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ABSTRACT

Foundation Models (FMs) are increasingly integrated into remote sensing (RS) pipelines
for applications such as environmental monitoring, disaster assessment, and land-use map-
ping. These models include unimodal vision encoders trained in a single data modality and
multimodal architectures trained in multiple sensor modalities, such as synthetic aperture
radar (SAR), multispectral, and hyperspectral imagery, or jointly in image-text pairs in
vision-language settings. FMs are adapted to diverse tasks, such as semantic segmenta-
tion, image classification, change detection, and visual question answering, depending on
their pretraining objectives and architectural design. However, selecting the most suitable
remote sensing foundation model (RSFM) for a specific task remains challenging due to
scattered documentation, heterogeneous formats, and complex deployment constraints. To
address this, we first introduce the RSFM Database (RS-FMD), the first structured and
schema-guided resource covering over 150 RSFMs trained using various data modalities,
associated with different spatial, spectral, and temporal resolutions, considering different
learning paradigms. Built on top of RS-FMD, we further present REMSA (Remote-
sensing Model Selection Agent), the first LLM agent for automated RSFM selection from
natural language queries. REMSA combines structured FM metadata retrieval with a task-
driven agentic workflow. In detail, it interprets user input, clarifies missing constraints,
ranks models via in-context learning, and provides transparent justifications. Our system
supports various RS tasks and data modalities, enabling personalized, reproducible, and ef-
ficient FM selection. To evaluate REMSA, we introduce a benchmark of 75 expert-verified
RS query scenarios, resulting in 900 task-system-model configurations under a novel
expert-centered evaluation protocol. REMSA outperforms multiple baselines, including
naive agent, dense retrieval, and unstructured retrieval augmented generation based LLMs,
showing its utility in real decision-making applications. REMSA operates entirely on pub-
licly available metadata of open source RSFMs, without accessing private or sensitive data.
Our code and data can be found here: https://github.com/be-chen/REMSA.

1 INTRODUCTION

With the growing availability of remote sensing (RS) missions and their onboard sensors (e.g., Sentinel-
2 (Drusch et al., 2012), Sentinel-1 (Torres et al., 2012), EnMAP (Guanter et al., 2015)), RS plays an increas-
ingly important role in many applications such as agriculture, disaster response, urban development, and
biodiversity monitoring. These applications increasingly rely on foundation models (FMs) that can gener-
alize across various RS data modalities with different spatial, spectral and temporal resolutions, geospatial
extents and applications, while being transferable and effective even with limited labeled data. Recently,
numerous FMs have emerged in the RS domain, offering powerful capabilities for interpreting complex RS
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Figure 1: Architecture of REMSA

data. These models include vision-only encoders trained on single or multiple RS data modalities (e.g.,
SatMAE (Cong et al., 2022), CROMA (Fuller et al., 2023)) and vision–language models (VLMs) trained
jointly on RS data modalities and text (e.g., GRAFT (Mall et al., 2024), TEOChat (Irvin et al., 2025), Earth-
Dial (Soni et al., 2025)). These models are pretrained on large-scale RS datasets encompassing a diverse
range of sensor modalities, including RGB, multispectral, hyperspectral, synthetic aperture radar (SAR), and
light detection and ranging (LiDAR), across multiple spatial and temporal resolutions. Each FM exhibits its
strengths in distinct applications, such as classification, object detection, change detection, captioning, and
visual question answering (VQA). For instance, in practice, change detection typically relies on multitem-
poral SAR or optical data inputs, while fine-grained land cover mapping often benefits from high-resolution
optical imagery. This diversity brings new possibilities for multi-modal RS applications, but it also raises the
challenge of selecting the most suitable FM for a given task with data modality and operational constraints.

Despite these advances, selecting an FM that is suitable for a specific RS task remains a challenge. Users
must balance diverse constraints such as the available data modalities and volume, geographic coverage,
computational resources, and task-specific evaluation priorities. These constraints have been shown to sig-
nificantly influence RSFM generalization and robustness (Purohit et al., 2025; Plekhanova et al., 2025). With
hundreds of remote sensing foundation models (RSFMs) now publicly available (Guo et al., 2024; Li et al.,
2025) and no unified structured schema to organize their properties (such as model architectures, training
data, or reported performance), the selection process is often manual, time-consuming, and error-prone. Ex-
isting approaches rely on searching across scattered repositories and publications, manually parsing papers
and model cards, and running exhaustive experiments (Ramachandran et al., 2025; Adorni et al., 2025),
all without guaranteed reproducibility or transparency. Even public RS benchmarks (Lacoste et al., 2023;
Simumba & et al.; Li et al., 2024) mainly compare model accuracy on fixed applications, offering little
support for matching models to user-specific constraints or deployment trade-offs. This makes a unified,
machine-readable database (DB) of RSFMs a necessary basis for any systematic selection and automation.

Recent advances in large language model (LLM) agent have shown the feasibility of combining language
understanding, tool invocation, multi-turn interaction, and automatic structured reasoning to assist decision-
making processes (Singh et al., 2024; Xiong et al., 2025; Agashe et al., 2025; Liu et al., 2025a). However,
most LLM agents target general-purpose question answering. To our knowledge, no prior work has devel-
oped a domain-specific agent for FM selection in operational, constraint-heavy RS scenarios. In particular,
RS tasks involve complex trade-offs across sensors, spatial, spectral, and temporal resolutions, as well as
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data availability. Existing LLMs lack the domain knowledge and structured access to model documentation
to address these constraints. Hence, such an agent must provide more robust and interpretable solutions.

In this work, we first introduce the Remote Sensing Foundation Model Database (RS-FMD), the first
schema-guided catalog of more than 150 RSFMs, covering various data modalities, pretraining strategies,
and benchmark results. On top of RS-FMD, we propose REMSA, the first LLM-based agent for automated
FM selection in RS. As shown in Figure 1, REMSA is a modular agent that automates FM selection through
structured query interpretation and dynamic tool use. It extracts user intent from free text input and converts
it into constraints. And based on the task state, the agent selectively calls tools to retrieve relevant FMs
from RS-FMD, rank FMs using LLM-based reasoning, interact with the user in clarification loops, and
provide transparent explanations. A memory mechanism further enhances accuracy and personalization. To
evaluate REMSA, we build the first benchmark dataset of real user queries and establish an expert-driven
evaluation protocol. We also implement a set of carefully constructed baselines, ensuring fair and mean-
ingful comparisons with REMSA. REMSA is designed to support a broad range of end-users, including RS
scientists, machine learning researchers, and industry practitioners who need to identify suitable RSFMs for
their tasks. Because REMSA accepts free-text queries and incorporates structured interpretation together
with multi-turn clarification, it can guide even non-experts who may not be familiar with RS modalities or
FM architectures. This makes REMSA suitable for both exploratory use by practitioners and rigorous FM
selection in research settings. Although REMSA uses a modular agent design, our contribution is method-
ological. We treat RSFM selection as a research problem of how FMs should be compared, selected, and
deployed under real constraints. In summary, we make the following contributions:

• We introduce RS-FMD, the first structured and schema-guided DB of over 150 RSFMs. We will release
it as a community resource with continuous maintenance and updates.

• We propose REMSA, a modular LLM agent that combines structured metadata grounding, dense re-
trieval, in-context ranking, clarification, explanation, memory augmentation, and a task-aware orches-
tration mechanism to support complex FM selection in real RS settings.

• We construct the first benchmark dataset and design an evaluation protocol for FM selection, encompass-
ing 75 realistic queries across various RS tasks and provide 900 evaluation results.

2 RELATED WORK

Foundation Models and Model Selection. Due to the rapid emergence of RSFMs, there has been extensive
research into their capabilities and benchmarks (Liu et al., 2025b; Wu et al., 2024; Pathak et al., 2025). In
RS, recent surveys and benchmarks (Xiao et al., 2024; Ramachandran et al., 2025; Li et al., 2024) have sys-
tematically cataloged FMs and evaluated their performance on applications such as land cover classification,
wildfire scar segmentation, urban change detection, visual question answering, etc. However, these works
primarily focus on descriptive analysis or standardized evaluation, offering limited support for automated FM
selection. Large-scale evaluations such as GEO-Bench-2 (Simumba & et al.) further highlight that RSFM
performance varies strongly across capability dimensions, but still do not address automatic FM selection.
Recent work also shows that pre-training data coverage (geographic and sensor diversity) strongly affects
RSFM generalization (Purohit et al., 2025; Plekhanova et al., 2025). While current benchmarks document
these properties, they do not use them to guide model choice, further motivating automated FM selection.
Additionally, there is a new capabilities encoding approach that estimates a model’s performance on unseen
downstream tasks, reducing the need for exhaustive fine-tuning (Adorni et al., 2025). Although this provides
valuable tools for comparative evaluation, it is still a benchmarking tool that does not address end-to-end
automatic FM selection workflows. Moreover, previous surveys and benchmarks are static and task-specific,
lacking a unified schema or machine-readable representation of RSFMs. In contrast, our RS-FMD con-
solidates the available FMs into a structured, extensible resource that directly supports automated retrieval,
comparison, and selection. Another relevant line of work is AutoML, which includes frameworks such as
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Auto-WEKA (Thornton et al., 2013), Auto-sklearn (Feurer et al., 2015), and CAML (Neutatz et al., 2024).
They automate the selection of parameters, algorithms, or pipelines through meta-learning and optimization
techniques. Although these approaches show the feasibility of automating model choice in classical machine
learning settings, they have not been extended to the selection of FMs, particularly in the RS domain. To
our knowledge, there is no existing autonomous method or agent that assists scientists in selecting the most
suitable FM for their specific constraints and applications. Our work fills this gap by combining RS-FMD
and REMSA, presenting the first domain-specialized agentic workflow for FM selection that automates the
matching of user constraints to appropriate models.

Tool-Augmented Agents in Remote Sensing. Recent developments in retrieval-augmented language mod-
els and tool-augmented agents such as ReAct (Yao et al., 2023), HuggingGPT (Shen et al., 2023), and
ToRA (Gou et al., 2024) show the feasibility of combining LLMs with structured retrieval and external
tool invocation for complex reasoning and planning. In RS, several works have explored modular agentic
workflows. GeoLLM-Squad (Lee et al., 2025) introduces a multi-agent orchestration framework that decom-
poses geospatial tasks into specialized sub-agents, improving scalability and correctness over single-agent
baselines. RS-Agent (Xu et al., 2024) integrates retrieval pipelines and tool scheduling to process spatial
question answering tasks, while ThinkGeo (Shabbir et al., 2025) introduces a benchmark for evaluating
multi-step tool-augmented agents on RS workflows. Recently, TEOChat (Irvin et al., 2025) extended large
vision-language assistants to temporal RS data by training on instruction following datasets, supporting con-
versational analysis of time-series data. These agents highlight the benefits of agent-based modularity and
retrieval-augmented reasoning. However, they primarily target geospatial information extraction, change de-
tection, or VQA applications rather than FM selection workflows. Our agent explicitly integrates a curated
FM database with structured retrieval, agentic ranking, interactive constraint resolution, and transparent
model reasoning, making it the first tool-augmented agent tailored for FM selection in RS.

3 REMOTE SENSING FOUNDATION MODEL DATABASE (RS-FMD)

RS-FMD is a curated DB of all RSFMs we could find (˜150 RSFMs), serving as the structured knowledge
base behind REMSA. It enables interpretable and constraint-aware FM selection by consolidating heteroge-
neous knowledge resources into a unified, machine-readable format. To build RS-FMD, we conducted a
systematic search for RSFMs using multiple sources. We reviewed survey papers and popular FM lists, sur-
veyed recent RS and ML venues, ran keyword searches on arXiv, and inspected linked GitHub repositories.

Schema Design. Each record follows a schema covering properties such as identifiers, architecture, modal-
ities, and pretrained model weights, along with structured fields for pretraining datasets and benchmark
evaluations. This schema ensures traceability, comparability, and extensibility across FMs. The full schema
and an example record are in Appendix A.. This comprehensive schema enables our FM selection agent to
ground its reasoning in model capabilities and match models to user-defined applications and constraints. It
also ensures that critical properties, such as input data modalities, spatial, spectral, and temporal character-
istics, and training configurations, can be queried and filtered in a principled and automated manner.

Automated database population. Populating this database requires extracting structured information from
diverse sources, such as papers, model cards, and repositories. Due to the scale and heterogeneity of available
model documentation, fully manual curation is impractical. Therefore, we adopt an automated knowledge
extraction approach coupled with confidence-guided human verification. Our approach is a schema-guided
LLM extraction pipeline inspired by a general knowledge extraction approach OneKE (Luo et al., 2025), but
significantly adapted to our domain and use case. Specifically, we extend their approach by introducing our
own schema definitions, adding a dedicated confidence scoring step, and optimizing prompt design for RS
model descriptions. The process is entirely automated and iterative: for each FM, we collect and input a set
of unstructured sources, then issue multiple LLM calls to generate independent structured outputs in each
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iteration. Each output is validated against the schema, parsed, and aggregated. This iterative strategy allows
us to exploit both the probabilistic uncertainty of each iteration and the self-consistency across iterations.
Fields for which the model produces divergent outputs or low log-probabilities are marked as uncertain and
passed to the human verification stage. The resulting pipeline effectively converts complex heterogeneous
text sources into machine-readable JSON records with minimal manual intervention.

Confidence Score for Human Verification. Ensuring the reliability of the extracted metadata is critical
for FM selection. To this end, we define a confidence score for each field in each record, enabling targeted
human verification only where the uncertainty is high. Our confidence score combines two complementary
criteria: the model’s generation probability and the consistency of outputs across multiple LLM sampling
rounds. For each field, we compute the confidence score as follows:

Confidence = wlogp · NormalizedLogProb + wcons · SelfConsistency (1)

where NormalizedLogProb quantifies the LLM’s internal certainty by mapping the raw log-probability of
the generated field value to a bounded range, and SelfConsistency measures the fraction of LLM generations
that agreed on the same value among multiple independent sampling iterations.

To ensure interpretability and stable scaling, we normalize raw log-probabilities using a temperature-
controlled sigmoid function. We set the temperature τ = 0.5 to avoid saturation and preserve sensitivity
in the moderate-confidence regime. We set wlogp = 0.7 and wcons = 0.3 to prioritize the log-probability
signal while still leveraging the stabilizing effect of self-consistency. These weights were empirically de-
termined via a grid search on a validation set of 10 FM records with manually verified ground truth. We
optimized for maximum agreement between the confidence score and human verification decisions, using the
area under the precision-recall curve (AUC) as the selection criterion. We observed that prioritizing the log-
probability signal improved precision, while incorporating self-consistency helped identify low-confidence
outliers. However, these weights are not necessarily fixed and can be adjusted by users depending on the
properties of their LLMs, model domains, or confidence calibration needs. Any field with a final confidence
below a threshold θ = 0.75 is automatically flagged for human review. Importantly, annotators inspect only
the flagged fields rather than full model records. Reviewing all fields for all FMs would require substantial
annotation effort, as each record contains many heterogeneous metadata elements. To assess the risk of
confidently incorrect extractions, we manually inspected all fields for 10 records and found high-confidence
outputs to be consistently accurate, supporting the reliability of our scoring mechanism. In practice, oc-
casional field-level errors have limited impact on FM selection aas the most decisive properties (modality,
architecture, compute requirements, and performance) are usually clearly stated and rarely mis-extracted.

Diversity of Coverage. The current release of RS-FMD spans a broad range of RSFMs pretrained on
various data modalities (multispectral, hyperspectral, SAR, LiDAR, and text) and employing diverse model
architectures (transformer-based encoders, CNN–transformer hybrids, vision–language models). Pretrain-
ing data sources range from small curated datasets to million-scale image collections, and spatial resolutions
span from sub-meter imagery to coarse multispectral composites. By consolidating these heterogeneous in-
formation into a schema-guided resource, RS-FMD supports reproducible comparison, systematic bench-
marking, and agent-compatible retrieval. We will maintain RS-FMD by hosting on a public repository
under a permissive license. We periodically monitors new RSFM releases and inserts verified entries. To
support broader scalability, we are developing a user interface where model authors can upload documenta-
tion of new models. The system will automatically extract metadata and present it to authors for correction
before submission. We will review community-submitted updates to ensure consistency and reliability.

4 REMSA AGENT ARCHITECTURE

The goal of REMSA is to automate the selection of FMs for RS tasks through a reasoning-centered, modular
agentic workflow. REMSA integrates structured knowledge grounding, LLM-based ranking with in-context
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learning, and iterative clarification to produce transparent and reproducible selections. Selecting an ap-
propriate RSFM is challenging, as the models differ in data modalities, pretraining strategies, benchmark
performance, and resource requirements. In addition, users often provide incomplete or ambiguous task
descriptions, requiring the agent to interpret intent and reconcile trade-offs among candidate models. To ad-
dress these challenges, REMSA provides an integrated pipeline combining different agent components and
external tools. This pipeline can achieve different targets such as structured retrieval, ranking, clarification,
and memory archiving under a customized orchestration mechanism. This section will describe the agent
workflow and the details of each component and tool.

4.1 AGENT WORKFLOW

Figure 1 illustrates the architecture of REMSA. The system is composed of two main layers: the LLM
agent core and a set of external tools. The LLM agent core consists of two key components: the In-
terpreter, which parses user inputs into structured constraints and extracts user intent, and the Task Or-
chestrator dynamically decides which external tool to invoke at each step based on the current task state.
When a user submits an free-text query, the query parser transforms it into a structured representation of
constraints. We prompt the LLM with a carefully designed schema that covers both mandatory and op-
tional fields relevant to RSFM selection (See Appendix B. for complete schema.). Specifically, the parser
extracts the target application(e.g., land cover classification, surface water segmentation) and the re-
quired modality(e.g., multispectral, SAR) as mandatory fields to narrow the FM search space. Then
REMSA integrates broader practical constraints through optional fields and clarification steps, including
data availability, compute budget, fine-tuning requirements, and output quality priorities. Once constraints
are available, the Task Orchestrator initiates a control loop that manages the entire selection process. At
each step, it first evaluates the current task state, i.e., which constraints are available, how many candidates
remain, and how confident the system is. Then it invokes the appropriate tool accordingly. If no mandatory
constraints are missing, the orchestrator calls the Retrieval Tool to generate an initial candidate set. If the
candidate set is small and all constraints are satisfied, the Ranking Tool is applied directly. If there are too
many candidates or if ranking results yield low confidence scores, the orchestrator calls the Clarification
Generator Tool to ask the user for additional input. The updated query is then passed back through the
same loop. Once the top-k result is obtained, the Explanation Generator Tool is invoked to produce the final
report. This decision-making process is executed by empirical thresholds for ranking confidence, constraint
coverage, and clarification rounds. The orchestration ensures that tool invocation is adaptive, goal-oriented,
and transparent. To support personalization and self-improvement, REMSA also integrates Task Memory,
which stores past user interactions in a vector database. Relevant memory entries are retrieved via cosine
similarity to improve future interactions. More details on the implemented workflow are in Appendix C..
To enhance REMSA’s reliability, we have several built-in mechanisms to mitigate failures. The orchestrator
monitors confidence signals and triggers clarification rounds when ranking is uncertain. Rule-based con-
straint eliminates candidates that violate hard requirements. A fallback ”closest-match” mode returns the
safest alternative when no candidate fully satisfies the constraints. Our modular design also allows for in-
tegrating explicit feedback mechanisms (e.g., an LLM-as-a-Judge component that re-evaluates low-quality
selections), making REMSA extensible to more robust self-correction strategies.

4.2 AGENT TOOLS

The following tools operate as callable interfaces outside of the agent core. Each tool is invoked indepen-
dently by the orchestrator, depending on the state of the task, supporting retrieval, ranking, clarification, and
explanation within the RSFM selection workflow. Our design supports extensibility for tool integration.

Retrieval Tool. To generate an initial set of candidates, the retrieval tool encodes both the structured user
constraints and the FM entries in the RS-FMD using Sentence-BERT embeddings (Reimers & Gurevych,
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2019). To preserve the structure of the metadata in the embedding, each metadata field is prefixed with a to-
ken of the type-indicator (e.g., [APPLICATION], [MODALITY]) before encoding. REMSA uses Facebook
AI Similarity Search (FAISS) (Meta, 2025) for an efficient approximate search based on cosine similarity.
The tool returns a list of the most relevant FMs determined by a configurable similarity threshold. User can
adjust it based on their domain requirements. In our experiments, we set this threshold empirically to ensure
broad coverage while minimizing irrelevant matches. This tool is optimized for high recall: it includes soft
matches and does not enforce strict constraints, allowing the downstream pipeline to handle finer filtering.

Ranking Tool. While the retrieval tool provides a broad list of relevant FMs, it cannot fully capture user-
specific needs and deployment trade-offs. This task can be handled by a ranking tool. The ranking tool
refines the candidate FM list using a hybrid strategy to balances efficiency, flexibility, and interpretability:

• Rule-Based Filtering: Candidates that violate hard constraints, such as required modality, sensor support,
or minimum performance, are eliminated using deterministic logic. These hard constraints are defined
based on fields extracted by the interpreter.

• In-Context LLM Ranking: The remaining candidates are re-ranked by an LLM prompted with the struc-
tured query and FM metadata, using expert-crafted few-shot examples to illustrate selection. The LLM
returns an ordered list with brief justifications, leveraging in-context reasoning without any model training
(details in Appendix D.). We also compute a confidence score for each selection following Section 3.

Clarification Generator Tool. If the orchestrator detects insufficient constraints or a low overall confidence
score of selected FMs, it invokes the clarification tool. This tool inspects the parsed schema to determine
missing or underspecified fields (e.g., modality, region, or performance bounds) and formulates clarification
questions. The tool generates each question based on the interpreter schema. We limit the clarification to
three rounds to avoid user fatigue. The agent will integrate the responses with initial user input, parse and
merge them into the evolving task specification, in order to iteratively refine the selection process.

Explanation Generator Tool. Once a ranking is available, this tool generates structured, human-readable
explanations. It uses a prompt-driven LLM to synthesize the rationale for each selected FM, including
key reasons considering suitability and trade-offs. Each output includes the model name, bullet points for
explanation, and links to the corresponding paper and code repository. This tool enhances transparency and
user trust by exposing the decision process (prompt is in Appendix E.). The output is in JSON format.

5 EVALUATION PROTOCOL AND BENCHMARK

Evaluating FM selection in RS is challenging due to the lack of dedicated benchmarks. Previous works
mainly focus on evaluating model performance on fixed applications or datasets, rather than assessing the
ability to recommend the most suitable FM under diverse real-world deployment constraints. In this work,
we leverage RS-FMD to construct the first agent-oriented benchmark for FM selection, systematically
covering diverse models, modalities, and deployment constraints.

Benchmark Construction. Our evaluation protocol relies on structured expert review, ensuring method-
ological rigor without imposing excessive annotation overhead. We curate a benchmark of 75 natural lan-
guage queries to keep evaluation feasible while still ensuring diversity. We will publish these queries in our
repository. All model-query pairs were evaluated by two experts from a computer science background with
expertise in RS. We used a structured rubric to ensure consistency. Full details of the expert procedure are
provided in Appendix G.. The evaluation resulted in 900 expert ratings as we compare the top-3 FMs from
REMSA and 3 baselines. Each instance must be carefully rated across seven criteria. Thus, the evaluation
workload is substantial despite the modest query count. To maximize representativeness, we create the query
using structured templates of various scenarios and instantiate them (full templates is in Appendix H..) The
queries diverse over data availability, computational resources, application complexity, and evaluation prior-
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Table 1: Expert evaluation criteria.

Criterion Description

Application Compatibility Whether the model fits the user requested application
Modality Match Whether the model supports the required input data modality
Reported Performance Performance reported on similar datasets or applications
Efficiency Suitability for the user’s computational resources
Popularity Based on GitHub repository stars and citations
Generalizability Diversity and scale of pretraining data
Recency Whether the model reflects recent developments

ities. The resulting queries cover a wide range of tasks, including flood mapping with SAR data, crop type
classification using multispectral or hyperspectral imagery, urban expansion monitoring with optical time
series, and disaster response, such as sea ice and wildfire detection. These tasks cover both single-date and
multi-temporal analysis, single- and multi-modal inputs, and varying resource environments. All queries
were reviewed by a domain expert for factual accuracy and corrected for consistency.

Baselines. There is no prior work on automated FM selection for RS deployment, and existing AutoML
or agent systems cannot directly perform this task. We therefore design baselines that serve as both mean-
ingful comparisons and implicit ablations of REMSA, with each baseline removing or modifying specific
components to assess their contributions:

1. REMSA-NAIVE: Same toolset and DB as REMSA, but employs only basic sequential orchestration with-
out REMSA’s adaptive, task-aware control logic. It relies on LangChain’s default single-step execu-
tion, where the LLM independently chooses tools without structured workflow or multi-turn coordina-
tion (LangChain, 2025). This baseline tests the effectiveness of our orchestration mechanism.

2. DB-RETRIEVAL: Returns the top-k models from the FAISS-based dense retrieval over RS-FMD, with
ranking, clarification, memory, and orchestration removed. This serves as a retrieval-only baseline and
isolates the contribution of LLM-based ranking and constraint reasoning.

3. UNSTRUCTURED-RAG: A generic RAG setup where the LLM receives the query and raw, unstructured
FM descriptions and outputs top-k FMs with brief justifications (prompt in Appendix F.). This baseline
tests whether LLM can perform FM selection without our structured, modular agent.

Evaluation Protocol and Criteria. For each query, REMSA and all baselines output their top-3 FM selec-
tions. These model-query pairs were then evaluated independently and blindly by the two experts using the
criteria in Table 1. After individual scoring, disagreements were resolved through rubric-guided discussion.
The evaluation was performed once during the scoring, and no adjustments were made to any FMs thereafter
to avoid introducing bias. Each FM is rated on a 1-5 scale (0.5 precision) on 7 criteria in Table 1, covering
task relevance and deployability under real-world constraints. Several criteria use explicit rules. For exam-
ple, generalizability combines geographic, modality, and dataset-scale factors, popularity relies on citations
or GitHub activity, and recency is based on publication year. They are designed to be transparent, repro-
ducible, and grounded in practical needs rather than ad-hoc user preferences. More details on the evaluation
procedure are in Appendix G.. The final score is a weighted sum of all criteria ratings (Our weight setting is
in Appendix I.). The score is linearly mapped to 1-100 scale to better show the differences.

Although exhaustive empirical benchmarking of all candidate models is infeasible, our protocol offers a re-
producible and practical proxy for evaluating agent performance in real-world FM selection workflows. To
support transparency and broader community adoption, we publicly release the full set of evaluation queries,
expert guidelines, scoring criteria, and model metadata used in the evaluation. This enables reproducibility
and provides a standardized foundation for future research on FM selection in RS and beyond. Our evalua-
tion does not assume a single ground-truth ”best” FM. Experts compare the top-ranked candidates from all
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Table 2: Comparison to the baselines.

System Avg Top-1 Avg Set Top-1 Hit HQ Hit MRR

REMSA (Ours) 75.76 75.03 22.67% 40.00% 0.38
REMSA-NAIVE 72.67 72.00 25.33% 37.33% 0.36
DB-RETRIEVAL 67.37 68.78 13.33% 17.33% 0.25
UNSTR.-RAG 71.23 68.39 13.33% 30.67% 0.24

Table 3: Sensitivity analysis on evaluation criteria.

Criteria Setting Avg Set Top-1 Hit MRR Note
Full Scoring (All Criteria) 75.03 22.67% 0.38

Green:
Increase
Red:
Drop

w/o Application Compatibility 73.32 21.33% 0.36
w/o Modality Match 70.88 22.67% 0.36
w/o Reported Performance 75.05 22.67% 0.38
w/o Efficiency 80.23 25.33% 0.38
w/o Popularity+Recency 75.13 25.33% 0.39
w/o Generalizability 75.10 22.67% 0.38

systems, and a system is preferred when its top model is judged more suitable than other systems. REMSA
returns top-k FMs with explanations, enabling users to choose based on their own preferences.

6 RESULTS AND ANALYSIS

We conduct experiments to comprehensively evaluate the effectiveness of REMSA in RSFM selection. Since
no prior work directly targets real FM selection under diverse deployment constraints, we develop our own
baselines. This section presents our experiment setup, quantitative results, and sensitivity analysis, followed
by a discussion of limitations and representative examples.

Experimental Setup. We use GPT-4.1 (OpenAI, 2025) for REMSA core and all baselines to
ensure fairness. However, we design REMSA to be LLM-agnostic and support any LLM (e.g.,
DeepSeek-R1 (DeepSeek-AI et al., 2025), LLaMA-3 (Dubey et al., 2024)). Our benchmark consists
of 75 diverse natural language user input queries. For each input, REMSA and all baselines (all described
in Section 5) select the top-3 candidate FMs for comparison. Domain experts rate each candidate using
the criteria in Table 1, and we report both single-model and set-level scores to evaluate selection accuracy
and reasoning quality across multiple agent decision points. During evaluation, all clarification rounds in
REMSA were executed automatically, with the system interacting with an independent LLM simulating user
responses. No human was involved in these interactions, ensuring consistency and preventing evaluator bias.

Evaluation Metrics. We use complementary metrics to evaluate both the best model and the overall set
quality: (1) Average Top-1 Score (expert score of the top-ranked model), (2) Average Set Score (average
score of the top-3 models), (3) Top-1 Hit Rate (fraction where the system’s top model is the expert’s highest-
scored), (4) High-Quality Hit Rate (fraction where the top model scores ≥ 80), and (5) Mean Reciprocal
Rank - MMR (rank of the expert-preferred model within the top-3).

6.1 COMPARISON TO BASELINES

As shown in Table 2, REMSA consistently outperforms all baselines in all evaluation metrics, demonstrat-
ing its effectiveness in selecting FMs under various real constraints. Illustrative examples of expert-scored
model-query pairs are provided in Appendix J.. REMSA achieves the highest Average Top-1 Score (75.76)
and Average Set Score (75.03), indicating not only that the top-ranked models are aligned with expert prefer-
ences, but also that the top-3 selections offer strong and diverse alternatives. Compared to DB-RETRIEVAL,
which relies on similarity-based retrieval over structured metadata, REMSA improves Top-1 Hit Rate from
13.33% to 22.67%, and MRR from 0.25 to 0.38. This underscores the value of reasoning beyond retrieval,
especially when user queries involve constraints (e.g., modality, resolution, compute budget) not explicitly
stored in the metadata. Although UNSTRUCTURED-RAG has access to full model descriptions, its perfor-
mance remains lower due to the lack of structured guidance and modular reasoning. This result shows that
REMSA’s ability to combine structured schema grounding with dynamic tool orchestration enables precise
alignment with user needs. Both REMSA and REMSA-NAIVE perform notably better than retrieval-only or
unstructured RAG baselines, showing effectiveness of our agent architecture: grounding the selection pro-
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cess in a structured schema and enabling tool-based reasoning provides a substantial advantage. However,
REMSA improves further in all major evaluation metrics. Although REMSA has a slightly lower Top-1 Hit
Rate (22.67% vs. 25.33%), the higher Average Top-1 Score (75.76) and MRR (0.38) suggest that REMSA
selects high-quality models more consistently at the top of its ranking. This indicates that our orchestration
logic, including multi-turn clarification and reasoning heuristics, contributes meaningfully to performance,
especially when model choices are ambiguous or task formulations are complex.

Latency Trade-off. To assess the latency-performance trade-off, we measure the average end-to-end run-
time per query. As expected, single-step methods are faster: DB-Retrieval takes 0.77s, Unstr.-RAG 11.9s,
and REMSA-Naive 22.7s, whereas REMSA requires 31.7s due to multi-stage reasoning and optional clarifi-
cation. Despite this moderate overhead, REMSA delivers the highest expert-validated accuracy across major
metrics, indicating that its additional reasoning steps yield meaningful and consistent gains.

6.2 SENSITIVITY ANALYSIS ON EVALUATION CRITERIA

To understand how well REMSA aligns with expert-defined evaluation principles, we perform a sensitivity
analysis by removing each scoring criterion individually from the expert evaluation protocol. As shown in
Table 3, the performance is generally robust in most dimensions, but some removals reveal important insights
into which criteria contribute the most to the effective selection of the model. Both the removal of Applica-
tion Compatibility and Modality Match lead to notable performance drops, confirming that REMSA actively
prioritizes functionally appropriate models aligned with the user’s objective. Notably, removing Reported
Performance and Generalizability yields minimal change in overall results, implying that these dimensions
are either captured implicitly through other criteria or are less decisive in the current benchmark setup. In
contrast, removing Efficiency or Popularity+Recency actually leads to a modest performance gain. This
suggests that while these criteria add practical relevance for deployment, they may occasionally favor well-
known or resource-efficient models over technically optimal ones. The sensitivity results further validate
that REMSA does not overfit to superficial indicators such as citations or recency, but instead emphasizes
core compatibility and reasoning in its final decisions.

7 CONCLUSION AND DISCUSSION

We proposed REMSA, the first LLM Agent combine a FM database for real RSFM selection problems. By
orchestrating modular tools for metadata retrieval, in-context ranking, multi-turn clarification, and memory-
augmented reasoning, REMSA delivers high-quality and consistent selections. A key foundation is our
RS-FMD- the first database for RSFM. It consolidates heterogeneous descriptions into a structured form
for transparent retrieval and comparison. On an expert-driven benchmark, REMSA outperforms retrieval-
only, unstructured RAG, and naive agent baselines. In future work, we plan to expand the benchmark to
rarer and more complex scenarios, explore lightweight supervised enhancements, and improve explanation
specificity and trustworthiness. We also aim to reduce expert burden by introducing semi-automated scoring
and community-assisted annotation, which will make RS-FMD and the benchmark easier to extend to new
FMs. In addition, we plan to adopt a mixed expert- and benchmark-based evaluation mechanism to further
strengthen robustness. We further envision extending REMSA toward adaptive decision-making, where the
agent not only selects but also recommends model adaptation strategies, such as fine-tuning or domain-
specific adjustment, and identifies opportunities for incorporating additional modalities when beneficial.

Limitations. Although REMSA performs successfully in the selection of RSFMs, some limitations remain:
For example, our benchmark is based on 75 expert-annotated queries, which may miss rare or emerging
use cases. However, the overall evaluation effort is substantial, totaling 900 expert ratings. In addition,
the ranking relies on in-context learning rather than supervised training, which may limit performance on
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complex or uncommon queries. Despite these limitations, REMSA demonstrates the feasibility of constraint-
aware agentic RSFM selection, setting the basis for future extensions to other scientific domains.
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APPENDIX

A. COMPLETE RS-FMD SCHEMA SPECIFICATION

To properly represent the properties of each FM, we designed a comprehensive data schema for RS-FMD.
The schema includes the essential characteristics of model architectures, pretraining strategies, supported
modalities, and benchmark performance.

Each model record includes fields such as unique identifiers, names, versions, release and update timestamps,
and links to associated publications, code repositories, and pretrained weights. These metadata elements
ensure traceability and reproducibility of the database entries.

Beyond these core descriptors, the schema incorporates detailed fields that capture architectural
specifics (e.g., backbone type, number of layers, number of parameters), pretraining approaches (e.g., pre-
text training type, masking strategy), and modality integration. The design anticipates the diversity of RS
models and supports future extensions.

To capture information about pretraining and evaluation comprehensively, the schema defines two nested
structures:

• PretrainingPhase: This substructure records the datasets used for pretraining, geographical coverage,
time range, image resolutions, token sizes, augmentation strategies, sampling methods, and masking ratios.

• Benchmark: This substructure captures evaluation metrics, including the applications, dataset, perfor-
mance scores, and training hyperparameters used during evaluation.

Many fields are annotated with free text metadata. This annotation signals that the field may contain
natural language summarization that requires specialized treatment in confidence scoring and downstream
verification.

Table 4 provides a comprehensive description of the fields of our data schema in RS-FMD, including nested
structures for pretraining phases and benchmarks.

Table 4: Complete schema specification of RS-FMD, including nested pretraining phases and benchmarks.

Field Type Description
Main Model Fields

model id string Unique identifier of the model (free text)
model name string Only the name of the model without extra descrip-

tions (free text)
version string Version identifier (free text)
release date date Release date of the model
last updated date Last updated date
short description string Short summary describing the model (free text)
paper link URL URL to the associated publication
citations integer Number of citations
repository URL URL to the code repository
weights URL URL to pretrained model weights
backbone string Specific backbone used (free text)
num layers integer Number of layers
num parameters float Model size in millions of parameters
pretext training type string Type of pretext training strategy (free text)
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Field Type Description
masking strategy string Masking strategy applied during training (free

text)
pretraining string Description of pretraining approach (free text)
domain knowledge list[string] Domain-specific knowledge or methods incorpo-

rated
backbone modifications list[string] Modifications made to the backbone
supported sensors list[string] Supported satellite sensors
modality integration type string Integration type (free text)
modalities list[string] Input data modalities (free text)
spectral alignment {full, partial, none} Whether the model models spectral continuity
temporal alignment {full, partial, none} Whether the model models temporal sequences
spatial resolution string Spatial resolution of data (free text)
temporal resolution string Temporal resolution of data (free text)
bands list[string] Spectral bands used

Nested: PretrainingPhase

dataset string Dataset used for pretraining (free text)
regions coverage list[string] Geographical regions covered
time range string Time range of pretraining data (free text)
num images integer Number of images used
token size string Token size (free text)
image resolution string Input image resolution (free text)
epochs integer Number of epochs
batch size integer Batch size
learning rate string Learning rate (free text)
augmentations list[string] Augmentations applied
processing list[string] Additional preprocessing steps
sampling string Sampling strategy (free text)
processing level string Processing level (free text)
cloud cover string Cloud cover filtering (free text)
missing data string Handling of missing data (free text)
masking ratio float Masking ratio

Nested: Benchmark

application type string Type of application evaluated (free text)
application string Specific application domain (free text)
dataset string Benchmark dataset name (free text)
metrics list[string] List of evaluation metrics
metrics value list[float] Numeric values for each metric
sensor list[string] Sensors used
regions list[string] Regions evaluated
original samples integer Total number of samples before sampling
num samples integer Actual number of samples used
sampling percentage float Fraction of dataset retained (0–100)
num classes integer Number of classes
classes list[string] Names of each class
image resolution string Input image resolution (free text)
spatial resolution string Spatial resolution (free text)
bands used list[string] Bands used during evaluation
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Field Type Description
augmentations list[string] Data augmentations applied
optimizer string Optimizer used (free text)
batch size integer Batch size
learning rate float Learning rate
epochs integer Number of epochs
loss function string Loss function (free text)
split ratio string Train/val/test split ratio (free text)

Below we include a complete example of an RS-FMD record for the RSFM A2-MAE. This illustrates how
the schema is instantiated with real metadata.

1 {
2 "model_id": "A2-MAE",
3 "model_name": "A2-MAE",
4 "version": "v1",
5 "release_date": "2024-06-16",
6 "last_updated": "2024-06-16",
7 "short_description": "A2-MAE is a spatial-temporal-spectral unified remote

sensing pre-training method based on an anchor-aware masked autoencoder. It
leverages a global-scale, multi-source dataset (STSSD) and introduces an

anchor-aware masking strategy and a geographic encoding module to
efficiently integrate spatial, temporal, and spectral information from
diverse remote sensing imagery.",

8 "paper_link": "https://arxiv.org/abs/2406.08079",
9 "citations": 7,

10 "backbone": "ViT-Large",
11 "pretext_training_type": "Masked Autoencoder (MAE) with anchor-aware masking

and geographic encoding",
12 "masking_strategy": "Anchor-aware masking (AAM): dynamically adapts masking

...",
13 "pretraining": "Self-supervised pre-training on the STSSD dataset...",
14 "domain_knowledge": [
15 "Geographic encoding (latitude, longitude, GSD)",
16 "Spatial-temporal-spectral relationships",
17 "Clustering-based data pruning"
18 ],
19 "supported_sensors": [
20 "Sentinel-2", "Landsat-8", "Gaofen-1", "Gaofen-2"
21 ],
22 "modality_integration_type": "Homogeneous Multimodal",
23 "modalities": ["Multispectral", "Multi-temporal"],
24 "spectral_alignment": "partial",
25 "temporal_alignment": "partial",
26 "spatial_resolution": "0.8-30m",
27 "temporal_resolution": "2020-2023, periodic seasonal revisits",
28 "bands": [
29 "Sentinel-2: B1-B12",
30 "Landsat-8: B1-B7",
31 "Gaofen-1: B1-B4",
32 "Gaofen-2: B1-B4"
33 ],
34 "pretraining_phases": [
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35 {
36 "dataset": "STSSD",
37 "regions_coverage": ["Global (12k urban centers, 10k nature reserves)"],
38 "time_range": "2020-2023",
39 "num_images": 2500000,
40 "token_size": "16x16",
41 "image_resolution": "0.8-30m (cropped 256x256 to 3200x3200)",
42 "epochs": 130,
43 "batch_size": 1024,
44 "learning_rate": "1e-4 (cosine decay)",
45 "processing": [
46 "Atmospheric/radiation correction",
47 "Pan-sharpening (Gaofen)",
48 "Cropping/resizing alignment"
49 ],
50 "sampling": "Clustering-based pruning (keep hardest 10%)",
51 "cloud_cover": ">=10%",
52 "masking_ratio": 0.75
53 }
54 ],
55 "benchmarks": [
56 {
57 "task": "Classification",
58 "application": "Land cover classification",
59 "dataset": "EuroSAT",
60 "metrics": ["Accuracy"],
61 "metrics_value": [99.09],
62 "sensor": ["Sentinel-2"],
63 "regions": ["34 European countries"]
64 },
65 {
66 "task": "Classification",
67 "application": "Multi-label classification",
68 "dataset": "BigEarthNet",
69 "metrics": ["mAP"],
70 "metrics_value": [83.0]
71 },
72 {
73 "task": "Segmentation",
74 "application": "Surface water segmentation",
75 "dataset": "Sen1Floods11",
76 "metrics": ["mIoU"],
77 "metrics_value": [88.87]
78 },
79 {
80 "task": "Segmentation",
81 "application": "Cropland segmentation",
82 "dataset": "CropSeg",
83 "metrics": ["mIoU"],
84 "metrics_value": [44.81]
85 },
86 {
87 "task": "Change Detection",
88 "application": "LEVIR-CD",
89 "dataset": "LEVIR-CD",
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90 "metrics": ["mIoU"],
91 "metrics_value": [84.32]
92 },
93 {
94 "task": "Change Detection",
95 "application": "Urban change detection",
96 "dataset": "OSCD",
97 "metrics": ["F1"],
98 "metrics_value": [53.97]
99 },

100 {
101 "task": "Change Detection",
102 "application": "Semantic change segmentation",
103 "dataset": "DynamicEarthNet",
104 "metrics": ["mIoU"],
105 "metrics_value": [46.0]
106 }
107 ]
108 }

B. STRUCTURED QUERY SCHEMA

Below we show the complete JSON schema template used by the query interpreter:

{
"application": "string", // Mandatory
"modality": "string", // Mandatory
"sensor": "string or list of strings", // Optional
"spatial_resolution": "string or numeric", // Optional
"temporal_resolution": "string or numeric",// Optional
"bands": "list of strings", // Optional
"avaliable_data": "string", // Optional
"deployment_device": "string", // Optional
"priority_metrics": "list of string", // Optional
"min_performance": { // Optional

"metric": "list of string",
"value": "list of number"

},
"region": "string or list of strings", // Optional
"domain_keywords": "list of strings" // Optional

}
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C. IMPLEMENTATION DETAILS

Algorithm 1: REMSA Workflow for RSFM Selection
Input: User Query q, desired number of recommendations k
Output: Top-k selected models with explanations

1 Initialize ClarifyCounter ← 0
2 Initialize MaxClarify ← 3
3 repeat
4 Constraints← ParseQuery(q) ; // LLM parses constraints
5 if mandatory constraints missing then
6 if ClarifyCounter < MaxClarify then
7 q ← ClarifyUser(q, Constraints) Increment ClarifyCounter
8 else
9 break ; // Stop clarifying to avoid user fatigue

10 until All mandatory constraints are present;
11 Candidates← RetrieveModels(q) ; // Embedding retrieval (Top K)
12 Filtered← FilterCandidates(Candidates, Constraints)
13 if |Filtered| = 0 then
14 BestMatch← SelectClosestModel(Candidates, Constraints)
15 Explanation← GenerateExplanation(q,BestMatch)
16 return {Recommendation: BestMatch, Explanation}
17 if |Filtered| > MaxCandidates then
18 if ClarifyCounter < MaxClarify then
19 q ← ClarifyUser(q, Constraints)
20 Increment ClarifyCounter
21 Go to line 3 ; // Restart process with clarified query

22 Scores← RankCandidates(q, F iltered) OverallConfidence← ComputeConfidence(Scores)
23 if OverallConfidence < ConfidenceThreshold then
24 if ClarifyCounter < MaxClarify then
25 q ← ClarifyUser(q, Constraints)
26 Increment ClarifyCounter
27 Go to line 3

28 TopK ← Top-k candidates in Filtered ranked by Scores
29 Explanation← GenerateExplanation(q, TopK)
30 return {Recommendations: TopK, Explanation}

The workflow of REMSA is shown in Algorithm 1. The pipeline is implemented in Python using pydantic
for schema validation, and the OpenAI GPT-based models for extraction. Each input document is processed
in multiple iterations to collect diverse generations. The RS-FMD is stored in JSONL records and versioned
via DVC to ensure reproducibility.

D. LLM-BASED IN-CONTEXT RANKING PROMPT

To re-rank candidate foundation models without training a dedicated learning-to-rank model, we leverage in-
context learning (ICL) with a LLM. The prompt explicitly instructs the LLM to prioritize user requirements,
compare candidate models, and produce a ranked list with explanations. We provide few-shot examples
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created by an expert in the prompt to guide the model toward consistent ranking behavior. The prompt is
connected to RS-FMD to provide the metadata of the candidate models. Below is the prompt template we
are using in the ranking module:

Prompt Template:

You are an expert in remote sensing foundation model selection.

You will be given:
1. A structured user query specifying task requirements and constraints.
2. A list of candidate models retrieved from a database, each with metadata

fields.

Your goal:
- Rank the candidate models from most to least suitable for the user’s query.
- For each model, provide a brief explanation in several bullet points

describing why it is placed at that rank.
- Prioritize hard constraints (application, modality, required sensor, and

min_performance if provided), then consider secondary preferences (spatial/
temporal resolution, application type, domain keywords, etc.).

- When two models equally satisfy the constraints and preferences, prefer the
model that is more efficient, better validated on diverse benchmarks, or
more versatile(multimodal, multi-temporal).

[Example]
Structured Query:
{
"application": "land cover classification",
"modality": "multispectral",
"sensor": ["Sentinel-2"],
"min_performance": {
"metric": ["accuracy"],
"value": [85]

}
}

Candidate Models:
1. S2MAE
2. Prithvi
3. CACo

Ranking Output:
1. S2MAE

- Directly supports Sentinel-2 multispectral data
- Achieves 99.1\% accuracy on EuroSAT, exceeding 85\% requirement
- Purpose-built for land cover classification

2. Prithvi
- Supports multi-temporal multispectral data, including Sentinel-2
- Accuracy slightly below requirement on similar tasks
- More generalist FM

3. CACo
- Only supports RGB modality
- Accuracy below the 85\% requirement
- Designed mainly for change detection and event retrieval

Your Task:
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Given the following new query and candidates, produce a ranked list with
explanations.

Structured Query:
{query}

Candidate Models:
{candidates}

Please output the ranked list as JSON in the following format:
[
{
"model": <model_name>,
"rank": <integer>,
"reason": [<short bullet points>]

},
...

]

E. EXPLANATION GENERATOR PROMPT

The explanation generator uses an LLM to produce concise, interpretable justifications for the final ranked
FM list. The prompt template in our explanation generator is given as follows:

You are an expert in remote sensing foundation model selection.

The structured user query is:
{query}

The final ranked candidate models with their metadata are:
{ranked_models}

Your task:
1. For each model, output a JSON object with:

- "model_name"
- "explanation" (several bullet points on why it is recommended)
- "paper_link"
- "repository"

2. Highlight how the model satisfies or partially satisfies the query.
3. Mention key trade-offs if relevant (accuracy vs. efficiency, modality
coverage, etc.).

F. PROMPT FOR RAG-LLM BASELINE

For the LLM-RAG baseline, we prompt an LLM with the original user input and the retrieved model
documentation as a context. The LLM is instructed to select and rank the top three remote sensing foundation
models and provide concise explanations for each recommendation.

You are an expert in remote sensing foundation models.

The user has provided the following task description:

21



{user_input}

Below is a set of candidate models with their documentation:
{context_str}

Your task:
1. Select and rank the top 3 remote sensing foundation models most suitable for

the task.
2. For each selected model, provide:
-- A short explanation of why it fits the task requirements.
-- The reason for its ranking position compared to others.
-- Any other relevant information from the context.
3. Follow this exact output format:

1. model: <model_name>
explanation:
- <reason 1>
- <reason 2>
- <reason 3>

2. model: <model_name>
explanation:
- <reason 1>
- <reason 2>
- <reason 3>

3. model: <model_name>
explanation:
- <reason 1>
- <reason 2>
- <reason 3>

G. EXPERT EVALUATION PROCEDURE

Expert Background. All annotations were performed by two experts with a computer science background
and specialization in RS. Both have prior experience working with RSFMs, have published in the relevant
domains, and are familiar with model architectures, pretraining datasets, and evaluation practices.

Annotation Protocol. To ensure consistency and reproducibility, we followed a structured, multi-stage
scoring protocol:

• Rubric Design. We created a detailed rubric for all seven criteria in Table 1, including definitions, exam-
ples, and decision rules.

• Calibration Phase. Both experts annotated an initial subset of model-query pairs. Disagreements were
used to refine the rubric until interpretations aligned.

• Independent and Blind Scoring. Experts then rated all remaining model-query pairs independently and
without access to system identities or each other’s scores.

• Disagreement Resolution. Any pair with substantial disagreement was re-examined in a controlled dis-
cussion, with decisions resolved strictly according to the rubric.

Objective Scoring Rules. Where possible, we used explicit rules to reduce subjectivity:
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• Reported Performance. Reported performance was determined by checking for benchmarks that matched
the queried task. If none existed, we evaluated performance on broader but related tasks. For example, if
the query specifies the task as scene classification, and there is no benchmark for this, we look for gen-
eral classification benchmarks. Depending on its performance, this model gets a moderate/high reported
performance score. Models with no relevant benchmarks received a low score.

• Efficiency. Model parameter counts were normalized to a 0-5 scale as a proxy for complexity, and com-
bined with reported performance to obtain a final efficiency score. Specifically, we divide this complexity
measure by the reported performance to produce a final efficiency score, also on a 0-5 scale. Popularity.
Popularity was used as a practical usability indicator rather than a measure of inherent model quality. We
used normalized GitHub star counts (when code exists) and Google Scholar citation counts (when paper
is unavailable). This reflects maturity, community adoption, and available ecosystem support.

• Generalizability. We quantified pretraining diversity using three measurable components extracted from
official FM documentation:
1. Geographic diversity: global (score 5), multi-regional (3–4), or single-region coverage (1–2).
2. Sensor-modality diversity: number of distinct modalities used in pretraining e.g., optical, SAR, multi-

spectral, hyperspectral).
3. Dataset scale: reported total area, number of scenes, or total images.
These components were combined into a composite 1-5 score. Inter-annotator agreement confirmed that
the rule-based definitions reduced subjectivity.

• Recency. Recency was defined by the publication year or the latest model-card update:

2025–2026 = 5, 2024 = 4, 2023 = 3, 2022 = 2, . . .

Given the rapid evolution in RSFMs, this criterion serves as a soft heuristic rather than a primary determi-
nant.

Reference Sources. All judgments were grounded in publicly available references for each foundation
model. Experts used: (1) published papers and preprints; (2) official GitHub repositories and model docu-
mentation; (3) public benchmark results; (4) citation databases; and (5) described pretraining datasets from
official sources. These references provided the necessary information on modality support, reported perfor-
mance, efficiency, generalizability, popularity, and recency.

H. QUERY TEMPLATE FOR CREATING BENCHMARK DATASET

To construct a representative and diverse benchmark dataset for evaluation, we define 16 structured query
templates. Each template corresponds to a specific category of user constraints:

• Data Availability (A1–A5):
– A1: No Training Data — User wants to use pre-trained models directly.
– A2: Sufficient Labeled Data — User has enough labels to fine-tune or train from scratch.
– A3: Few-shot Labels — User has a small set of labeled data only and requires models that

generalize in low-data regimes.
– A4: Unlabeled Data Only — User has input data but no labels and seeks models suited for

unsupervised or self-supervised settings.
– A5: Data Adaptation Needed — User’s data differs from typical inputs, requiring domain

adaptation or compatibility adjustments.
• Computational Resources (B1–B3):

– B1: Limited Resources — e.g., CPU-only laptop.
– B2: Moderate Resources — e.g., desktop with GPU.
– B3: High Resources — e.g., cluster-scale GPU compute.

• Application Complexity (C1–C3):
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Table 5: Structured query templates used for benchmark dataset generation. Each template maps to one
constraint category. Slot values ({application}, {sensor}, {region}) are drawn from a predefined
vocabulary and paraphrased by an LLM.

Template (Natural Language) Categories

I’m looking for a model I can use out-of-the-box for {application} using {modality} data. I don’t
have any labeled training data.

A1

I have a well-labeled dataset for {application} with {modality} in {region}. Which model would
be best to fully fine-tune from scratch?

A2

I only have a few labeled samples for {application} using {sensor}. I want a model that can adapt
well in a few-shot setting.

A3

I have a lot of unlabeled {modality} imagery from {region}. I need a model that works well with
self-supervised or unsupervised learning for {application}.

A4

My data uses {sensor} with {spatial resolution} resolution, but most models I’ve seen don’t
support it. Can you recommend one that can be adapted?

A5

I’m working on {application} but only have access to a laptop with no GPU. Which model would be
small enough to run locally?

B1

I’m using a desktop with a single GPU and doing {application} on {modality} imagery. Which
models balance performance and efficiency?

B2

For {application}, I have access to cloud GPUs and can afford large models. What’s the most powerful
foundation model I can try?

B3

I’m doing basic {application} (e.g., 3–4 land classes). What lightweight model would you suggest for
fast experimentation?

C1

I’m working on multi-class classification {application} with {modality} images. The task isn’t
trivial, but I don’t need pixel-level precision.

C2

I need a model for high-resolution segmentation or fine-grained {application}. Accuracy and spatial
detail are important.

C3

For {application} using {sensor} data, I mainly care about achieving the highest overall accuracy,
even if the model is large.

D1

For {application} using {sensor} imagery, I want clean and accurate outputs with minimal false
detections; clear boundaries and reliable predictions are most important.

D2

For {application} using {sensor} imagery, I need to ensure all target instances are captured, even if
some false alarms occur; completeness is critical.

D3

I need fast inference for {application} in near real-time on {device}. What’s a good lightweight
model?

D4

I’m doing {application} on {modality} in {region}, but I only have few-shot labels and limited
compute. Which model fits this setup best?

Composite

– C1: Simple Application — Applications with low label granularity or few classes (e.g., binary
classification, basic change detection).

– C2: Moderate Application — Applications with moderate difficulty, such as multi-class clas-
sification or coarse semantic segmentation.

– C3: Complex Application — Applications requiring fine-grained spatial precision, multi-class
segmentation, multi-modal fusion, or high-resolution outputs.

• Evaluation Priorities (D1–D4):
– D1: Accuracy-Focused — Maximize correctness of classification or segmentation outcomes.
– D2: Output Quality-Critical — Prioritize clean, well-bounded, and visually reliable out-

puts (e.g., high mIoU, sharp edges, no artifacts).
– D3: Coverage-Critical — Ensure all relevant regions or objects are detected, even at the cost

of some false positives (e.g., disaster mapping, change detection).
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– D4: Speed-Critical — Require lightweight or low-latency models for fast inference on edge
devices.

Accordingly, Table 5 shows the full list of templates used to generate the benchmark queries. Slot val-
ues (e.g., {application}, {sensor}, {region}) are drawn from a predefined vocabulary and instan-
tiated using sampling and LLM-based paraphrasing.

I. EXPERT SCORING WEIGHT CONFIGURATION

To aggregate model evaluation scores during expert labeling, we apply a weighted linear combination of the
seven criteria from Table 1. The weights are as follows:

Criterion Weight (%)

Application Compatibility 25
Modality Match 20
Reported Performance 20
Efficiency 15
Generalizability 10
Popularity 5
Recency 5

These weights were empirically determined on the basis of expert interviews. We normalize raw scores
before aggregation.

J. ILLUSTRATIVE EXAMPLES OF EXPERT SCORING

To improve transparency, we provide several examples demonstrating how experts applied the scoring rubric
to real model-query pairs. Each example includes: (1) the natural-language query, (2) the top-3 FM selec-
tions from all systems, and (3) the expert ratings across the seven criteria defined in Table 1. These examples
show how rubric-guided, independent scoring yields consistent and interpretable evaluations.

Example 1:

Query: I need a model for fine-grained land cover classification using high-resolution multispectral im-
agery. Accuracy and spatial detail are important.

Selected FMs (Top-3 from Each System): See Table 6.

Example 2:

Query: I only have a few labeled samples for urban expansion detection using Sentinel-1 and Sentinel-2
time series data from 2016-2023. I want a model that can adapt well in a few-shot setting.

Selected FMs (Top-3 from Each System): See Table 6.

These examples illustrate how the rubric was applied in practice and how expert judgments reflect both task
requirements and model capabilities. They also demonstrate how rubric-guided scoring minimizes subjective
variation across annotators.
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Table 6: Evaluation results for queries 1 and 2. Criteria: CR1 - Application Compatibility; CR2 - Modality
Match; CR3 - Reported Performance; CR4 - Efficiency; CR5 - Generalizability; CR6 - Popularity; CR7 -
Recency.

System Rank FM CR1 CR2 CR3 CR4 CR5 CR6 CR7 Final Score

Query 1

REMSA
1 OmniSat 5 5 5 5 4 3 4 94
2 FlexiMo 4 4.5 4 2.5 1.5 3.5 5 75
3 CtxMIM 5 5 4.5 3 1.5 3.5 3 83.5

REMSA-Naive
1 OmniSat 5 5 5 5 4 3 4 94
2 FlexiMo 4 4.5 4 2.5 1.5 3.5 5 75
3 CtxMIM 5 5 4.5 3 1.5 3.5 3 83.5

DB-Retrieval
1 SpectralEarth 3 3 3.5 1.5 3 3 5 59.5
2 OmniSat 5 5 5 5 4 3 4 94
3 MATTER 4 4.5 4 4.5 3.5 1 2 75

Unstr.-RAG
1 FoMo 5 5 3.5 1.5 2 1.5 5 79.5
2 DynamicVis 4 4 4 3.5 3.5 2 5 75
3 SatVision-TOA 2.5 4 2.5 0 2.5 5 4 55

Query 2

REMSA
1 SSL4EO-S12 5 5 4 4 4.5 4.5 3 89.5
2 Ial-SimCLR 3.5 5 3.5 5 2 3 3 77.5
3 SeCo 3 3 3.5 5 5 2.5 1 67

REMSA-Naive
1 SoftCon 5 5 4.5 3 3 4 4 87
2 SkySense 5 5 5 1 3.5 5 4 85.5
3 SSL4EO-S12 5 5 4 4 4.5 4.5 3 89.5

DB-Retrieval
1 CACo 3 3 4 4 4 4 3 70
2 SeCo 3 3.5 5 5 5 2.5 1 67
3 SSL4EO-S12 5 5 4 4 4.5 4.5 3 89.5

Unstr.-RAG
1 CACo 3 3 4 4 4 4 3 70
2 Copernicus-FM 3 3.5 3 1 3.5 5 5 62.5
3 AnySat 3.5 5 3.5 1.5 4 4.5 5 74
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