAR-10 are shown in Table 5. Table 6 reports
the hyperparameters used when integrating InTAct with
prompt-based methods. Note that in the CIL setting, we
set Anprife t0 zero because the outputs corresponding to

previously seen classes are masked in the classifier at the
top of the ViT architecture. In this case, the loss component
defined in Eq. (10) does not apply.

10. Interval Arithmetic

Interval arithmetic, introduced in its modern form by Ra-
mon E. Moore [35], provides a method for performing com-
putations on ranges of real numbers rather than single po-
int values. An interval x is a closed, bounded set of real
numbers defined by its endpoints, © = [z}, x,], such that
x; < x,. This framework is essential for validated nume-
rics, as it allows for the rigorous containment of numerical
errors, including rounding errors and uncertainties in initial
data.

10.1. Fundamental Operations

The fundamental principle of interval arithmetic is the inc-
lusion property: the resulting interval of an operation must
contain all possible results from applying the same opera-
tion to any real numbers within the operand intervals. Let
x = [z, x,) and y = [y;, y.] be two intervals. The elemen-
tary arithmetic operations are defined as follows:

Addition. The sum is obtained by adding the respective
endpoints:

T4y = [z + Y, T+ Y @

Subtraction. The difference is computed by cross-adding
the endpoints:

r—Y= [Il — Yuy Ty — yz] (22)

Multiplication. The product is the interval spanning the
minimum and maximum of the four products of the

endpoints.
Ty =21, 24, (23)
where
21 = min(21y1, T1Yu, TuYt, Tulu) (24)
Zy = max(Tiyr, Tlu, Tull, TuYu)- (25)

Division. Division is defined as multiplication by the reci-
procal of y, provided that 0 ¢ y.

T [1 1], 0 ¢ [y, v

Y Yu Yl

Suppose the divisor interval y contains zero. In that
case, the operation is typically undefined or results in
extended intervals (e.g., a union of two intervals), de-
pending on the specific framework being used [35].

Tabela 5. Selected hyperparameters used for InTAct across the Split MNIST, Split FMNIST, and Split CIFAR-10 benchmarks under both
CIL and DIL settings.

Dataset Scenario Batchsize Epochs Learning rate Apeat Amrift AVar
sowst | o | BS D N0 G e a0
g | SE B0 e m
Split CIFAR 10| 1 o 5 o 1907—34 %o % 07

Tabela 6. Selected regularization hyperparameters for InTAct integrated into prompt-based methods. Rows correspond to datasets and
learning scenarios; columns list the regularization coefficients used for each base method.

L2pP DualPrompt CODA-Prompt
Dataset Scenario AFeat AlnDrift ~ AVar AFeat AlnDrift AVar AFeat AlnDrift Avar
Split CIFAR-100 | CIL 0.0001 0.0 0.001 0.1 0.0 0.001 0.01 0.0 0.001
DomainNet CIL 0.1 0.0 0.001 0.001 0.0 0.01 0.0001 0.0 1.0
DomainNet DIL 0.1 %20L 0001 | 0.001 %% 0.0l | 00001 %% 1.0
ImageNet-R CIL (10 tasks) | 0.0001 0.0 0.01 0.001 0.0 0.001 0.1 0.0 0.1
ImageNet-R CIL (20 tasks) 0.001 0.0 0.01 0.0001 0.0 0.001 0.1 0.0 0.1
ImageNet-R DIL (5 tasks) 0.01 2L 0.01 0.01 0.0001 0.1 0.001 oL 0.1
0.01 0.01 0.001
ImageNet-R DIL (15 tasks) 0.1 S0 0.01 0.0001 S0 0.1 0.1 500 0.1
10.2. Interval Matrix Multiplication uncertainties.

The operations of interval arithmetic extend naturally to li-
near algebra, enabling computations with interval matrices.
An interval matrix A is a matrix whose elements are in-
tervals. Given two compatible interval matrices, A and B,
their product C' = AB is an interval matrix where each ele-
ment c;; the interval extension of the standard dot product

defines:
n
Cij = E Qikbij -
k=1

Here, each multiplication a;zby; is an interval multiplica-
tion, and the summation), represents a sequence of inte-
rval additions. This operation is fundamental for solving in-
terval linear systems, which are crucial for analyzing the
effects of bounded uncertainties in models. However, this
definition is highly susceptible to the dependency problem;
if the same interval variable appears in multiple entries of
A or B, the resulting bounds on C' can be much wider than
the true range.

(26)

10.3. Interval Convolutions

Interval arithmetic can be extended to operations like co-
nvolutions, which are fundamental in areas such as signal
processing and image analysis. By representing an input si-
gnal X and a filter kernel W as intervals, one can analyze
systems where inputs or parameters are subject to bounded

A key operation is the interval convolution. For a 2D in-
put X, an interval kernel (filter) W, and an optional interval
bias b, the resulting output feature map Y is computed as:

Yij = ZXiJrk,jJrl Wi | +0.
Tl

27)

This computation propagates the interval bounds through
the filtering operation, producing a rigorous enclosure for
the true output. This is particularly useful in robust state
estimation and control, where system parameters or measu-
rements are known to lie within certain bounds [19].

10.4. Key Properties and Considerations

While interval arithmetic provides rigorous bounds, it has
two important characteristics.

First, to be implemented correctly on a computer, in-
terval arithmetic must use directed rounding (or outward
rounding). For any operation, the computed lower bound
must be rounded down (towards —oo) and the computed
upper bound must be rounded up (towards +o0). This prac-
tice, supported by standards like IEEE 754, ensures that
the resulting floating-point interval strictly encloses the true
(and often unknowable) real-number interval. It is critical to
note, however, that standard computing environments and
programming languages, such as Python or MATLAB, do

not satisfy this requirement by default for general floating-
point operations. Specialized interval arithmetic libraries
(e.g., python-intervals, JuliaIntervals) or to-
ols that explicitly manage floating-point control registers
are necessary to ensure correct outward rounding and, thus,
the validity of the computed bounds.

Second, interval arithmetic is subject to the dependency
problem. When a variable appears multiple times in an
expression, interval arithmetic treats each occurrence inde-
pendently, which can lead to a significant overestimation of
the true range. A classic example is computing © — = with
x = [0, 1]. The result is:

[0,1] =[0,1] =[0—1,1—0] = [~1,1]

This is a valid enclosure, but the true range for the function
f(z) = z—x over the interval [0, 1] is simply {0}. This ove-
restimation, also known as the wrapping effect, is a central
challenge in interval-based methods, as seen in both matrix
multiplication and complex dynamic systems [19, 35].

11. Metrics

We evaluate continual learning performance using two stan-
dard metrics: the Average Accuracy (AA) and the Average
Forgetting (AF). These metrics assess how well the mo-
del retains knowledge across tasks and how much it forgets
after learning new ones.

Let there be IV tasks in sequence. Let R; ; denote the test
accuracy on task ¢ after the model has been trained on task
j. In particular, R; x represents the final accuracy on task ¢
after training on all [V tasks.

Average Accuracy (AA). The AA measures the mean
performance over all tasks at the end of training:

1 N
=% > Rinx. (28)
i=1

A higher A indicates better overall continual learning per-
formance and knowledge retention across all tasks.

Average Forgetting (AF). The standard definition of AF,
as used for example in [3], measures for each task the gap
between its best performance and its final performance:

1 N-1

AF = —— -
N -1 p (je!f?.a.b.},(N}R’j

Rin), (29
where R; ; denotes the accuracy on task ¢ after training up
to task j.

However, following the evaluation protocol used in the
CODA-Prompt paper [47], and in order to ensure compa-
rability with prompt-based baselines, we adopt the forget-
ting formulation implemented in their official codebase. For

each task ¢ and each earlier task ¢ < ¢, forgetting is accu-
mulated as the incremental reduction in performance from
step t — 1 to ¢, averaged over all earlier tasks:

N

t—1
AF = ﬁ Z <tll ’ (Rip—1 — Ri,t)> . (30)
t=2 i=1
Here, I?; ; denotes the accuracy on task ¢ after completing
training on task ¢. A lower value of Fy indicates better re-
tention of previously learned knowledge.
This corresponds exactly to the computation used in the
CODA-Prompt evaluation script, ensuring direct compara-
bility across all reported results.

12. Detailed Derivation of Internal Represen-
tation Drift Loss

Here, we provide the complete derivation for the Lyyprif
regularization term introduced in the main paper. Our ob-
jective is to ensure that the preactivations of the [-th layer,
l € Sy, remain unchanged for all inputs « belonging to the

hypercube ’Hl(t:ll). Formally, consider the affine layer

f(z;0;) =

After applying the parameter update (AW;, Ab;), the new
preactivation becomes

flx: 0+ AGy) =

Wiz + by. (31)

(W) + AWz + (b + Ab). (32)

To ensure that the preactivations of the layer remain unchan-

1)

ged for every x € Hl 1 > we require that

f(z;0)

Substituting the expressions above yields the condition

Fa; 0, + AG;) — =0, veeHn' M. 33

AWz +Ab =0, VzeH!TY. (34)

Using interval arithmetic, we extend this constraint over
the full hypercube Hl(t:ll) [z, (¢ 1) El(t 11)]. The interval

version of the preactivation-stablhty condltlon becomes
AW [z, 2]+ Ab = 0,0 (35)

This condition must hold for each output coordinate. Let
wl—i denote the i-th row of the weight update matrix AW;.
We therefore compute the interval bounds of the linear map-
ping w;’ l?—l
yields:

). For each coordinate 7, interval arithmetic

w Z’H(t D= {Zmln{wl ”xl u, wy Z]fl(t 11]} (36)

Zmax{wl wwz(11])7 wi ”xl 1,)}
J
(37)

To obtain a differentiable form of the bounds, we decom-
pose wl into its positive and negative parts:

(ws) " = max(0, w]y), (38)
(w) = max(0, —wfy), (39)
so that w’; = (wlTZ)+ — (w];) . The interval product

wlTiHl(t__ll) is then computed as [35]:

w5 = ((wl) " = () 7) 257, 75] @o)
+

= () 5", 75 @1
— (w;)” [xl(t 11) fl(t 11)] 42)
= [(wl) 25", (wl) 75V (43)
= [(wl) =Y, (W) 7). (44)

Using interval subtraction [a, b] —[c,d] =
we obtain the final hypercube [il,w Tl] :

[a d, b—c},

= (wl) T2 - (wl) Y, @)
= (wl) TV - (wh) 25 @)

Adding the bias update Ab;,;, the constraint from
Eq. (35) becomes:
[Z); + Abri, Ty + Aby;] = 1[0,0]. 47
To enforce this condition during training, our regularizer
Lt penalizes the squared Lo norm of these hypercube
endpoint bounds, driving both toward zero, which yields
Equation (10).

13. Internal Representation Drift Loss for
Other Layers

This section presents the full derivation of the interval re-
presentation drift loss for convolutional and batch normali-
zation layers.

Convolutional Layer. Here, we adapt the Ly deriva-
tion from Appendix 12 for a 2D convolutional layer. All
notation (such as [, ¢, and H) follows the definitions in the
previous section.

A convolutional layer f(z;6;) = Conv2d(x, W;) + b;
is a linear operator that applies a shared filter W; across all
spatial locations of the input x. A key insight is that this
operation is a form of affine transformation (like a fully-
connected layer) applied to local patches of the input.

Let AW, and Ab; be the updates to the layer’s parame-
ters. Our stability objective is to ensure that the preactiva-
tion change is zero for any input z within the prior task’s

hypercube Hl(t:ll)

Conv2d(z, AW)) + Ab =0, VeeH!V. @8)

We can analyze this by focusing on a single preactivation
y; in the -th output channel. This value is computed by
a dot product between the i-th filter of the kernel update,
Auwy ;, and the corresponding input patch x,,:

Y = AwlTixp + Aby ;. (49)

Here, Aw;; and z, are the flattened vector representa-
tions of the ¢-th filter and the input patch, respectively.
This formulation is mathematically identical to the affine
layer case presented in Appendix 12. The input x,, is drawn
from a hypercube H,ucn defined by the interval bounds
[mgt 11) fl(t 11)] of the corresponding input elements.

Therefore, we can directly apply the same interval arith-
metic derivation. The interval bounds on the output drift for
the ¢-th channel, [@ Lis ilz] are computed analogously. Let
Auwy ; be the flattened ¢-th filter update, and let Z, and 7, be
the corresponding flattened lower and upper bounds of the
input patch. The bounds are:

T, = (Awl) 2, — (Aw)) T, (50)

+7 —_
T = (Aw]) T, — (Awy)” z,. 51)
Note that (Aw];)" and (Aw];)” are the positive and
negative parts of the filter update, and the products are
element-wise dot products. The constraint from Eq. (35) be-
comes:

[Zy; + Dby, T+ Aby] = 1[0,0]. (52)

Our regularizer Lyypyige penalizes the squared Lo norm of
these hypercube endpoints, just as in the affine case, driving
the representation drift within the defined input domain to
Zero.

BatchNorm Layer. The same principle applies to Batch-
Norm (BN) layers. In inference, a BN layer computes an
affine transformation:

z—
P 0) =y | e | + 81, (53)
Vo te
where the learnable parameters are §; = (7, i), and the

fixed (non-learnable) parameters are the running statistics
w and of. We can rewrite this as a standard affine layer
f(z) = Witz + b where:

Wyt = 7072l+ - (54)
l
b= B~ — e (55)

\/0l2+6.

When the parameters are updated by (A~;, AB;), the drift
in the output, A f(z), is:

Af(x) = f(z;0, + AG;) — f(x;0) (56)
Ay Ay pu

= | ——— + | AB —
\/0'12-1-6 ’ o \/crl2—|—e

= AWz 4+ ABT. (58)

(57)

This drift A f(x) is itself an affine transformation of . We

want to enforce Af(z) = 0 forall z € Hl(t:ll). This is the
exact same problem as in Appendix 12.

Therefore, we can compute Lp,pyige for a BN layer by ap-
plying the derivation from Eq. (45) and Eq. (46), simply by
replacing the weight update AW, with the effective weight
update AW™ and the bias update Ab; with the effective
bias update AbST.

14. Training Algorithm

The complete training procedure for InTAct is provided in
Algorithm 1. To make this procedure applicable to a wide
range of continual learning setups, whether using standard
architectures or prompt-based extensions, we adopt a uni-
fied formulation for both input handling and parameter opti-
mization.

Unified Notation. Let ¥ denote the set of all learnable
parameters in the current training configuration. This set
may include model parameters, prompt parameters, or any
additional task-specific components that are updated during
training. Before describing the two possible settings, we in-
troduce the procedure QUERYPROMPTS: this procedure is
responsible for processing an input sample x and returning

(i) a possibly modified input x,,, where prompt or context

tokens may be injected, and (ii) an auxiliary loss term L,

that arises when prompt mechanisms impose additional le-

arning objectives. Using this unified interface for input pro-
cessing allows Algorithm | to operate consistently across
different architectures and training strategies.

* When prompt-based methods are not applied: In this
case, no prompt parameters are present (¢ = ()), and the
only learnable parameters are those inherent to the mo-
del, denoted by 6. Thus, the optimization target reduces
to ¥ = 6. Since no prompt mechanism is used, QUERY-
PROMPTS becomes an identity operation: it returns the
original input (x,, = x) and contributes no auxiliary loss
(»Caux = 0).

* When prompt-based methods are applied: Here, the
system includes a set of learnable prompt parameters ¢,
and may also include other components that remain tra-
inable, depending on the chosen configuration. To de-
scribe this generally, we write ¥ C {6, ¢}. In this set-
ting, QUERYPROMPTS uses the input z to retrieve prompt

or context tokens, producing a modified input z, # z
and, when applicable, generating a prompt-related auxi-
liary loss Lyux.

This unified formulation ensures that Algorithm | han-
dles input transformation, gradient propagation, and all as-
sociated loss terms in a consistent manner across diverse
continual learning configurations.

Algorithm 1 InTAct Training Algorithm

Require: Number of tasks 7’; Sequential tasks {Dt}le; Neural network
f with parameters 0; Optional prompt module parameters ¢.

Require: Set of layer indices Sy; for which activation hypercubes are
computed.

Require: Hyperparameters: Avar, Amnrift> AFeat> APrompts 3 Training
epochs E; Learning rate 7).

Ensure: Optimized parameters W.

1: Initialize: Parameters 6, ¢; Hypercubes Hl(o) <~ (foralll € Sy.
2: Define Active Parameters: ¥ C {6, ¢}.

3: fortask¢ = 1to 7 do

4: forepoche =1to E do

5 for batch (z,y) ~ Dy do

6: {Step 1: Prompt Query & Pre-processing}

7: Zp, Laux < QUERYPROMPTS(z)

8: {Step 2: Forward Pass}

9: § 4 f(ap;6)

10: {Step 3: Loss Calculation}

11 Lol < LcE +)\Promplﬁaux

12: Calculate variance loss Lvar (Eq. (13))

13: Lrotal < Lotal + AvarLvar

14: if £ > 2 then

15: Calculate feature distillation loss Lrea (Eq. (15))
16: Calculate internal representation drift loss (Eq. (10))
17: Calculate inter-task alignment loss Lajign (Eq. 14)
18: Lol <= Lotal + AFeatLFeat + MnDrite Lindrifc + LAlign
19: end if

20: {Step 4: Optimization}

21: Update ¥ < ¥ — nV g Lotal

22: end for

23: end for

24: {Step 5: Update Activation Hypercubes}
25: Collect activations A; = {h;(xp;0) | x € Di} foralll € Sy
26: for each layer index | € Sy do

27: v < percentile, (A4;); U < percentile;yq_, (A7)
28: if t = 1 then

29: H — [v,7]

30: else

3l Let H{"™V) = [n, 7]

32: Hl(t) “— [min(ﬁ,y),max(ﬁ,i)]

33: end if

34: end for

35: end for

15. Additional Results

In this section, we report additional experiments and analy-
sis that further demonstrate the effectiveness of InTAct.

Results on CIFAR-100 under the CIL scenario. Tab. 7
shows results on the 10-task CIFAR-100. Across all me-
thods, InTAct maintains or improves accuracy while sub-

stantially reducing variance, confirming its stabilizing ef-
fect. For L2P and DualPrompt, InTAct matches baseline ac-
curacy but halves standard deviation, preserving functional
stability without limiting adaptability. The largest gain oc-
curs for CODA-Prompt, where AA rises from 86.25% to
87.31% and variance drops sharply, approaching the upper
bound.

Tabela 7. Results on the 10-task (10 classes each) CIFAR-100
benchmark (CIL setting). We report the mean and standard de-
viation of AA and AF averaged over 5 random seeds.

Method AA () AF ()
Upper-Bound 89.30 -
L2p 82.50+1.10 1.754+0.42
w/ InTAct 82.40+0.30 1.75+0.18
DualPrompt | 83.05+1.16 1.72+0.40
w/ InTAct 82.71£0.51 1.66 +=0.33
CODA-P 86.25 +£0.74 1.67 +0.26
w/ InTAct 87.31+0.17 1.77+0.2

Results on DomainNet under the CIL scenario. Table 8
summarizes performance on the 5-task DomainNet bench-
mark (CIL). Adding InTAct to L2P and DualPrompt impro-
ves AA while maintaining competitive AF. Notably, InTAct
reduces variance across random seeds, indicating increased
training stability on this challenging multi-domain setting.

Tabela 8. Results on the 5-task (69 classes each) DomainNet
benchmark (CIL setting). We report the mean and standard devia-
tion of AA and AF calculated over 3 random seeds. Results from
baselines are obtained from the paper [47].

Method AA () AF (})

Upper-Bound 79.65 -
L2p 69.58 +0.39 2.25+0.08
w/ InTAct 70.02 £0.17 3.13+0.34
DualPrompt 70.734+0.49 2.03 +£0.22
w/ InTAct 71.33 £0.13 3.87£0.59
CODA-P 73.24 £ 0.59 3.46 +0.09
w/ InTAct 72.124+0.10 3.59£0.13

Results for Regularization-based Methods (CIL).
InTAct achieves the best performance among all
regularization-based methods on the CIL benchmarks,
consistently improving AA across tasks. The detailed re-
sults are shown in Table 9 for Split MNIST, Split FMNIST,
and Split CIFAR-10. In particular, InTAct outperforms

the strongest baseline (LwF) by more than six percentage
points on Split MNIST and Split FMNIST, demonstrating
its ability to mitigate catastrophic forgetting and stabilize
internal representations across sequential tasks. Note that
these gains are achieved without any task-specific archi-
tectural modifications or rehearsal buffers, highlighting the
robustness and generality of the proposed interval-based
regularization.

Tabela 9. Comparison of regularization-based continual learning
baselines and InTAct across multiple datasets (CIL setting). Re-
sults report the AA metric values and are averaged over 5 random
seeds.

Method Split MNIST Split FMNIST Split CIFAR-10
EWC 20.57 £ 0.78 19.92 £ 0.02 30.43 £ 1.69
LwF 28.63 £0.61 25.92+£0.84 24.26 £0.75
MAS 17.91 £2.93 18.74 £ 3.40 21.75+0.67
SI 18.40 £ 0.33 17.30 £ 0.52 20.18 £0.27
InTAct 35.27 +£2.27 34.25+2.91 31.28+0.77

Results for Regularization-Based Methods (DIL). In-
TAct achieves also the strongest performance among
regularization-based methods on the DIL benchmarks. The
detailed results are reported in Table 10 for Split MNIST,
Split FMNIST, and Split CIFAR-10. On Split MNIST, In-
TAct clearly outperforms EWC, MAS, and SI, achieving the
highest AA. For Split FMNIST, all methods perform com-
petitively, with InTAct and EWC obtaining similar results.
On Split CIFAR-10, InTAct matches the best-performing
baseline (LwF), confirming that the proposed regularization
is effective even in more complex visual tasks.

Tabela 10. Comparison of regularization-based continual learning
baselines and InTAct across multiple datasets (DIL setting). Re-
sults report the AA metric values and are averaged over 5 random
seeds.

Method Split MNIST Split FMNIST Split CIFAR-10
EWC 78.90 £ 2.28 92.30 £ 0.80 68.93 £1.13
LwF 75.54 £0.37 84.74 £0.76 76.45 + 0.63
MAS 77.59 + 2.84 91.16 + 2.56 69.35 + 3.40
SI 69.84 £10.15 85.03 £ 3.98 67.66 £ 0.38
InTAct 82.51+0.83 92.57+0.63 75.84 +0.63

These gains are achieved without task-specific know-
ledge distillation or memory buffers, highlighting the ge-
neral applicability of InTAct in DIL scenarios.

Impact of Ay, on AA. In Fig. 6, we illustrate the effect
of varying Ay, on AA for the Split MNIST dataset under
the CIL setting.

100 e Ay =10

Avar=7.5
*— Avar=5
—+— Avar=2.5
*— Avar=1
—+— Ayar=05
Ayar =0.001

20

80

0

60

AA [%]

50

40

30

20

Task ID

Rysunek 6. Impact of the Aviy hyperparameter on AA for the
Split MNIST dataset under the CIL scenario. Results are avera-
ged over 5 seeds.

We observe that increasing the value of Ay, generally
leads to improved AA. This is because stronger representa-
tion variance regularization (Eq. (13)) encourages the hid-
den representations to become more compact and structu-
red. In turn, this results in activation hypercubes of smaller
volume. Since our regularization mechanism constrains in-
layer transformations within these hypercubes, operating on
a smaller and more coherent region of the activation space
yields a more effective and stable control signal. All other
hyperparameters are fixed to their respective optimal values
to isolate the effect of Avy;.

16. Extended Table Results in CIL Scenario

In this section, we present extended results on the CIFAR-
100, DomainNet, and ImageNet-R benchmarks (Tables 11,
12, and 13). Overall, InTAct consistently enhances the per-
formance of existing prompt-based methods (L2P, Dual-
Prompt, CODA-P), improving AA while achieving compe-
titive or lower AF. Beyond prompt-based approaches, In-
TAct also surpasses non-prompt continual learning baseli-
nes such as ER [40], sequential fine-tuning (FT), its impro-
ved variant FT++, which uses the same classifier implemen-
tation as prompt-based methods in the CIL scenario, and
LwF [26] on most benchmarks. The notable exception is
DomainNet, where LwF surprisingly achieves the highest
AA. These results demonstrate that InTAct effectively bo-
osts prompt-based methods and remains competitive aga-
inst traditional continual learning strategies. In all tables,
the best results in each column are highlighted in bold.

17. Additional Visualization

Here, we present additional visualizations of representation
drift in InTAct and LwF, and provide analysis based on the
Split MNIST dataset in the DIL scenario.

Tabela 11. Extended results on the 10-task (10 classes each)
CIFAR-100 benchmark (CIL setting). We report the mean and
standard deviation of AA and AF averaged over 5 random seeds.
Best results in each column are highlighted in bold. Results from
baselines are obtained from [47].

Method AA (D) AF (})

Upper-Bound 89.30 —
ER (5000) 76.20£1.04 | 8.50+£0.37
FT 9.924+0.27 | 29.21 £0.18
FT++ 49.91 £0.42 | 12.30£0.23
LwEMC 64.83 £1.03 | 5.27£0.39
L2P 82.50 £1.10 | 1.75£0.42
w/ InTAct 82.40£0.30 | 1.75£0.18
DualPrompt | 83.05+£1.16 | 1.72+0.40
w/ InTAct 82.71+0.51 | 1.66 £0.33
CODA-P 86.25 £0.74 | 1.67£0.26
w/ InTAct 87.31+£0.17 | 1.77+£0.20

Tabela 12. Extended results on the 5-task (69 classes each) Doma-
inNet benchmark (CIL setting). We report the mean and standard
deviation of AA and AF calculated over 3 random seeds. Best re-
sults in each column are highlighted in bold. Results from baseli-
nes are obtained from [47].

Method AA (1) AF (])

Upper-Bound 79.65 —
ER (5000) 58.32 £0.47 | 26.25+0.24
FT 18.00 £ 0.26 | 43.55 £0.27
FT++ 39.28 £0.21 | 44.39+£0.31
LwEMC 74.78+£0.43 | 5.01+£0.14
L2P 69.58 £0.39 | 2.25£0.08
w/ InTAct 70.02+0.17 | 3.13+£0.34
DualPrompt 70.73£0.49 | 2.03 £ 0.22
w/ InTAct 71.33+£0.13 | 3.87£0.59
CODA-P 73.24£0.59 | 3.46 £0.09
w/ InTAct 72.12+0.10 | 3.59+0.13

Analysis of Internal Representation Drift. We provide
a qualitative analysis of internal representation stability in
Figure 7. This experiment, conducted on SplitMNIST, visu-
alizes the internal representation drift experienced by data
from past tasks as new tasks are learned. The plot tracks
the L; norm of the activation difference for specific refe-
rence images (e.g., the image "0"from Task 1, "2"from Task
2, etc.) compared to their original activations recorded after
their respective tasks were first learned.

Tabela 13. Extended results on the ImageNet-R dataset (CIL setting). We report the mean and standard deviation of AA and AF averaged
over 5 random seeds. Results include 10- and 20-tasks baselines. Best results in each column are highlighted in bold. Results from baselines
are obtained from [47].

Method 10 steps 20 steps
AA (1) AF (}) AA () AF (1)
Upper-Bound 77.13 — 77.13 -

ER (5000) 64.43+1.16 | 10.30 +0.05 || 52.43+0.87 | 7.70+0.13
FT 10.12 £ 0.51 | 25.69 £0.23 4.75+0.40 | 16.34 £0.19
FT++ 4893 £1.15 | 9.81£0.31 35.98+£1.38 | 6.63+£0.11
LwEMC 66.73 £1.25 | 3.52+£0.39 54.05 £2.66 | 2.86 +0.26
L2P 69.29+0.73 | 2.03+0.19 65.89+1.30 | 1.24+0.14

w/ InTAct 69.44 +0.45 2.89 £ 0.46 66.18 = 0.36 1.30 £0.13

DualPrompt 71.32 £ 0.62 1.71+0.24 67.87+1.39 | 1.07+£0.14
w/ InTAct 70.98 £ 0.60 1.68 +0.07 67.89£0.66 | 1.19+0.18

CODA-P 75.45+£0.56 | 1.64+£0.10 || 72.37+£1.19 | 0.96 £0.15
w/ InTAct 76.40 £0.16 | 2.07+0.16 73.30 £0.41 | 1.56 £0.26

Activation Drift Over Tasks Comparison

fully preserves the functional behavior of the network on

—— InTAct Task 1 ~

i [ontients T T data from previous tasks, directly mitigating a key cause of
—— InTAct Task 4 7 . .
o ek catastrophic forgetting.

6= LwFTask3 | .. o »

~= LwF Task 4

i
i
]

-~

L1 Norm Activation Difference

~

Rysunek 7. Activation drift across tasks on SplitMNIST (DIL sce-
nario). For each task, we record hidden activations of a reference
image and then track the normalized absolute change of these ac-
tivations as new tasks are learned. LwF shows steadily increasing
drift, whereas InTAct keeps activation changes bounded, indica-
ting substantially more stable internal representations.

Conclusions from the Visualization. The results show a
stark contrast between our method (InTAct) and the LwF
baseline. For LWF (dashed lines), the activation drift is both
significant and cumulative. As new tasks are introduced, the
internal representations for data from all previous tasks drift
substantially. For instance, the reference sample from Task
1 (blue dashed line) experiences a large initial drift that con-
tinues to increase as more tasks are added. In contrast, In-
TAct (solid lines) demonstrates superior stability. While a
small, initial drift is observed when the first new task is in-
troduced (e.g., the blue solid line at Task 2), the drift re-
mains bounded and stabilizes for all subsequent tasks. This
visualization provides strong evidence that InTAct success-

	Introduction
	Related Works
	Method
	Activation Interval Representation
	Functional Preservation via Regularization

	Experiments
	Experimental Setup
	Results
	Ablations
	Additional Experiments

	Conclusions
	Extended Overview of Related Works
	Preliminaries
	Implementation Details
	Selected Hyperparameters of InTAct
	Interval Arithmetic
	Fundamental Operations
	Interval Matrix Multiplication
	Interval Convolutions
	Key Properties and Considerations

	Metrics
	Detailed Derivation of Internal Representation Drift Loss
	Internal Representation Drift Loss for Other Layers
	Training Algorithm
	Additional Results
	Extended Table Results in CIL Scenario
	Additional Visualization

