arXiv:2511.17454v1 [cs.CV] 21 Nov 2025

Ilustrator’s Depth: Monocular Layer Index Prediction for Image Decomposition

Nissim Maruani* Peiying Zhang Siddhartha Chaudhuri Matthew Fisher
Inria, UCA CityUHK Adobe Research Adobe Research
Nanxuan Zhao Vladimir G. Kim Pierre Alliez Mathieu Desbrun Wang Yifan
Adobe Research Adobe Research Inria, UCA Inria/X, IP Paris Adobe Research
Abstract

We introduce Illustrator’s Depth, a novel definition of
depth that addresses a key challenge in digital content cre-
ation: decomposing flat images into editable, ordered lay-
ers. Inspired by an artist’s compositional process, illus-
trator’s depth infers a layer index for each pixel, forming
an interpretable image decomposition through a discrete,
globally consistent ordering of elements optimized for ed-
itability. We also propose and train a neural network us-
ing a curated dataset of layered vector graphics to predict
layering directly from raster inputs. Our layer index in-
ference unlocks a range of powerful downstream applica-
tions. In particular, it significantly outperforms state-of-the-
art baselines for image vectorization while also enabling
high-fidelity text-to-vector-graphics generation, automatic
3D relief generation from 2D images, and intuitive depth-
aware editing. By reframing depth from a physical quantity
to a creative abstraction, illustrator’s depth prediction of-
fers a new foundation for editable image decomposition.

1. Introduction

The organization of a digital artwork into a stack of layers is
a fundamental concept in creative software. This paradigm,
common to both vector-based and raster graphics tools, is
central to the creative process as it allows for the indepen-
dent manipulation and editing of individual compositional
elements. This layering is also inherently related to the
physical depth of objects within a scene, in that closer el-
ements obscure those that are farther away.

While recent neural architectures can efficiently and ac-
curately predict monocular depth from images [2, 54] or
compute panoptic segmentations [15, 33], they are unable
to decompose input illustrations or images into useful, or-
dered layers for three main reasons. First, illustrative lay-
ers differ fundamentally from physical depths: important

*Work performed during an internship at Adobe Research

background

foreground

,/(& Image Vectorization j: 3D Relief Fabrication

@¥ Text to Vector Generation @ Depth-aware Editing
Figure 1. Overview. Given an input image, our model predicts
Lllustrator’s Depth, alearned ordering of compositional layers that
reflects how an artist might have structured the image layout. This
representation, applicable broadly to illustrations (left), paintings
(middle), or even some realistic images (right), enables multiple
downstream applications such as vectorization, intuitive editing,
text-to-vector generation, and 3D relief fabrication.

visual elements such as shadows may be placed above the
objects on which they are cast, and non-orthogonal flat sur-
faces with overlapping physical depth gradients may never-
theless be mapped to discrete, sortable layers (see dominoes
in Fig. 2). Second, because illustrations typically appear on
flat media (i.e., book pages, posters, or paintings), monocu-

https://arxiv.org/abs/2511.17454v1

lar depth estimation models are explicitly trained to ignore
them (see t-shirt in Fig. 2). Third, illustrative layering also
differs from plain panoptic segmentation: the grouping and
structuring of segmented regions of an input are key to the
editability of the layer decomposition. An illustrator’s no-
tion of layer depth is thus a subtle mix between segmenta-
tion and depth ordering to facilitate both design and editing.

Although rarely acknowledged or articulated as such,
layer inference is a core challenge in vectorization that im-
pacts numerous downstream applications by offering an in-
tuitive layer decomposition enhancing editing capabilities.
Existing state-of-the-art methods, however, remain limited
in scope, either handling only simple inputs [44, 50], or re-
lying on brittle heuristics [11, 18, 23, 29, 61, 62] which do
not consistently yield useful results. In the raster domain,
several approaches have explored transparent layer extrac-
tion or generation [20, 28, 49, 53, 56], yet these operate ex-
clusively at the object level. To the best of our knowledge,
no existing technique can achieve fine-grained, detailed im-
age layer decomposition.

We introduce Illustrator’s Depth, a new concept designed
to address these challenges by providing a novel way to rep-
resent the structural layering of vector graphics. Specifi-
cally, we define the illustrator’s depth of an image as the
inverse mapping from each pixel to its corresponding layer
index in its digital mockup, effectively capturing the spa-
tial and compositional ordering of the artwork. We infer
illustrators’ depth from arbitrary images automatically by
leveraging a Depth Pro based neural network [2] trained
on a large, curated SVG dataset. Our model operates in
a feed-forward manner to predict pixel-level layer indices,
enabling a wide range of applications such as image editing
and depth-aware vector graphics manipulation.

More specifically, we present a number of contributions:

* We introduce the notion of Illustrator’s Depth and train a
network to predict it, enabling fast layer decomposition;

* We show that incorporating our model into standard vec-
torization pipelines yields consistently layered SVGs with
state-of-the-art visual fidelity;

* We propose a novel method for evaluating layer quality
in vector graphics by rasterizing the predicted illustrator’s
depth and assessing its consistency with the ground truth;

* We demonstrate that coupling our pipeline with Text2Img
models substantially enhances the generation of high-
quality, editable vector illustrations from text;

*Finally, we showcase other applications of illustrator’s
depth in layer-based segmentation, depth-aware object in-
sertion, tactile graphics creation, and artwork analysis.

2. Related Work

Monocular depth estimation (MDE). Classical learning
approaches for depth estimation from images [0, 8, 12, 36,

41, 60] have evolved into strong backbones trained on di-
verse data [1, 2, 31, 54]. They yield finely detailed and con-
tinuous (relative or metric) depth maps that serve as robust
physical priors. Yet, they remain blind to content without
true volume, like printed posters or patterns on clothing. In
contrast, our objective is to produce a new kind of depth
prioritizing user editability over metric prediction.

Layered depth for view synthesis. Layered Depth Im-
ages store multiple depth samples per ray to model oc-
clusions [5, 43], while Multiplane Images approximate
scenes by many fronto-parallel planes for novel-view ren-
dering [24, 63]. These abstractions excel at detecting dis-
occlusions and synthesizing new views, but they produce
multi-sample or multi-plane depths, not a single discrete in-
dex per pixel that a designer can restack. Furthermore, they
focus on physical depth like MDE, unlike our illustrator’s
depth which focuses on layer index prediction.

Amodal / instance / panoptic segmentation. Moving from
geometry to semantics, segmentation families group re-
gions by categories, but do not encode geometric order-
ing. Standard instance and panoptic methods provide high-
quality visible masks [3, 4, 10, 14-16, 32] without global
per-pixel depth ordering. Amodal instance and amodal-
panoptic formulations extend masks to occluded regions
(for countable “thing” categories, typically), while “stuff”
categories remain modal; representative datasets and mod-

(a) Input Image

(b) Iustrator’s Depth (c) Physical Depth
(Ours) (Depth Pro [2])

Figure 2. Physical vs. Illustrator’s Depth. Unlike monocular
depth estimation, illustrator’s depth (middle, in false colors) pro-
duces piecewise-flat regions corresponding to layers and preserves
compositional ordering even for printed or flat elements (e.g.,
shadows, drawings, or textures) that lack real-world depth (right).

Color-Constant
£ g Clustering
.
Model Depth-Aware
Layering
\4 & Grouping
Hole-filling
. | & Tracing

Figure 3. Depth-aware Image Vectorization. Our predicted
illustrator’s depth map (bottom left) can be integrated in tradi-
tional vectorization pipelines to produce well-layered SVG images
(right, in 3D for clarity). On this example, our model allows the
grouping of two disconnected white clusters to form a single back-
ground layer, while accurately separating the white highlights.

els include [25, 30, 51, 65]. Occlusion-aware and amodal
transformers refine completion and boundary reasoning [5,
13, 19, 46], yet supervision and metrics remain instance-
centric or pairwise. None imposes a single, transitive or-
dering across all pixels, which is the target of our globally-
consistent ordinal layer map.

Generative decompositions for editing. Inspired by tra-
ditional approaches [7, 37, 45], editing-focused decompo-
sitions produce per-subject RGBA layers to facilitate local
edits. Examples include real-time human matting [21], gen-
erative pipelines that output editable layers for subjects and
effects [20, 53], and atlas-based video methods that unwrap
scenes into a few textures with an alpha channel for tem-
poral consistency [18, 22]. These layers are effective for
targeted edits but are independent and not constrained to a
global, per-pixel depth order. Instead, we seek a single “il-
lustrator’s depth” map that provides an coherent ordering of
all pixels in order to facilitate further editing.

Layering in vectorization. An obvious application of our
layer index estimation is vectorization: given our per-pixel
ordinal map, standard raster-to-vector pipelines can group
paths by layer and export edit-ready stacks. Existing sys-
tems based on heuristics or optimization [11, 18, 23,29, 62]
often fail to infer a clean, useful layering. Learning-based
approaches [22, 34, 38, 39, 55] can, in principle, learn layer
order from examples, but their training often compounds all
the steps of the vectorization process (including Bézier con-
trol points), resulting in frequent reconstruction failures on
complex inputs. Very recent works explore explicit layer
predictions for better editing [44, 50], but remain limited
in the amount of paths and details they generate. Instead,
our layer index prediction provides a supervised signal for
ordering itself, allowing traditional vectorizers to assemble
SVGs in a manner most useful for further editing.

3. Method

We now introduce our notion of illustrator’s depth in
Sec. 3.1, before describing our dataset curation in Sec. 3.2,
and finally presenting our neural network implementation
and training in Sec. 3.3. Evaluation tests and ablation stud-
ies will be presented and discussed at length in Sec. 4.

3.1. Illustrator’s Depth

From an input illustration I, represented as a raster x W
RGB image, we refer to its illustrator’s depth as the map-
ping from each image pixel of the input to a layer index
i€{1...N}. Conceptually, this map represents how an artist
might have structured the image as a composition of N sep-
arate layers (see Fig. 3), each corresponding to a different
element or object drawn at a particular depth. Thus, illustra-
tor’s depth provides a per-pixel layer assignment that cap-
tures an interpretable notion of structural depth implicit in
the artist’s compositional workflow, which can then be di-
rectly leveraged for editing purposes. This paper proposes
predicting this mapping from an image using a neural net-
work and a curated training set of layered compositions,
yielding an illustrator’s depth image Dy (1) € R*>*W where
depth is treated as a continuous value rather than a discrete
layer index as it still captures relative ordering while allow-
ing straightforward binning into discrete values if necessary.

3.2. Curating a Training Dataset

Training our network to predict Illustrator’s Depth requires
a large-scale dataset of images paired with their ground-
truth layer structure. Scalable Vector Graphics (SVG) files
are an ideal source for this data, as they are inherently com-
posed of layered vector paths that define the stacking order
of a composition. We leverage this property by develop-
ing a three-stage data preparation pipeline: first, we source
a suitable dataset of layered SVGs; second, we curate it to
reduce ambiguity; and finally, we rasterize the vector files
into corresponding image and depth map pairs for training.

Data sourcing. While SVGs provide a structural founda-
tion, the quality of their layering is crucial. Many SVG

(a) Input (b) GT

(¢) Ours (d) Dep.A.-v2 (e) DepthPro

Figure 4. Predicted illustrator’s depth evaluation. Conventional
monocular depth models (DepthAnything-v2 [54] (d), Depth-
Pro [2] (e)) predict physical depth; in contrast, our model (c) accu-
rately infers layer indices suitable for illustration decomposition.

datasets, while visually correct when rendered, contain dis-
organized or programmatically generated layers that do not
reflect an artist’s intent. Yet, effective learning depends on
a dataset with intuitively and consistently structured com-
positions. After reviewing existing options, we selected
the MMSVG-Illustration dataset [55], which features SVGs
where elements are layered in a consistent and meaningful
way, with layers systematically organized from the lowest
index for the background to the highest index for the fore-
ground, and outline strokes always placed above their cor-
responding color fills for instance.

Data curation. Even a high-quality dataset like MMSVG
contains inherent ambiguities that can hinder learning.
Artistic layering is often subjective; for instance, multiple
distinct objects might logically share the same depth level,
and different artists may have different layering habits. This
variability can create a noisy training signal. To normal-
ize these variations and create a more consistent ground
truth, we perform two curation steps. First, we merge con-
secutive layers that share the same RGB color to simplify
the structure. Second, we identify and exclude ambigu-
ous cases where non-consecutive layers of the same color
overlap in the final rendered image, as this significantly im-
proves training stability.
Ground-truth rasterization. Once the SVG dataset is cu-
rated, the final step is to generate the rasterized image-depth
pairs for training. For each curated SVG file, we generate
its corresponding RGB input image I and ground-truth il-
lustrator’s depth map D([I) of size HxW through a custom
rasterization process. First, we create a temporary version
of the SVG where each layer’s original color is replaced by
a unique color representing its layer index ¢ in base 256: the
index is thus encoded across the RGB channels via

(i mod 256, /256 | mod 256, |i/256] mod 256) .
We then rasterize this modified SVG; the resulting “false
color” image is converted back into a per-pixel integer depth
map using the formula D(I)= R + 256-G + 2562 B. This
encoding strategy allows us to efficiently represent a large
number of layers with virtually no additional data loading
overhead. All the resulting pairs {I, D(I;)}; of images
and their illustrator’s depths form our training dataset.

3.3. Neural Network & Training

Model. Predicting illustrator’s depth requires reasoning
about object boundaries, occlusion, and grouping. While
distinct from physical depth estimation, this task benefits
immensely from the powerful priors learned by state-of-the-
art monocular depth estimation (MDE) models. In particu-
lar, we find that Depth Pro [2], built on Dino-v2 [26] and
equipped with a multi-scale encoder, provides a robust fea-
ture extractor that allows our model to generalize well from
our training set of simple vector graphics to complex, artis-
tic images, as we will demonstrate in Sec. 4. We initialize

our model with Depth Pro’s pre-trained weights, leveraging
its learned understanding of geometry and occlusion as a
crucial prior for our task to enable broad generalization.

Scale-invariant loss function. In natural images, distant
objects correspond to large physical depth values, which are
inherently more challenging to estimate accurately. There-
fore, most MDE models [2, 31, 54] learn inverse depth
values 1/d, prioritizing the accuracy of foreground objects
over distant ones. In contrast, illustrations are composed in
a structured, layer-wise manner from background to fore-
ground, where depth values typically range from 1 to N.
In this setting, estimating the illustrator’s depth is not in-
herently harder for background layers than for foreground
ones. Instead of learning in disparity space, we thus train
our model to predict discrete ground-truth layer indices
(1, ..., N) directly, assigning equal importance to all image
layers (please see ablation studies in Sec. 4.1). Our primary
objective, however, is to recover the correct relative order-
ing of these layers rather than their absolute index values.
To focus the training on this relative structure, and remain
robust to the potentially large range of N, we adopt a scale-
invariant normalization scheme similar to MiDaS [31]. For
any depth map D, we compute its median m and mean
absolute deviation s, and normalize each depth value d as
d := (d—m)/s. We then train the network using a Mean
Absolute Error (MAE) loss on these normalized maps, i.e.,
using the loss:

Lyx(D(I), Dy(1)) = |D(I) — Dy (). ()

Training. The network is trained on our SVG dataset us-
ing standard training practices, including data augmentation
(color jitter, random inversion, random blur) and a cosine
learning rate schedule. Additionally, we follow [2] by em-
plying two distinct learning rates for the encoder (DINO-v2
[26]) and the CNN-based decoder. Details are provided in
Sec. 4, the Supplementary Material, and the code.

Post-processing. As our network outputs pixel-wise illus-
trator’s depth estimates, optional post-processing can be ap-
plied to derive discrete layer indices. Depending on the tar-
get application, two common strategies are advisable: (1)
direct segmentation of depth values using binning or thresh-
olding, and (2) clustering in RGB space followed by assign-
ing each cluster its median depth. We typically adopt the
first strategy for raster image processing (Sec. 4.4), whereas
the second is better suited for vectorization tasks (Secs. 4.2
and 4.3) where inputs typically exhibit color-consistent re-
gions. In the latter case, clusters with similar colors and
depths can be further merged to simplify the resulting SVG
paths (see Fig. 5). Notably, even without post-processing,
our predicted illustrator’s depth maps are visually coherent
and structurally clean, see Figs. 1, 2, 4 and 8.

Rasterized RGB

Rasterized RGB ~ Rasterized Depth

Rasterized Depth

(a) GT (b) Ours + [29, 42] (c) Vtracer [29]

(d) LIM. [61]

(e) LIVE [23] (f) Starvector [38] (g) O-SVG [55]

Figure 5. Image vectorization with illustrator’s depth. Paired with standard vectorization pipelines, our method produces editable,
depth-ordered SVGs that closely preserve the structure of the input image. Compared to heuristic. optimization-driven, or learning-based
baselines, our approach systematically yields much cleaner layering and higher visual fidelity.

4. Experiments and Applications

In this section, we outline our training setup in Sec. 4.1
and benchmark our model against state-of-the-art monoc-
ular depth estimators. Then we demonstrate a variety of ap-
plications of illustrator’s depth. First, we embed our trained
model into a vectorization pipeline (Sec. 4.2), which out-
performs state-of-the-art methods, and show how it enables
a creative, fully editable workflow when paired with gener-
ative image models (Sec. 4.3). We then showcase diverse
raster-based editing tools enhanced by our predicted illus-
trator’s depths (Sec. 4.4), including relief generation for tac-
tile graphics and layer-wise decomposition.

4.1. Predicting Illustrator’s Depth

Training. As detailed in Sec. 3, our model is trained on the
MMSVG-Illustration dataset [55]. Following data cleaning

Table 1. Evaluation of illustrator’s depth on MMSVG. While
models trained for physical depth perform poorly, our method
achieves near-perfect layer ordering and low layering error.

Ordert MAE| MSE|

Depth Pro [2] 0.636 1.44 4.76
Depth Anything-v2 [54] 0.791 1.16 3.58
Ours 0.987 0.12 0.26

Table 2. Impact of key components on illustrator’s depth. Re-
moving depth prior, data cleaning, or training in disparity space
degrades layer-order consistency and accuracy, at times signifi-
cantly, confirming the contribution of each component to the over-
all performance of our layer index predictions.

Depth prior Data Direct index

Ordert MAE| MSE|

initialization ~ cleaning training
v v 0.903 0.51 1.17
v v 0.905 0.53 1.21
v v 0.980 0.50 1.88
v v v 0.981 0.16 0.29

and rasterization to a resolution of 1536 x 1536, the dataset
comprises approximately 100K consistently layered SVG
images, with 80% allocated for training and 20% reserved
for evaluation. In line with [61], we randomly select 100
images for quantitative analysis — see Supplementary Ma-
terial for results on the SVGX-Core dataset. Training is
done for 40 epochs on 8 Nvidia® A100 GPUs, with a co-
sine learning rate schedule, a max learning rate of 5 1076,
and a batch size of 8.

Baselines. We compare our approach with two state-of-
the-art monocular depth estimation (MDE) methods, Depth
Pro [2] and Depth Anything-v2 [54].

Metrics. We evaluate performance by rendering illustra-
tor’s depth maps from ground-truth SVGs as described in

Table 3. Evaluation of the vectorization. Here, we test different vectorization methods — grouped by layering strategies — on the vali-
dation set of the MMSVG dataset. Our approach achieves the best combination of layering accuracy, path compactness, and reconstruction
fidelity, systematically outperforming heuristic, optimization-based, and data-driven baselines.

Layering Quality

Visual Fidelity

Ordert MAE| MSE| PathNumber| MSE(x1072)| SSIM{ LPIPS |

Method Layering Prior

Vtracer [29] Heuristics 0.689 2.58
Less Is More [61] Heuristics 0.746 2.43
LIVE [23] Optimization-based 0.838 4.88
Starvector [38] Data-driven 0.918 1.52
OmniSVG [55] Data-driven 0.925 1.31
Ours + [29, 42] Data-driven 0.987 0.46

15.67 3.65 0.023 0.994 0.022
21.10 5.54 0.663 0.961 0.043
96.91 8.62 0.297 0.946 0.053
9.75 0.53 9.123 0.858 0.302
8.08 0.54 9.997 0.830 0.317
2.09 0.16 0.018 0.997 0.005

Sec. 3.2. Since each method produces depth estimates in
its own scale, we first normalize all predicted depth maps
using the procedure described in Sec. 3.3 prior to comput-
ing Mean Squared Error (MSE) and Mean Absolute Error
(MAE). While both MSE and MAE assess pixel-wise depth
accuracy, many of our target applications require a globally
consistent layer ordering rather than precise depth values.
Therefore, following Zhang et al. [60], we further evalu-
ate depth ordering consistency by randomly sampling pixel
pairs from the ground truth and predictions, and checking
whether their relative depth order is preserved (see Supple-
mentary Material for details). The resulting depth ordering
consistency metric (abbreviated as Order in Tabs. 1-3) mea-
sures the percentage of correctly ordered pixel pairs, provid-
ing a complementary measure of global depth consistency.

Results. While related, physical depth and illustrator’s
depth do capture fundamentally different concepts (Fig. 2).
Standard MDE models, trained to predict real-world geom-
etry, struggle to recover correct layer ordering in illustra-
tions (Fig. 4); our model, purposely trained to infer layer
indices, achieves markedly better results, outperforming all
baselines by a wide margin (Tab. 1). Inference takes less
than one second on current GPUs as reported in [2].
Ablation studies. We conduct a series of ablation studies
to validate our design choices discussed in Sec. 3. As de-
tailed in Tab. 2, both Depth Pro initialization (leveraging a
physical depth prior from weights learned on millions of im-
ages) and data cleaning (removing inconsistencies and am-
biguities in ground-truth layers) boost the depth ordering
consistency quite sharply. Although training directly with
layer indices (1,...,N) instead of disparity space (1/d)
yields comparable global ordering scores, it facilitates a
more balanced optimization between foreground and back-
ground layers: this results in better depth transitions and a
clear advantage across all evaluation metrics; see the Sup-
plementary Material for additional qualitative evaluations.

4.2. Vectorization

Image vectorization, which consists in converting raster im-
ages to vector graphics, is a particularly straightforward ap-

plication of illustrator’s depth.

Pipeline. Our model integrates seamlessly into existing vec-
torization pipelines such as VTracer [29], where we replace
area-based sorting heuristics with our predicted illustrator’s
depth. We first compute color clusters, sort them using our
layer index prediction, inpaint layers to fill holes and bridge
gaps (with, e.g., Scikit-Image [47]), before vectorizing each
layer with potrace [42]. The whole process, including our
illustrator’s depth prediction, only takes seconds.

Baselines. We benchmark our pipeline against key state-
of-the-art approaches, based on simple area heuristics
(VTracer [29]) or more advanced cluster-sorting strategies
(Less Is More [61]), optimization methods (LIVE [23]), and
LLM-based tools (StarVector [38], OmniSVG [55]).

Metrics. Vectorization demands both compactness and ac-
curacy for best editability. We thus measure layering quality
using the depth ordering consistency (Order), mean squared
error (MSE), and mean absolute error (MAE), as well as
path count errors |[N—N|/N to compare the number of paths
in ground-truth (V) vs. reconstructed (N) SVGs. We then
evaluate visual fidelity by measuring the rasterized output
compared the input using MSE in RGB space, Structural
Similarity Index Measure (SSIM) [64], and Learned Per-
ceptual Image Patch Similarity (LPIPS) [58].

Results. Although most vectorization methods produce out-
puts that look quite close to the input raster images, visual-
izing their layer indices in false colors reveals substantial
differences in layering quality (Fig. 5). Methods relying on
heuristics such as VTracer [29] and Less is More [61] fre-
quently misorder layers; for instance, spiral binding holes
in the calendar in Fig. 5 are incorrectly positioned on
top despite belonging to the background. Optimization-
based LIVE [23] introduces spurious layers and shapes,
while LLM-based approaches [38, 55] often fail (some-
times, spectacularly) to achieve full reconstruction. In con-
trast, our pipeline is able to faithfully reconstruct the in-
put while producing layer indices close to the ground truth.
Additionally, quantitative results from Tab. 3 confirm these
observations: our method matches VTracer’s reconstruc-

tion fidelity while outperforming all SOTA competitors in
layer-index accuracy. Interestingly, our layering evaluation
reveals a clear divide between methods excelling at recon-
struction but weak in layering (VTracer, Less is More) and
those with opposite strengths (Starvector, OmniSVG). Our
approach thus combines the power of traditional vectoriz-
ers with the quality of data-driven layer index prediction,
enabling state-of-the-art performance on both fronts.

4.3. Text-to-Vector-Graphics Generation

The creation of high-quality vector graphics remains a chal-
lenging problem. Direct generation techniques, such as
those employing Score Distillation Sampling (SDS) [27,
57] or Large Language Models (LLMs) [38, 39, 55], have
not yet matched the visual fidelity achieved by state-of-the-
art text-to-image generative models. Here again, our illus-
trator’s depth neural prediction can dramatically help in ob-
taining high-quality editable illustrations.

Pipeline. Leveraging recent advances in high-quality im-
age generation [9, 17], we first generate vector-style raster
images (prompts are detailed in the Supplementary Mate-
rial). These raster images are subsequently transformed into
structured, editable, and layered SVG using our specialized
vectorization pipeline described in Sec. 4.2.

Results. Fig. 6 presents examples generated via Flux [17]
and postprocessed with illustrator’s depth. The resulting
SVG illustrations exhibit high visual complexity and coher-
ent layer organization, facilitating the intuitive grouping and
editing of individual elements (see supplementary video).
Our vectorization can be similarly integrated to Nano Ba-
nana [9] to offer a more advanced, multi-stage generative
workflow as illustrated in Fig. 7. We also show comparisons
with Neural Path Representation [57], NeuralSVG [27], and
LayerTracer [44], in the Supplementary Material.

Figure 6. Vector graphics generation. By augmenting text-to-
image diffusion models like Flux [17] with illustrator’s depth, gen-
erated images can be automatically transformed into editable vec-
tor graphics. Layers (bottom, displayed from front to back) facili-
tate intuitive manipulation of individual elements.

4.4. Beyond Vector Graphics

Despite being trained exclusively on depth data generated
from simple SVG images, our model demonstrates a re-
markable ability to generalize beyond this narrow scope. It

Figure 7. Illustrator’s depth in generative workflows. Starting
from a cellphone photo and a rug texture (left), a pipeline based
on Nano Banana [9] and illustrator’s depth synthesizes a vector-
graphics illustration and converts it into a layered SVG, supporting
depth-aware editing such as recoloring and object insertion.

successfully infers illustrator’s depth across highly diverse
inputs, from complex illustrations and artistic renderings,
to even natural images, due to our use of pretrained pri-
ors [2, 26] learned from millions of images. This section
showcases two practical applications leveraging this strong
generalization. Additional qualitative results and discus-
sions of failure cases are provided in Figs.l & 2, and in
the Supplementary Material.

£

(b) Ilustrator’s Depth (c) Relief, 3D rendering

Figure 8. Automatic relief generation from single images. With
no manual intervention, illustrator’s depth (middle) can be con-
verted into 3D surfaces by interpreting predicted depth as eleva-
tion. The resulting meshes, shown on the right, demonstrate how
images can be transformed into tactile or printable reliefs.

4.4.1. Automatic Relief Generation From a Single Image

Task. Relief is a sculptural method where elements remain
attached to a solid background to give the impression that
the sculpture has been raised above the background. Bas-
relief, a shallow form of this technique, is widely applied,
from coinage to architectural ornament [59]. Current meth-
ods for generating 3D reliefs from 2D images are funda-
mentally limited by their reliance on user-defined depth or-
dering [35]. We eliminate this user interaction entirely by
leveraging the fully automated output of our model.

Pipeline. Given an input image, our system first generates
a pixel-wise illustrator’s depth map dy(i,7). This depth
is then directly used to build a triangulated surface by
transforming each pixel into a vertex with 3D coordinates
(i,7,de(i,7)), and triangulating adjacent vertices.

Results. The resulting mesh easily integrates into any 3D
application as illustrated in Fig. 8. Crucially, our illustra-
tor’s depth transforms flat paintings into 3D objects with-
out any manual annotation, offering an alternative, intuitive,
and tangible interaction with works of art.

4.4.2. Depth-Based Editing

Task. Raster image editing relies on the composition of
multiple layers. Existing segmentation tools, however so-
phisticated they have become, often fall short because they
perform based on ambiguous requests: if a user clicks a
face, do they mean the face, the whole character, or the en-
tire foreground? Our work helps resolve this ambiguity, as
enriching input images with our predicted illustrator’s depth
dramatically facilitates layer separation.

Pipeline. Illustrator’s depth is easily leveraged to inform
segmentation: based on a user-defined threshold value ¢ ad-
justable in realtime via a slider, an image can be split into
two layers, one (foreground) defined as illustrator’s depths

G

(b) L. D.

(c) Foreground

(d) Editing

(a) Input Image

Figure 9. Depth-Aware Image Editing. From an input image (a),
illustrator’s depth (b) enables selective separation of key image
regions (c) for seamless compositing or depth-aware insertion (d).

Model
|
Binning
Inpainting

Figure 10. Illustrator’s depth with an inpainting model. Given
our illustrator’s depth (top), we can bin the values into several lay-
ers and inpaint each occluded regions with Stable Diffusion [40].
The resulting set of overlapping layers can be directly used for 3D
parallax effects as demonstrated in our supplemental video.

satisfying DJi, j] > ¢ and one (background) for all others.
More generally, any binning strategy into N layers, found
through a quick analysis of the entire map D or derived
manually, provides a decomposition into layers by ranges
of illustrator’s depths, which can be directly uploaded in
raster graphic editors to allow for direct editing.

Results. Illustrator’s depth within the context of raster im-
age editing provides a robust mechanism for selective ele-
ment isolation as demonstrated in Fig. 9. Paired with any
inpainting model such as [40], our method can produce N
overlapping layers to allow for parallax effects for instance,
see Fig. 10. Additional examples can be found in the ac-
companying Supplementary Material and video.

5. Conclusion and Future Work

We introduced Illustrator’s Depth, a novel concept that
augments image pixels with additional layer indices, en-
abling straightforward decomposition into an edit-ready
stack. Trained on a curated dataset of SVG files, our net-
work can infer illustrator’s depth across a wide range of in-
puts, ranging from simple icons to complex raster graphics.
We demonstrated that our method achieves SOTA perfor-
mance in image vectorization and facilitates a number of
downstream tasks beyond vector graphics, such as text-to-
vector generation, interactive editing, and relief generation.

Although our current model is trained specifically for
this task with a curated dataset of SVGs, the rapid advance-
ment of vision models toward one-shot and zero-shot gen-
eralization [48] suggests a near-future where illustrator’s
depth could be inferred directly from natural prompts, with-

out explicit training. Beyond its current technical form,
we believe that the underlying concept of illustrator’s depth
will remain relevant across a variety of creative domains:
by shifting the notion of depth from a physical metric to a
layer-based ready-to-edit abstraction, our work introduces
a new paradigm for intelligent creative tools to better assist
the artistic process. Illustrator’s depth transforms image de-
composition from a mere technical challenge into a creative
and assistive foundation for the next generations of compu-
tational art and design systems.

6. Acknowledgments

This work was supported by the French government through
the 3IA Cote d’Azur Investments in the project managed
by the National Research Agency (ANR-23-IACL-0001),
Ansys, and a Choose France Inria chair.

References

(1]

(2]

(3]

(4]

(5]

[6

—

(7]

(8]

(9]
(10]

(11]

[12]

[13]

(14]

Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka.
Adabins: Depth estimation using adaptive bins. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 4009-4018, 2021. 2

Alexey Bochkovskiy, Amaél Delaunoy, Hugo Germain,
Marcel Santos, Yichao Zhou, Stephan Richter, and Vladlen
Koltun. Depth Pro: Sharp monocular metric depth in less
than a second. In The Thirteenth International Conference
on Learning Representations, 2025. 1,2, 3,4,5,6,7
Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu,
Thomas S Huang, Hartwig Adam, and Liang-Chieh Chen.
Panoptic-deeplab: A simple, strong, and fast baseline
for bottom-up panoptic segmentation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 12475-12485, 2020. 2

Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 1290-1299, 2022. 2

Helisa Dhamo, Keisuke Tateno, Iro Laina, Nassir Navab, and
Federico Tombari. Peeking behind objects: Layered depth
prediction from a single image. Pattern Recognition Letters,
125:333-340, 2019. 2, 3

David Eigen, Christian Puhrsch, and Rob Fergus. Depth Map
Prediction from a Single Image using a Multi-Scale Deep
Network. In Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2014. 2

Jean-Dominique Favreau, Florent Lafarge, and Adrien
Bousseau. Photo2clipart: Image abstraction and vectoriza-
tion using layered linear gradients. ACM Transactions on
Graphics (TOG), 36(6):1-11, 2017. 3

Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-
manghelich, and Dacheng Tao. Deep ordinal regression net-
work for monocular depth estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2002-2011, 2018. 2

Google. Gemini 2.5 Flash Image, 2025. 7, 2, 3, 4

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961-2969, 2017. 2
Or Hirschorn, Amir Jevnisek, and Shai Avidan. Optimize
& reduce: a top-down approach for image vectorization. In
Proceedings of the Thirty-Eighth AAAI Conference on Arti-
ficial Intelligence, pages 2148-2156. AAAI Press, 2024. 2,
3

Derek Hoiem, Alexei A Efros, and Martial Hebert. Recov-
ering surface layout from an image. International Journal of
Computer Vision, 75(1):151-172, 2007. Publisher: Springer.
2

Lei Ke, Yu-Wing Tai, and Chi-Keung Tang. Deep occlusion-
aware instance segmentation with overlapping bilayers. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4019-4028, 2021. 3
Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr
Dollér. Panoptic feature pyramid networks. In Proceedings

10

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

of the IEEE/CVF conference on computer vision and pattern
recognition, pages 6399-6408, 2019. 2

Alexander Kirillov, Kaiming He, Ross Girshick, Carsten
Rother, and Piotr Dolldr. Panoptic segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9404-9413, 2019. 1
Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 4015-4026, 2023. 2

Black Forest Labs, Stephen Batifol, Andreas Blattmann,
Frederic Boesel, Saksham Consul, Cyril Diagne, Tim Dock-
horn, Jack English, Zion English, Patrick Esser, et al. Flux.
1 kontext: Flow matching for in-context image generation
and editing in latent space. arXiv preprint arXiv:2506.15742,
2025.7,2,3

Ho Law and Sung Ha Kang. Image Vectorization with
Depth: convexified shape layers with depth ordering. SIAM
Journal on Imaging Sciences, 18(2):963—-1001, 2025. 2, 3
Hyunmin Lee and Jaesik Park. Instance-wise occlusion
and depth orders in natural scenes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21210-21221, 2022. 3

Yao-Chih Lee, Erika Lu, Sarah Rumbley, Michal Geyer, Jia-
Bin Huang, Tali Dekel, and Forrester Cole. Generative om-
nimatte: Learning to decompose video into layers. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12522-12532, 2025. 2, 3
Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sengupta,
Brian L Curless, Steven M Seitz, and Ira Kemelmacher-
Shlizerman. Real-time high-resolution background matting.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8762-8771, 2021. 3
Raphael Gontijo Lopes, David Ha, Douglas Eck, and
Jonathon Shlens. A learned representation for scalable vec-
tor graphics. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7930-7939, 2019. 3
Xu Ma, Yugian Zhou, Xingqgian Xu, Bin Sun, Valerii Filev,
Nikita Orlov, Yun Fu, and Humphrey Shi. Towards layer-
wise image vectorization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 16314-16323, 2022. 2,3,5,6

Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-
tions on Graphics (ToG), 38(4):1-14, 2019. 2

Rohit Mohan and Abhinav Valada. Amodal panoptic seg-
mentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 21023—
21032, 2022. 3

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mah-
moud Assran, Nicolas Ballas, Wojciech Galuba, Russell
Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Je-
gou, Julien Mairal, Patrick Labatut, Armand Joulin, and Pi-
otr Bojanowski. DINOv2: Learning Robust Visual Features
without Supervision, 2024. arXiv:2304.07193 [cs]. 4, 7
Sagi Polaczek, Yuval Alaluf, Elad Richardson, Yael Vinker,
and Daniel Cohen-Or. NeuralSVG: An Implicit Representa-
tion for Text-to-Vector Generation, 2025. arXiv:2501.03992
[es]. 7,3

Yifan Pu, Yiming Zhao, Zhicong Tang, Ruihong Yin, Haox-
ing Ye, Yuhui Yuan, Dong Chen, Jianmin Bao, Sirui Zhang,
and Yanbin Wang. Art: Anonymous region transformer for
variable multi-layer transparent image generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7952-7962, 2025. 2
Sanford Pun and Chris Tsang.
https://github.com/visioncortex/vtracer, 2025.
6

Lu Qi, Li Jiang, Shu Liu, Xiaoyong Shen, and Jiaya Jia.
Amodal instance segmentation with kins dataset. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3014-3023, 2019. 3

René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE transactions on pattern analysis and machine
intelligence, 44(3):1623-1637, 2020. Publisher: IEEE. 2, 4
Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman
Ridle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junt-
ing Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-
Yuan Wu, Ross Girshick, Piotr Dollar, and Christoph Feicht-
enhofer. SAM 2: Segment anything in images and videos. In
The Thirteenth International Conference on Learning Rep-
resentations, 2025. 2

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman
Ridle, Chloe Rolland, and Laura Gustafson. SAM 2: Seg-
ment anything in images and videos. In The Thirteenth In-
ternational Conference on Learning Representations, 2025.
1

Pradyumna Reddy, Michael Gharbi, Michal Lukac, and
Niloy J. Mitra. Im2vec: Synthesizing vector graphics with-
out vector supervision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7342-7351, 2021. 3

Andreas Reichinger, Stefan Maierhofer, and Werner Pur-
gathofer. High-quality tactile paintings. Journal on Com-
puting and Cultural Heritage, 4(2):1-13,2011. 8

Babak Rezaeirowshan, Coloma Ballester, and Gloria Haro.
Monocular Depth Ordering using Perceptual Occlusion
Cues:. In Proceedings of the 11th Joint Conference on
Computer Vision, Imaging and Computer Graphics The-
ory and Applications, pages 431-441, Rome, Italy, 2016.
SCITEPRESS - Science and Technology Publications. 2
Christian Richardt, Jorge Lopez-Moreno, Adrien Bousseau,
Maneesh Agrawala, and George Drettakis. Vectorising
bitmaps into semi-transparent gradient layers. In Computer

VTracer.
2, 3, 5,

11

(38]

(39]

[40]

(41]

(42]

[43]

[44]

(45]

[46]

[47]

(48]

[49]

(50]

Graphics Forum, pages 11-19. Wiley Online Library, 2014.
3

Juan A. Rodriguez, Abhay Puri, Shubham Agarwal, Issam H.
Laradji, Pau Rodriguez, Sai Rajeswar, David Vazquez,
Christopher Pal, and Marco Pedersoli. StarVector: Gener-
ating scalable vector graphics code from images and text. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 16175-16186, 2025. 3,
5,6,7

Juan A Rodriguez, Haotian Zhang, Abhay Puri, Aarash
Feizi, Rishav Pramanik, Pascal Wichmann, Arnab Mondal,
Mohammad Reza Samsami, Rabiul Awal, Perouz Taslakian,
et al. Rendering-aware reinforcement learning for vec-
tor graphics generation. arXiv preprint arXiv:2505.20793,
2025. 3,7

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-Resolution Image
Synthesis with Latent Diffusion Models. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10674—10685, New Orleans, LA, USA, 2022.
IEEE. 8

A. Saxena, Min Sun, and A.Y. Ng. Make3D: Learning 3D
Scene Structure from a Single Still Image. [EEE Transac-
tions on Pattern Analysis and Machine Intelligence, 31(5):
824-840, 2009. 2

Peter Selinger. Potrace: a polygon-based tracing algorithm.
https://potrace.sourceforge.net, 2003. 5, 6, 2

Jonathan Shade, Steven Gortler, Li-wei He, and Richard
Szeliski. Layered depth images. In Proceedings of the
25th annual conference on Computer graphics and interac-
tive techniques, pages 231-242, 1998. 2

Yiren Song, Danze Chen, and Mike Zheng Shou. Layer-
tracer: Cognitive-aligned layered svg synthesis via diffusion
transformer. arXiv preprint arXiv:2502.01105, 2025. 2, 3,7
Jianchao Tan, Jyh-Ming Lien, and Yotam Gingold. Decom-
posing images into layers via rgb-space geometry. ACM
Transactions on Graphics (TOG), 36(1):1-14, 2016. 3
Minh Q Tran, Khoa HV Vo, Kashu Yamazaki, Arthur Fer-
nandes, Michael T Kidd, and Ngan Le. Aisformer: Amodal
instance segmentation with transformer. In 33rd British Ma-
chine Vision Conference 2022, BMVC 2022, London, UK,
November 21-24, 2022. BMVA Press, 2022. 3

Stefan Van der Walt, Johannes L Schénberger, Juan Nunez-
Iglesias, Frangois Boulogne, Joshua D Warner, Neil Yager,
Emmanuelle Gouillart, and Tony Yu. scikit-image: image
processing in python. PeerJ, 2:¢453, 2014. 6, 2

Thadddus Wiedemer, Yuxuan Li, Paul Vicol, Shixiang Shane
Gu, Nick Matarese, Kevin Swersky, Been Kim, Priyank
Jaini, and Robert Geirhos. Video models are zero-shot learn-
ers and reasoners, 2025. arXiv:2509.20328 [cs]. 8

Daniel Winter, Matan Cohen, Shlomi Fruchter, Yael Pritch,
Alex Rav-Acha, and Yedid Hoshen. Objectdrop: Bootstrap-
ping counterfactuals for photorealistic object removal and in-
sertion. In European Conference on Computer Vision, pages
112-129. Springer, 2024. 2

Ronghuan Wu, Wanchao Su, and Jing Liao. LayerPeeler:
Autoregressive Peeling for Layer-wise Image Vectorization,
2025. arXiv:2505.23740 [cs]. 2,3

[51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

(60]

[61]

[62]

[63]

Yuting Xiao, Yanyu Xu, Ziming Zhong, Weixin Luo, Jiawei
Li, and Shenghua Gao. Amodal segmentation based on vis-
ible region segmentation and shape prior. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages 2995—
3003, 2021. 3

Ximing Xing, Juncheng Hu, Guotao Liang, Jing Zhang,
Dong Xu, and Qian Yu. Empowering llms to understand
and generate complex vector graphics. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19487-19497, 2025. 1

Jinrui Yang, Qing Liu, Yijun Li, Soo Ye Kim, Daniil Pakho-
mov, Mengwei Ren, Jianming Zhang, Zhe Lin, Cihang Xie,
and Yuyin Zhou. Generative image layer decomposition with
visual effects. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pages 7643-7653, 2025. 2,
3

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiao-
gang Xu, Jiashi Feng, and Hengshuang Zhao. Depth Any-
thing V2. Advances in Neural Information Processing Sys-
tems, 37:21875-21911, 2024. 1,2,3,4,5

Yiying Yang, Wei Cheng, Sijin Chen, Xianfang Zeng, Ji-
axu Zhang, Liao Wang, Gang Yu, Xingjun Ma, and Yu-Gang
Jiang. OmniSVG: A Unified Scalable Vector Graphics Gen-
eration Model, 2025. arXiv:2504.06263 [cs]. 3, 4, 5, 6, 7,
1

Lvmin Zhang and Maneesh Agrawala. Transparent Image
Layer Diffusion using Latent Transparency. ACM Trans.
Graph., 43(4):100:1-100:15, 2024. 2

Peiying Zhang, Nanxuan Zhao, and Jing Liao. Text-to-
Vector Generation with Neural Path Representation. ACM
Trans. Graph., 43(4):36:1-36:13, 2024. 7, 3

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586-595, 2018. 6
Yu-Wei Zhang, Jing Wu,

Zhongping Ji, Minggiang

Wei, and Caiming Zhang. Computer-assisted Re-
lief Modelling: A Comprehensive Survey. Com-
puter Graphics Forum, 38(2):521-534, 2019. _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13655.

8

Ziyu Zhang, Alexander G Schwing, Sanja Fidler, and Raquel
Urtasun. Monocular object instance segmentation and depth
ordering with cnns. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2614-2622, 2015. 2,
6,3

Kaibo Zhao, Liang Bao, Yufei Li, Xu Su, Ke Zhang, and Xi-
aotian Qiao. Less is more: Efficient image vectorization with
adaptive parameterization. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pages 18166—
18175, 2025. 2, 5,6

Hengyu Zhou, Hui Zhang, and Bin Wang. Segmentation-
guided layer-wise image vectorization with gradient fills. In
European Conference on Computer Vision, pages 165-180.
Springer, 2024. 2, 3

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: learning view

12

[64]

[65]

synthesis using multiplane images. ACM Transactions on
Graphics (TOG), 37(4):1-12, 2018. 2

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, 13(4):
600-612, 2004. 6

Yan Zhu, Yuandong Tian, Dimitris Metaxas, and Piotr
Dolldr. Semantic amodal segmentation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 1464-1472,2017. 3

Ilustrator’s Depth: Monocular Layer Index Prediction for Image Decomposition

Supplementary Material

This supplementary material provides additional details,
results, and comparisons to complement our CVPR paper
on [llustrator’s Depth.

7. Evaluation on SVGX

While we trained our model on (a curated subset of) the
MMSVG-Illustration dataset [55], we also evaluated our
layer index predictions on the SVGX-Core-250k dataset cu-
rated by [52] for completeness. Similar to MMSVG, we
randomly select 100 images for quantitative analysis. As
shown in Tab. 4 and Fig. 11, our model demonstrates strong
generalization and maintains excellent performance.

(b) Ground Truth (c) Ours

(a) Input Image

Figure 11. Evaluation of the inferred layer indices. When eval-
uated on the SVGX-Core-250k dataset, our method predicts a sat-
isfactory illustrator’s depth even if some conventions are different
from in our training dataset (for instance, the outline of the tooth
is placed below the filled-in shape).

Table 4. Evaluation of our method on different datasets pre-
dicted depth. Raw outputs of the network.

Ordert MAE| MSE |

0.987 0.12 0.26
0.984 0.16 0.53

MMSVG
SVGX-Core-250k

8. Ablation Studies

We present additional qualitative results in Fig. 12 to com-
plement the quantitative findings reported in Table 2 of the
main paper. While data cleaning and the use of depth pri-
ors lead to pronounced improvements, the choice of layer
indices vs. disparity space (d vs. 1/d) yields more subtle
effects, yet still provides noticeable gains in these examples.

(b) W/o Data Cleaning (c) Ours

e

Y

(e) W/ Direct Index

(f) Ours

(g) GT (h) W/o Depth Prior @i) Ours

Figure 12. Ablation studies. Data cleaning (top row) and direct
indexing (middle row) ease the burden of the model, resulting in
cleaner predictions, while using a depth prior initialization (bottom
row) significantly improves our model’s performance.

(O

S9 . .

(a) GT (b) 9 clusters (c) Ours (d) 5 Clusters

Figure 13. Depth-aware clustering. Given an input image (a),
VTracer [29] provides a list of color-constant clusters (b). We or-
der these clusters based on our predicted depth map (c) and merge
them to form the final decomposition (d).

9. Details on our vectorization pipeline

Our vectorization tests were performed on a pipeline com-

bining VTracer [29] and Potrace [42] with our contribu-

tions. Specifically, illustrator’s depth based vectorization
is achieved as follows:

1. We find color-constant clusters using VTracer (Fig. 13b).
The values of several hyper-parameters are important,
such as filter_speckle to suppress noise, color_precision
and layer _difference to accurately split the image in dis-
tinct regions. All of them are provided in our code.

2. Instead of relying on VTracer’s heuristics to sort the
clusters, we leverage our predicted illustrator’s depth
(Fig. 13c) for layering, assigning the cluster’s depth or-
der to the median of the predicted depth for each cluster.

3. Cluster grouping is important to ensure a well-layered,
compact output. After sorting, we further merge layers
with neighboring indices if their RGB colors are within a
certain threshold 7 =0.05 in the L? norm. This results in
an ordered clustering image C € [1, ... N]**" (Fig. 13d).

4. While it doesn’t affect the final rendering, filling holes
and bridging gaps yields simpler, overlapping layers that
are compact and easy to edit. Given a cluster with in-
dex n, we create a binary mask 1 j1>n, and inpaint
the missing regions of 1¢(; jj——n using off-the-shelf al-
gorithms (see Sec. 10 and Fig. 14).

5. This layer collection is then vectorized with Potrace [42]
and assembled to form the final vector graphics.

10. Inpainting

While not part of our contributions, we also show exam-
ples of inpainting strategies once our layer index predic-
tion has been generated, see Fig. 14. For vector graphics,
we rely on fast, off-the-shelf algorithms provided by Scikit-
image [47]. We experimented with two variants in order to
fill the missing regions: one that interpolates using the near-
est unmasked point, and another based on biharmonic inter-
polation. Depending on the application, users may prefer
one approach over the other: the biharmonic method pro-
duces smoother curves, whereas the closest-point interpo-
lation yields sharper, crisper boundaries (see Fig. 14). We
generally use the latter in our code due to its faster compu-

tational time. While this simple hole-filling approach is suf-
ficient for most vector graphics, data-driven inpainting may
be desired for more involved applications, including raster
image editing: here again, leveraging off-the-shelf inpaint-
ing models (see Fig. 3) offers a solution that doesn’t require
any additional training.

(a) GT (b) Nlustrator’s Depth

: N

SR iDD

44::¥E?£:M[:H;7V @) @) O 0|0
)

7 g

L L

NN NN

(c) Scikit Biharmonic Inpainting

(d) Scikit Closest Point Inpainting

Figure 14. Inpainting with Scikit [47]. Using the boat example
(a) from Fig. 4, we display two examples of the same layer-wise
decomposition produced by our method (b), where inpainting is
done via a biharmonic (c) or closest point (d) variant.

11. Prompts for vector-styled images

The main paper shows two text-to-image examples, one us-
ing FLUX [17] and one using Nano Banana [9]. For FLUX
(Fig. 6 in the main paper), we found that, given a desired ob-
ject to be drawn (underlined below), a mix of positive and
negative prompts provides clean vector-styled raster images
that are easy to process with our pipeline; for instance,

{ "prompt": "Vector graphics of a simple
<~ cheetah head.",
"prompt_2": "Vector graphics of a simple

< cheetah head. SVG file. Filled shapes,

~ minimalist design. Abstract.",
"negative_prompt": "Gradient, 3D. Small

<~ details. Fineline details.",
"negative_prompt_2": "Gradient, 3D. Small

<~ details. Fineline details.",
"num_inference_steps": 28,
"num_images_per_prompt": 1

For Nano Banana (Fig. 7 in the main paper), we simply
prompt the model through:
{ "prompt": "Vector graphic illustration of a

— cat. SVG style, blue background. Smooth,
<~ flowy shapes."

12. Comparison with Text2Vector Generators

In addition to the results discussed in Sec. 4.3 of the
main paper, more examples of text-to-vector-graphics gen-
erations are given in Fig. 15. Both text-to-vector gener-
ations using Neural Path Representations [57] and Neu-
ralSVG [27] are based on Score Distillation Sampling
(SDS) that relies on a pretrained diffusion model to back-
propagate gradients to Bézier curve parameters. Conse-
quently, their generated illustrations are relatively simple
and lack fine details (we reproduce the images provided
in their articles in Fig. 15). Although LayerTracer [44]
employs its own custom diffusion model, it exhibits simi-
lar limitations, producing simple emoji-like graphics; note
that we used the prompting setup provided in their pub-
lic repository. In contrast, our method can decompose any
output into layered SVG representations, effectively decou-
pling generation from vectorization — and thus fully lever-
aging the capabilities of modern generative models. Our
modular pipeline, compatible with both Flux [17] and Nano
Banana [9], produces detail-rich vector illustrations within
seconds (see Sec. 11 for the full prompt configurations).

13. Failure cases

Texture artifacts. Since our model is trained on clean SVG
data, a failure case arises when the input image contains
canvas textures or defects. These issues can be easily miti-
gated by using a generative model (e.g., Nano Banana [9])
to clean the image before applying our method (see Fig. 16).
Incorrect ordering. Like any machine learning model, ours
can occasionally make mistakes (see Fig. 17, bottom row).
Quantitatively, such errors are rare: as shown in Tab. 1, over
98% of randomly sampled pixel pairs are correctly ordered
in our experiment with MMSVG.

Foreground Focus. Our training set primarily contains sin-
gle objects over white backgrounds. Consequently, the
model sometimes neglects background elements, which
may be undesirable in certain scenarios (see Fig. 17, top
row). Future work could address this limitation by training
on more complex or synthetic SVG datasets that include
background elements.

14. Depth ordering consistency metric

To compute the depth ordering consistency from a ground-
truth illustrator’s depth map D and a predicted map Dy, we
adapt the approach of [60] and proceed as follows:

L ¢

(a) Ours + [9] (b) LayerTracer [44]

S~
S o
| !) |

(c) Ours + [17]

(d) LayerTracer [44]

<
I

(e) Ours + [17]

(f) Neural Paths[57]

&

(g) Ours + [17]

(h) NeuralSVG [27]

Figure 15. Text2Vector models. Pairing Illustrator’s Depth with
powerful image generative models produces more complex and
detailed illustrations than current text-to-vector diffusion models.
In our results (left column), the models are prompted as described

in Sec. 11 using “a blue apple”, “a cheetah head”, “an astronaut
riding a horse”, and “a colorful peacock”.

1. we uniformly sample L ;OW random pairs of pixel loca-

tions (¢,7) and (k,l) and keep only those correspond-
ing to two different layers in D, i.e., such that D[i, j] #

& N
(a) Input Image
SR

(b) Iustrator’s Depth

e

(c) Input Image (cleaned)

(d) Iustrator’s Depth

Figure 16. Sensitivity to texture. The fresco (top left) contains
several missing regions and cracks, which our model identifies as
foreground elements (top right). If these artifacts are undesired,
one can first use Nano Banana [9] to remove defects, then reapply
our model to obtain a cleaner result.

D [k ’ l],

2.we then check whether the relative ordering is pre-
served by comparing the signs of (D[, j]— D[k, !]) and
(Deli, j]— Dok, 1]).

3. Finally, we compute the average consistency score 5 over
all pairs by the ratio of preserved ordering over total num-
ber of pixel pairs.

This formulation quantifies how effectively the predicted
illustrator’s depth maintains correct relative depths, inde-
pendent of absolute scale. This metric, inherently stochas-
tic as it relies on randomly sampled pixel pairs from the
image, exhibits strong stability: sampling 50, 000 pairs on
1536 x 1536 images yielded no significant variations in our
experiments (see Fig. 18). And as Tabs. 1-3 from the orig-
inal paper demonstrate, it offers a complementary measure
of layering quality.

15. Additional results

For completeness, we also provide a histogram of the
number of layers present in our curated training dataset
in Fig. 19, as well as a figure demonstrating another poten-
tial use of our illustrator’s depth in Fig. 20, where a painting
is automatically turned into a multi-layered pop-up card.

(a) Input Image (b) Ilustrator’s Depth
Figure 17. Failure cases. Our models can ignore the background
elements, such as the stripes (top row), or incorrectly predict the
illustrator’s depth: in the bottom row, the leftmost plum should be
on top of the leaf rather than behind.

0.9880

0.9875 -

o o
o ©
2 8
2 %
a 3

0.9860 -

0.9855 1

Order accuracy

0.9850

6 10600 20600 30600 40600 50000 60600
Number of point pairs sampled

Figure 18. Stability of order metric. We plot the order metric
when sampling one of our results from 100 to 60K points.

= = -
L b k3

Number of Images

—
o

15 20 25
Number of layers

Figure 19. Number of layers in MMSVG training set. We plot
the histogram of the number of layers in our training dataset. Note
that each layer may have many connected components, resulting
in a large number of paths.

Figure 20. Automatic pop-up card generation. From an im-
age (top left) and our predicted illustrator’s depth (bottom left), a
multi-layered pop-up card can easily be created using our method
— see video for animation.

	Introduction
	Related Work
	Method
	Illustrator's Depth
	Curating a Training Dataset
	Neural Network & Training

	Experiments and Applications
	Predicting Illustrator's Depth
	Vectorization
	Text-to-Vector-Graphics Generation
	Beyond Vector Graphics
	Automatic Relief Generation From a Single Image
	Depth-Based Editing

	Conclusion and Future Work
	Acknowledgments
	Evaluation on SVGX
	Ablation Studies
	Details on our vectorization pipeline
	Inpainting
	Prompts for vector-styled images
	Comparison with Text2Vector Generators
	Failure cases
	Depth ordering consistency metric
	Additional results

