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Abstract

Vision-Language Models (VLMs) are increasingly de-
ployed in safety-critical applications, making their ad-
versarial robustness a crucial concern. While adversar-
ial knowledge distillation has shown promise in transfer-
ring robustness from teacher to student models, traditional
single-teacher approaches suffer from limited knowledge di-
versity, slow convergence, and difficulty in balancing ro-
bustness and accuracy. To address these challenges, we
propose MMT-ARD: a Multimodal Multi-Teacher Adversar-
ial Robust Distillation framework. Our key innovation is
a dual-teacher knowledge fusion architecture that collab-
oratively optimizes clean feature preservation and robust
feature enhancement. To better handle challenging adver-
sarial examples, we introduce a dynamic weight allocation
strategy based on teacher confidence, enabling adaptive fo-
cus on harder samples. Moreover, to mitigate bias among
teachers, we design an adaptive sigmoid-based weighting
function that balances the strength of knowledge trans-
fer across modalities. Extensive experiments on ImageNet
and zero-shot benchmarks demonstrate that MMT-ARD im-
proves robust accuracy by +4.32% and zero-shot accuracy
by +3.5% on the ViT-B-32 model, while achieving a 2.3X in-
crease in training efficiency over traditional single-teacher
methods. These results highlight the effectiveness and scal-
ability of MMT-ARD in enhancing the adversarial robust-
ness of multimodal large models. Our codes are available
at https://github.com/itsnotacie/MMT—-ARD

*Equal Contribution.
Corresponding Author.

1. Introduction

With the rapid advancement of multimodal artificial in-
telligence technology, Vision-Language Models (VLMs)
have been widely adopted in autonomous driving, medical
imaging, and industrial inspection. By jointly learning vi-
sual and textual representations, these models demonstrate
strong cross-modal reasoning abilities. However, VLMs re-
main highly vulnerable to adversarial perturbations. Stud-
ies show that adding imperceptible perturbations can lead to
completely erroneous model predictions [ 13] such as traffic-
sign misclassification in autonomous driving or diagnostic
errors in medical settings. This fragility stems from the
multimodal alignment mechanism of VLMs—attackers dis-
rupt cross-modal attention calculations by perturbing criti-
cal regions in the visual feature space, causing the model
to produce high-confidence erroneous matches for adver-
sarial examples. As VLMs enter safety-critical applica-
tions, their adversarial vulnerability has emerged as a ma-
jor security threat hindering technological deployment. To
break through th Current mainstream defenses fall into
three categories: adversarial training, parameter-efficient
fine-tuning, and knowledge distillation. Adversarial train-
ing enhances robustness by minimizing adversarial loss,
but is computationally expensive[l, 8, 19]. Parameter-
efficient fine-tuning methods (e.g., prompt tuning) reduce
computational requirements yet rely heavily on the inher-
ent robustness of pre-trained models, leading to poor cross-
dataset generalization[3, 14]. Knowledge distillation, par-
ticularly Adversarial Robustness Distillation (ARD), have
shown great potential in enhancing model resilience. How-
ever, existing approaches still suffer from three key lim-
itations: 1) Foundational fine-tuning flaw: they rely on
fine-tuning non-robust large models as teachers, which is
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Figure 1. Multidimensional performance comparison of MMT-
ARD with the baseline under different backbone. (a) Teacher-
student combination based on ViT-B-32 and RN50. (b) Combi-
nation based on ViT-B-32-lora and RN101. The method proposed
in this study (Our 1-4) comprehensively outperforms the baseline
methods (Baseline 1-4) across the clean accuracy (acc) and robust
accuracy (racc).

costly and ineffective in addressing the inherent structural
vulnerabilities; 2) Convergence efficiency bottleneck: Stu-
dent models require hundreds of epochs to approach teacher
performance, making it difficult to meet practical deploy-
ment efficiency requirements; and 3) Single-teacher archi-
tecture limitation: A single teacher cannot simultaneously
transfer both strong discriminative (clean) and robust (ad-
versarial) features, resulting in an inevitable trade-off be-
tween clean accuracy and robustness. ese limitations, we
propose a Multimodal Multi-Teacher Adversarial Robust-
ness Distillation (MMT-ARD) framework. The main con-
tributions are summarized as follows: 1. A multimodal
multi-teacher knowledge fusion architecture is designed
to achieve synergistic optimization between clean feature
preservation and robust feature enhancement. 2. A Dy-
namic Importance Weighting (DIW) algorithm is pro-
posed to adaptively balance the knowledge transfer inten-
sity from multiple teachers based on confidence and feature
relevance. 3. A cross-modal consistency constraint loss
is constructed to enhance adversarial invariance within the
visual-textual embedding space, improving the model’s ro-
bustness under multimodal perturbations.

Extensive experiments on ImageNet and Zero-Shot
benchmarks demonstrate the effectiveness of the proposed
method, showing significantly improvements on ViT-B-32
robustness by 4.32%, zero-shot accuracy by 3.5%, and
training efficiency by 2.3x over traditional adversarial dis-
tillation approaches. As shown in Figure 1. It can be clearly
observed that under different architectures (such as ResNet
and Vision Transformer), the performance polygon of our
method ("Our’) significantly encloses that of the baseline
(’Baseline’), indicating that our method achieves overall
performance improvements in clean accuracy, robust accu-
racy, and generalization metrics.

2. Related Work
2.1. Adversarial Attack

Adversarial attacks aim to mislead deep learning model
by adding carefully crafted perturbations. Depending on
the attacker’s level of knowledge about the target model,
adversarial attack research has evolved into three cat-
egories: optimization-driven attacks (e.g., FGSM [17],
PGD [11]) which iteratively optimize perturbations to max-
imize prediction errors; attention-reconstruction attacks
(e.g.,AOA [4], TAIG [9]) which manipulate the model’s at-
tention maps to disrupt feature localization; and decision-
smoothing attacks (e.g.,TI [6], DI [20]) which improve
transferability by smoothing the loss. Hybrid methods such
as SM2I-FGSM [15] combine these strategies to exceed the
limits of single-mechanism attacks. With the popularity of
multimodal foundation models, adversarial research has ex-
panded toward attacking multi-model cooperative systems.

2.2. Adversarial Robustness via Finetuning

Traditional single-modal defenses such as SAT [2] and
TRADES [24] improve robustness through min-max opti-
mization but fail under cross-modal attacks [10] and suffer
significant drops in zero-shot generalization performance
[12], which limits their utility in open environments. In
contrast, multimodal cooperative defense offers a more sys-
tematic and resilient solution. Text-guided contrastive de-
fenses (e.g., PMG-AFT) improve robustness by freezing
the text encoder to stabilize the shared feature space [16],
thus achieving robust accuracy gains on ImageNet. Mean-
while, cross-modal feature alignment methods (e.g., FARE)
employ unsupervised adversarial fine-tuning, which even-
tually reduces the adversarial feature bias to below 0.1.
More importantly, multimodal defense establishes a ~’cross-
modal immune system” [13], which greatly improves the
defense rate of joint attacks in scenarios such as payment
systems. Collectively, these advances demonstrate that
vision-language joint optimization effectively overcomes
the cross-modal vulnerability of single-modal defense and
provides a robust and generalizable protection mechanism
for open environments.

2.3. Knowledge Distillation

The core framework of knowledge distillation [21-23] is
to transfer valuable knowledge from the teacher to the stu-
dent. Traditional Robust knowledge Distillation methods
(such as RSLAD [28]) introduce robust soft labels but re-
mains constrained by the single-teacher ceiling: student
performance cannot surpass that of its teacher. The de-
fense success rate under black-box attacks is still less than
50%. Traditional single-teacher adversarial robust distil-
lation exposes the modal fragmentation predicament: Vvi-
sual teachers cannot guide text adversarial defense, result-



ing in fatal vulnerabilities in multimodal system defense.
The multi-teacher knowledge distillation framework intro-
duced to the study of adversarial distillation [25, 27]. It is
worth noting that our research extends multi-teacher distil-
lation to both robust and multimodal large language model
contexts. The key intuition is that different robust teacher
models (trained via distinct adversarial strategies) possess
complementary strengths in handling various input regions
or semantic attributes[7, 18, 26]. By allowing the student to
learn collaboratively from multiple robust teachers, the pro-
posed framework enables the integration of diverse robust-
ness cues, producing student models that not only inherit
but often surpass the robustness of any individual teacher.

3. Method

3.1. Multimodel Multi-Teacher Adversarial Robust
Distillation

Inspired by multi-teacher and robust unsupervised finetun-
ing, we propose the Multimodel Multi-Teacher Adversar-
ial Robust Distillation (MMT-ARD) framework. The core
idea of this method is to simultaneously utilize an Ad-
versarial Teacher and a Clean Teacher to guide the train-
ing of a student CLIP model, thereby significantly improv-
ing the robustness of the model under adversarial attacks
while maintaining the consistency of its multimodal embed-
dings. This design ensures consistent cross-modal feature
representations while maintaining strong performance un-
der both clean and adversarial conditions. The overall ar-
chitecture of our proposed MMT-ARD framework is illus-
trated in Figure 2.

We employ the fine-tuned CLIP model as the adversarial
teacher and the original CLIP model as the clean teacher.
During training, the student model is jointly supervised by
both teachers: the adversarial teacher provides a robust fea-
ture representation under adversarial samples, whose input
is the adversarial samples generated when the student model
is internally maximized, while the clean teacher provides a
semantic feature representation under clean samples. The
student model receives both adversarial and clean inputs,
producing outputs that are guided by corresponding adver-
sarial soft labels and clean soft labels. Therefore, the robust-
ness optimization framework of the proposed MMT-ARD
method can be formulated as follows:

Opr = argmin > [(1 = @) - KL (Sorg (), Torg 1))

=1
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where § defines the perturbation constraint for generating
adversarial samples, ensuring that the resulting perturba-
tions are imperceptible to the human eye. Specifically,
this constraint limits the pixel-wise change in an image to
not exceed a small positive threshold e, thereby preserving
the visual appearance of the original input. Among them,
Sorg represents the clean student model, 75, represents the
clean teacher model, m,q4, represents the adversarial stu-
dent model or the adversarial teacher model, and max rep-
resents the element with the largest absolute value within
the feature space. The hyperparameter « controls the rela-
tive importance of the two sub-objectives in the final opti-
mization process. By adjusting «, the training process can
flexibly balance the emphasis between clean and adversarial
objectives. In the following section, we introduce an adap-
tive parameter mechanism designed to dynamically regulate
this weighting within the loss function.

3.2. Dynamic Weight of Teachers’ Confidence

In the multi-teacher distillation framework, traditional static
weight distribution methods exhibit two key limitations.
First, the reliability of knowledge sources differs inher-
ently between teachers. The adversarial teacher’s predic-
tion confidence for adversarial samples typically shows a
bimodal distribution—where high-confidence correctly de-
fended samples coexist with low-confidence attacked sam-
ples—whereas the clean teacher’s confidence distribution
on original samples is unimodal and more stable. Sec-
ond, the weight distribution should have sample depen-
dence: predictions for simple categories (e.g., “dog”) tend
to be more confident than those for complex scenes (e.g.,
“crowded marketplace”). Static weighting, therefore, can-
not adapt to the semantic complexity and difficulty of differ-
ent samples. To address these issues, we propose a dynamic
weight allocation strategy grounded in three core principles:
1) Deterministic priority principle: Assign higher weights
to high-confidence predictions to ensure reliable knowledge
transfer. 2) Uncertainty penalty principle: Suppress the in-
terference of noise signals by reducing the weight of low-
confidence predictions. 3) Cross-modal alignment princi-
ple: Promote the consistency of multimodal representations
through the joint estimation of confidence across visual
and linguistic modalities. This dynamic weight distribution
strategy essentially builds a sample-adaptive knowledge fu-
sion mechanism, enabling the model to automatically ad-
just the degree of trust assigned to different teachers based
on specific sample features, thereby achieving more precise
and robust knowledge distillation.

Definition of Teacher Confidence: Given a teacher model
T and an input z, its prediction confidence is:

confr(x) = max(o(T(x))), 3)

where o() denotes the softmax function and 7'(x) € R is
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Figure 2. MMT-ARD framework architecture, where the same input image is processed separately by two sets of encoders from the original
teacher and the adversarial teacher. L1 and L2, which respectively constrain the consistency of the student model’s outputs with those of
the two teachers, ultimately achieving collaborative transfer of robust representations through a weighted sum.

the categorical logits vector. Dynamic weight calculation:
for adversarial teacher T4, and clean teacher 1., define
the weight ratio as follows.

confr , (x)
confr,  (z)+v’

plx) = “)

where v = 1075 is the numerically stable term. The final
weights are generated using the modified sigmoid function.

1
wan(2) = TS G@ )
wclean(x) =1- Wadv (l’), (6)

where A denotes the slope coefficient, which controls the
sharpness of the weight change and 7 is the offset to adjust

the weight balance.

4. Theoretical Analyses

Robustness Transfer under Multi-Teacher Distilla-
tion. Let {z(™ X — RE}M | be M teacher
logit maps with nonnegative weights wy,...,wys such
that »  w, = 1. For a labeled input (z,y),

define the teacher margins ~™)(z) = zl(,m)(x)

max (m)
k#y 2

(z),m = 1,..., M, and the logit-averaged
ensemble z°"%(x) := Zf‘le Wi 2 (2), Tens(z) =
zzns(x) maxyzy 25" (x). Suppose that the student logit
map z° : X — RX is Lg-Lipschitz w.r.t. /5 and fits the
ensemble at  within £, discrepancy A(z) = ||z%(z) —

Z2oms( H . Then for any perturbation ¢ with ||d]|2 < ¢, the



student’s perturbed margin satisfies the following:

Z Wy, ,y(m

avg. teacher margin at
— 2A(x) — 2Lge.
(N

In particular, the student’s top-1 prediction at x + ¢ remains
y for all ||§]]2 < e whenever

St W Y™ (@) — 2A(2)

2Lg '
Ensemble margin vs. average teacher margins. By
convexity of max, for any vectors a(™ € RE,
maxg (>, wma(m)) <>, Wy, maxy a,im). With (™) =
(M) (z), we get Tons(2) >, wny(™ (2).
Student-ensemble closeness. From ||z%(z) —
(@)oo < Alz), 27(z) = 2™(x) — A(z) and
maxy, 2y () < maxgy, 25%(z) + A(z), we have

W
Tens(z) — 2A(z) =

zi(x—f—é) Ilglﬁxzk (x +0)

student margin at x+¢

e <

2, (2) — maxpzy 2 (x) >

Zm wm'}/(m) (z) — 2A(x).

Lipschitz stability. Since each logit of z° is Ls—Lipschitz,
|25 (x + 0) — 25 (2)| < Lg||6]|- for all classes c. Thus the
margin can shrink by at most 2L ||§||2:

(1;—1—6) mszk J(x406) > (zf(x) I}g&émxzk( )) 2Ls|6||2-

Combining Egs. (2) and (3) gives the claim; the robustness
condition follows by positivity of the right-hand side.

Remark 1. The theorem states the student inherits robust-
ness from multiple teachers through their average margin,
but loses some due to imperfect matching of the ensemble
and sensitivity to input changes. To strengthen guarantees,
increase teachers’ margins, reduce the student—ensemble
mismatch during distillation, and control the student’s Lip-
schitz constant.

5. Experiment

5.1. Dataset Description

ImageNet-1K[5] serves as the main primary dataset for both
training and evaluation, where adversarial samples are gen-
erated to assess model robustness. Additionally, we evalu-
ate the model’s generalization capability on zero-shot clas-
sification tasks following the standard zero-shot evaluation
protocol of the CLIP pre-trained model.

5.2. Implementation Details

Model architecture and training configuration: For
model selection, we used OpenFlamingo 9 B and LLaVA-
1.5 7 B as LVLM models as the infrastructure for teacher

and student models. For the Teacher model, we choose dual
teachers (adversarial teacher and Clean teacher), including
ViT-L-14_PMG _Fast2 (adversarial training version and self-
trained Clean Teacher (based on ViT-L-14). On the student
model, we experiment with four networks, including ViT-B-
32, RN50, RN101, ViT-B-32-LoRA (using the LoRA fine-
tuning strategy). All experiments were performed under the
same hardware environment (NVIDIA A100), and the re-
sults were repeated three times and averaged to ensure sta-
tistical significance.

Evaluation metrics include: Clean Accuracy (acc) : The
classification accuracy of the model on clean samples. Ro-
bust Accuracy (racc): The classification accuracy of the
model on adversarial samples. Adversarial samples are
generated using PGD attacks, with attack intensities (e) of
1/255, 2/255, 3/255, and 4/255, respectively. Sum-ACC:
The Sum of clean accuracy and robust accuracy, which is
used to comprehensively evaluate the model performance.
Zero-Shot Accuracy: Accuracy on zero-shot classification
tasks.

5.3. Comprehensive Comparative Experiments on
MM-TARD

5.3.1. Enhanced robustness

As shown in Table 1, under low-intensity attack scenar-
ios, our method achieves a 4.32% absolute improvement
in robust accuracy (racc) over the baseline (from 45.02%
to 49.34%), representing a statistically significant enhance-
ment. This demonstrates that the proposed dual-teacher
distillation strategy effectively strengthens the model’s re-
silience to adversarial perturbations. More importantly,
the model also exhibits an absolute gain of 3.5% in zero-
shot accuracy, indicating that that by learning more dis-
criminative feature representations from the clean teacher,
it acquires superior generalization capabilities rather than
merely overfitting to adversarial examples. Furthermore,
the increase in the overall Sum-acc metric (+2.48) further
validates the comprehensive optimization effect of the pro-
posed approach on the model’s robustness and generaliza-
tion performance.

5.3.2. High-intensity attack

As the attack intensity (€) increases, the distribution differ-
ence between adversarial samples and clean samples inten-
sifies, and the performance of all models declines as ex-
pected. Under this extreme setting, our method performs
close to the baseline in terms of robustness, but maintains an
advantage of approximately 1.6% in clean accuracy consis-
tently. This indicates that our method does not lose robust-
ness in extreme adversarial environments, and at the same
time successfully enables the student model to learn repre-
sentations that are closer to the essential features of natural
images, thereby achieving better performance on clean data.



Table 1. Performance of the benchmark method and the proposed method under the MMT-ARD framework on ViT-B-32, ResNet-50,

ResNet-101 and ViT-B-32-Lora models

Method eps CLIP ViT-B-32 CLIP RN50 CLIP RN101 CLIP ViT-B-32-Lora
acc racc sum-acc clip-zero acc racc sum-acc clip-zero acc racc sum-acc clip-zero acc racc sum-acc clip-zero
1 61.84 49.00 110.84 2640 43.92 2392 67.84 6.5  45.84 2044 66.28 3.8 4324 2246 65.70 16.10
baseline 2 61.84 3456 96.40 19.20 43.92 10.14 54.06 3.1 4584 7.54 53.38 1.0 4324 946 5270 10.40
3 61.84 2272 84.56 14.00 4392 4.04 47.96 1.8 4584 226 481 0.5 4324 274 4598 5.0
4 61.84 13.76 75.56 990 4392 128 452 1.0 45.84 0.62 46.46 0.1 4324 0.74 4398 2.6
1 6348 4934 11282 27.10 46.56 2536 71.92 9.0 4948 2730 76.78 13.0 4576 23.06 68.82 17.2
our 2 6348 3478 98.26 19.60 46.56 10.94 575 5.1 4948 1246 61.94 64 4576 924 550 7.5
3 6348 2224 85.72 13.80 46.56 428 50.84 3.0 4948 478 54.26 3.6 4576 2.52 4828 5.0
4 6348 12.92 76.42 9.60 4656 146 48.02 1.6 4948 1.62 51.10 20 4576 0.62 46.38 2.8
5.3.3. Generalization verification 5.4. Ablation Study

The results on the ResNet architecture further verify the uni-
versality of our method. For RN101, our method achieves
absolute improvements of 3.64% in clean accuracy and
2.52% in robust accuracy. Most importantly, its robust accu-
racy has more than doubled (a relative increase of 111.5%),
while the zero-shot performance has improved by 3.1% (a
relative increase of 720%). These results demonstrate that
the proposed dual-teacher distillation strategy is effective
across models with varying capacities and architectures. In
particular, it substantially enhances the adversarial robust-
ness of classical architectures like ResNet while preserving
strong transferability and generalization performance.

Taking the above analysis together, our multi-teacher
distillation method can work effectively on multiple archi-
tectures such as ViT and ResNet, and its core advantages
are reflected in: 1) significantly improving the robustness
and generalization ability of the model under common low-
intensity attacks; 2) Maintain competitiveness under high-
intensity attacks and optimize the essential feature represen-
tation of the model; 3) It shows excellent generalization for
different model architectures; 4) Perfect compatibility with
efficient parameter fine-tuning technology, with high prac-
tical value. Figure 3shows the visualization of the experi-
mental results. Figure 3. (a) represents the original, clean
input image,(b) represents the Grad-CAM heat map gener-
ated by the adversarial teacher (ViT-L-14) when process-
ing the adversarial examples,(c) represents the Grad-CAM
heat map generated by the clean teacher (ViT-L-14) when
processing the clean original image, and (c) represents the
Grad-CAM heat map generated by the clean teacher (Vit -
L-14) when processing the clean original image. Heat map
of (d) the original student model without distillation (ViT-
B-32) on the original image,(e) the student model distilled
by our proposed multi-teacher method on the original im-
age, and (f) the student model distilled using only a single
teacher (adversarial teacher). The figure clearly reveals dif-
ferent models (teacher vs. student) and different methods
(baseline vs. student). Our approach) fundamental differ-
ences in the basis for decision making.

To comprehensively analyze the performance of our pro-
posed MMT-ARD framework and verify the effectiveness
of the contribution of each component, we conducted sys-
tematic ablation studies. This section addresses three core
questions: (1) What improvements are brought by intro-
ducing the clean teacher and its integration strategy? (2)
How do different loss function designs affect the trade-off
between accuracy and robustness of the model? (3) How
should the supervisory signals from multiple teachers be
balanced to achieve optimal performance? We explore these
aspects through controlled experiments, isolating the effect
of each factor.

5.4.1. Path-separated dual teacher strategy

This experiment evaluates the necessity of introducing a
clean teacher and a confidence-based weighting strategy.
We compared three strategies: 1. Baseline: Uses only the
adversarial teacher model (ViT-L-14 PMG Fast2) with the
student model ViT-B-32. 2. Average: Uses both the adver-
sarial and clean teachers; their output embeddings are aver-
aged with equal weights. 3. Path-Separated Dual Teachers
(Ours): Employs both teachers, where their predictions are
dynamically weighted and fused based on confidence lev-
els.

As shown in Table 2, introducing a clean teacher con-
sistently improves performance. Compared with the base-
line, the equal-weight averaging strategy achieves minor
improvements of +0.26% in clean accuracy and +0.16% in
robust accuracy, with a Sum-acc increase of 0.42%. This
demonstrates that discriminative features learned from the
clean teacher (derived from natural image distributions)
complement the robust features of the adversarial teacher.

However, our path-separated dual-teacher strategy fur-
ther enhances performance. While maintaining robust accu-
racy (racc: 34.72%), the clean accuracy improves by 0.38%
over the baseline. This indicates that allowing the clean
teacher to focus on generating highly discriminative target
embeddings for the original images provides a better learn-
ing target for the student model, thereby improving classi-
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Figure 3. Heatmaps of the models for different teacher-student pairs.

fication performance. Compared with the simple Average
strategy: the clean accuracy further improves by 0.12%,
confirming that naive output fusion is suboptimal.

Table 2. Experimental results of different combinations of teach-
ers. CA: Clean Accuracy, RA: Robust Accuracy, Baseline: (Adv.
Teacher Only)

Strategy CA (acc) RA (racc) Sum-acc
Baseline 61.96 34.56 96.52
Average 62.22 34.72 96.94
Weighted (Ours) 63.48 34.78 98.26

5.4.2. Dynamic weighting strategy based on teachers’
confidence

This experiment compare three configurations: 1. Single-
KL (Baseline): Uses only the adversarial teacher’s output
as soft labels to compute the KL divergence loss. 2. Dual-
KL (0.5:0.5): Computes KL divergence from both teach-
ers with equal (1:1) weighting. 3. Dual-KL + Adaptive
Norm: Extends Dual-KL by introducing an adaptive nor-
malization loss. As shown in Table 3, this experiment
clearly illustrates the accuracy—robustness trade-off. When
switching from Single-KL to fixed-weight Dual-KL loss,
the model learns extremely discriminative features from the
clean teacher, resulting in a sharp increase in clean accu-
racy by +10.18%. However, this aggressive optimization
deviates significantly from the robust feature space guided

by the adversarial teacher, causing a sharp drop in robust ac-
curacy by -23.02%. This indicates that giving equal weight
to both teachers in the loss function leads to severe gradient
conflicts in the optimization objective, making it difficult
for the student model to simultaneously fit two highly diver-
gent distributions. After adding the Adaptive Norm loss, the
clean accuracy is further increased, but robustness is almost
completely lost confirming that static fusion cannot effec-
tively balance the competing learning signals. In contrast,
incorporating a dynamic confidence-based weighting strat-
egy significantly improves overall performance: compared
to the baseline, clean accuracy is significantly improved by
+1.52%, robust accuracy reaches 34.78%, and Sum-acc sig-
nificantly gains +1.74%.

These results demonstrate that static averaging is sub-
optimal, while dynamic weighting enables adaptive balanc-
ing. When the adversarial teacher exhibits high confidence,
the model prioritizes its supervision to preserve robustness;
when confidence is low, it relies more on the clean teacher’s
discriminative features to enhance accuracy. This adaptive
cooperation between teachers is key to achieving balanced
and superior performance.

5.4.3. Loss weight

Based on the findings in Section 5.4.2, we conducted an in-
depth analysis to optimize the accuracy—robustness trade-
off by fine-tuning the loss weight ratio between the two
teachers (Aqdv: Aorg). The experiment successfully found



Table 3. Experimental results for different loss function designs.
CA: Clean Accuracy, RA: Robust Accuracy.

Loss Design CA (acc) RA (racc)
Single-KL (Baseline) 61.96 34.56
Dual-KL (0.5:0.5) 72.14 11.54
Dual-KL + Adaptive Norm 73.26 0.34

the optimal operation point (Sweet Spot). As shown in Ta-
ble 4, when the weight ratio is set to 3:0.5 (i.e., Aadqov / Aorg =
6), the model achieves an optimal balance between clean ac-
curacy (63.88%) and robust accuracy (34.42%). Both indi-
cators at this point are significantly better than the Dual-KL.
(0.5:0.5) setting, and the robustness returned to a level com-
parable to the baseline, while the clean accuracy maintained
an improvement of nearly 2%. These results highlight three
key insights: 1. Adversarial supervision should dominate
the training process: a higher \,q4, ratio is a prerequisite
for maintaining model robustness. This is in line with the
essence of adversarial training, that is, the model must pri-
oritize learning stable decision boundaries. 2. Clean super-
vision refines representations: A small but non-zero A,rq
weight is sufficient to provide the necessary discriminative
signal, effectively refining the basic feature representation
learned from adversarial training, thereby improving the
clean accuracy without compromising its stability. 3. Bal-
ance is feasible: Through strict weight tuning, a new Pareto
Optimal point can be found, breaking through the trade-off
boundary between robustness and accuracy without signifi-
cantly sacrificing robustness, and achieving an overall per-
formance improvement.

Table 4. Experimental results of different loss weight propor-
tions.CA: Clean Accuracy, RA: Robust Accuracy

Weight Ratio A4, :)\ory CA (acc) RA (racc)
1:05 71.26 16.18
2:0.5 68.72 21.84
3:05 63.88 34.42
35:05 63.74 34.44
3:1 69.88 18.76
7:03 62.88 34.60

5.4.4. Quantitative analysis of gradient

To quantitatively evaluate the consistency of visual atten-
tion regions between different distillation models and their
teacher model, we adopt a method based on Grad-CAM fea-
ture map subtraction followed by L2 norm computation.
The numerical value intuitively reflects the degree of dif-
ference in the attention region between the models. The
resulting L2 norm intuitively reflects the degree of discrep-
ancy between the attention regions: a smaller value indi-
cates greater similarity between the student’s and teacher’s

gradient feature maps, implying stronger alignment with the
teacher’s guidance.

As shown in Table 5, analyses conducted on three
validation set images (ILSVRC2012_val 00004748,
ILSVRC2012_val_00012820,
ILSVRC2012_val_00014409) reveal that reveal that
the proposed method consistently achieves significantly
lower L2 norm values than ViT-B-32, whether compared
against the clean or adversarial teacher. This strongly
proves that our approach can effectively make the student
model learn and inherit the key feature attention regions of
the teacher model, thereby improving feature representation
transfer efficiency.

In the path distilled from adv_teacher, our method
achieves L2 values (2157, 2296, 2571) lower than or equal
to the baseline method (2175, 2316, 2580) on all three im-
ages, indicating a slight but consistent advantage in captur-
ing the attention mechanism of the robust teacher model. It
reflects the positive effect of the introduced module. There-
fore, from the perspective of gradient feature similarity,
this experiment confirms that the multi-teacher distillation
framework proposed in this paper can effectively promote
the student model to align the visual attention of the teacher
model more accurately, thus ensuring the effectiveness of
knowledge distillation at the feature level, which lays a
foundation for the performance improvement of the final
model.

Table 5. Comparison of the knowledge distillation effec-
tiveness of Clean teacher (Cle_T) and adversarial teacher
(adv_T) models for ViT-B-32, baseline, and MMT-ARD (quan-
titative results on datasets of ILSVRC2012_val_00004748
(Val_1), ILSVRC2012_val 00012820 (Val 2), and
ILSVRC2012_val_00014409 (Val_3) respectively.)

Val.l Val2 Val3
Cle_T to ViT-B-32 2613 2603 2655
Cle_T to Baseline 2104 2288 2630
Cle_T to ours 2107 2266 2598
adv_T to ViT-B-32 2650 2621 2779
adv_T to Baseline 2175 2316 2580
adv_T to ours 2157 2296 2571

6. Conclusion

This study have proposed a Multimodal Multi-teacher
adversarial Robust distillation framework (MMT-ARD),
which effectively solves the robustness problem of visual
language models in adversarial environments through a
dual-teacher knowledge fusion architecture and a dynamic
weight allocation strategy. Experiments demonstrated that
the proposed method improves robust accuracy of ViT-B-
32 model by 4.32% and zero-shot accuracy by 3.5% on



the ImageNet dataset, and improves the training efficiency
by 2.3 times. The results of this study provide new ideas
and methods for the research on the adversarial robustness
of multimodal models, and provide reliable technical sup-
port for artificial intelligence applications in safety-critical
fields. Future work will focus on further optimizing the
dynamic weight algorithm and extending the framework to
more modalities and more complex application scenarios.
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