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Abstract

We present a patient-centric architecture for electronic
health record (EHR) sharing that separates content stor-
age from authorization and audit. Encrypted FHIR re-
sources are stored off-chain; a public blockchain records
only cryptographic commitments and patient-signed,
time-bounded permissions using EIP-712. Keys are
distributed via public-key wrapping, enabling storage
providers to remain honest-but-curious without risking
confidentiality. We formalize security goals (confiden-
tiality, integrity, cryptographically attributable autho-
rization, and auditability of authorization events) and
provide a Solidity reference implementation deployed as
single-patient contracts. On-chain costs for permission
grants average 78,000 gas (L1), and end-to-end access
latency for 1 MB records is 0.7–1.4 s (mean values for
S3 and IPFS respectively), dominated by storage re-
trieval. Layer-2 deployment reduces gas usage by 10–
13×, though data availability charges dominate actual
costs. We discuss metadata privacy, key registry require-
ments, and regulatory considerations (HIPAA/GDPR),
demonstrating a practical route to restoring patient con-
trol while preserving security properties required for sen-
sitive clinical data.

Keywords: Blockchain, Electronic Health Records,
Access Control, Healthcare Privacy, Smart Contracts,
FHIR, Cryptographic Protocols

1 Introduction

The digitization of healthcare has transformed medical
practice, enabling evidence-based decision-making and
population health management at unprecedented scales.
However, health records remain trapped in organiza-
tional silos with incompatible systems. When patients
seek care from multiple providers or relocate, critical
medical history becomes inaccessible, leading to dupli-
cated tests, adverse drug interactions, and suboptimal
treatment decisions.

1.1 The Centralization Problem

Contemporary health information exchange architec-
tures exhibit three fundamental weaknesses. First, they
create single points of failure where system compromise
can affect millions of patient records. Major healthcare
data breaches have exposed the medical information of
hundreds of millions of individuals [1]. Second, central-
ized systems require patients to trust intermediary or-
ganizations with unfettered access. While policies con-
strain behavior, insider threats persist, and audit logs
maintained by audited entities offer limited assurance.
Third, patients exercise minimal control over sharing,
contradicting principles of autonomy and informed con-
sent.

1.2 Blockchain as an Architectural Primitive

Blockchain technology addresses specific weaknesses
through replicated, append-only ledgers where transac-
tions are cryptographically verified rather than institu-
tionally authorized. However, naive blockchain applica-
tion introduces problems: storing protected health infor-
mation on public blockchains violates privacy through
transparency and immutability, and transaction costs
make large document storage impractical.

The key insight is architectural separation: encrypted
records reside in off-chain storage optimized for large
objects, while blockchain serves exclusively as authoriza-
tion layer and integrity mechanism. This exploits com-
plementary strengths while avoiding respective weak-
nesses.

1.3 Deployment Model

Our architecture deploys one contract per patient
rather than a multi-tenant registry. This design choice
provides strong isolation between patients’ data, sim-
plifies permission management, and aligns with patient
sovereignty principles. While this increases deployment
costs (one-time contract creation), it eliminates cross-
patient vulnerabilities and simplifies auditing. Health-
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care institutions can deploy patient contracts on their
behalf with appropriate delegation mechanisms. The
contract does not use the ERC-721 token standard, in-
stead implementing a simpler patient-specific authoriza-
tion model.

1.4 Contributions

1. Formal Architecture: We specify how off-chain
encrypted storage combined with on-chain access
control achieves confidentiality against curious stor-
age providers, integrity verification, and patient-
controlled authorization with cryptographic attri-
bution.

2. Reference Implementation: Complete
Ethereum smart contract handling record reg-
istration, permission granting through signed
messages with explicit nonce management, time-
bounded access with revocation, update/rotation
capabilities, and comprehensive auditability
through event logs.

3. Healthcare Integration: Integration with HL7
FHIR standards, showing how FHIR resources serve
as plaintext while supporting de-identified data re-
lease.

4. Performance Characterization: Empirical eval-
uation showing gas costs, latency profiles, and scal-
ability across Layer-1 and Layer-2 deployments.

2 Background

2.1 Threat Model

We consider adversaries with varying capabilities:

1. Storage Provider (S): Honest-but-curious cloud
provider (IPFS, AWS S3) who stores encrypted
records. S follows protocol but attempts to learn
patient information from stored data.

2. Network Adversary (N ): Observes blockchain
transactions and network traffic. Cannot break
cryptographic primitives but can analyze patterns,
timing, and metadata.

3. Revoked Recipient (R): Previously authorized
healthcare provider whose access was revoked. Pos-
sesses historical wrapped keys and may have cached
plaintext from authorized period.

4. Malicious Provider (M): Healthcare provider
attempting unauthorized access or privilege escala-
tion beyond granted permissions.

We assume cryptographic primitives are secure:
adversaries cannot break AES-256-GCM, ECIES on
secp256k1 (using standard KDF/MAC/encoding from
audited libraries), or forge ECDSA signatures.

2.2 Cryptographic Building Blocks

Symmetric Encryption: AES-256-GCM provides au-
thenticated encryption with associated data (AEAD).
Given keyK, nonce N , plaintextM , and associated data
AD: Enc(K,N,M,AD)→ (C, T ) where C is ciphertext,
T is authentication tag.

Nonce Requirements: AES-GCM security criti-
cally depends on nonce uniqueness. Implementations
MUST use cryptographically secure random number
generators (CSPRNG) or counter-mode deterministic
random bit generators (CTR-DRBG) to ensure unique-
ness. Consider XChaCha20-Poly1305 if nonce manage-
ment is operationally risky, as it provides a larger nonce
space and better misuse-resistance.

Public Key Encryption: ECIES (Elliptic Curve In-
tegrated Encryption Scheme) on secp256k1 curve pro-
vides IND-CCA2 secure public key encryption. We use
the following configuration for standards compliance:

• KDF: ANSI X9.63 with SHA-256

• DEM: AES-128-CTR

• MAC: HMAC-SHA-256

• Point encoding: Uncompressed (0x04 prefix)

• Ephemeral key included in ciphertext

Digital Signatures: ECDSA signatures on
secp256k1 provide authentication and non-repudiation.
EIP-712 structured data signing prevents signature
malleability across contexts.

Cryptographic Hash Functions: We use SHA-256
for content digests throughout the system. SHA-256
provides 256-bit collision resistance and is the standard
for IPFS content addressing and general cryptographic
applications. The digest d is consistently defined as
d = SHA-256(C||T ||N ||AD) where C is ciphertext, T
is authentication tag, N is nonce, and AD is associated
data.

2.3 Blockchain Infrastructure

Smart Contracts: Ethereum smart contracts execute
deterministically based on transaction inputs. Gas fees
incentivize efficient code and prevent denial-of-service.

Layer-2 Solutions: Rollups (Optimistic/ZK) reduce
costs by batching transactions. However, data avail-
ability charges often dominate L2 costs, particularly for
calldata-heavy operations like storing wrapped keys.
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Events: Smart contract events provide efficient,
queryable logs. Events cost 375 gas base + 375 gas per
topic + 8 gas/byte for data.

2.4 Healthcare Standards

HL7 FHIR: Fast Healthcare Interoperability Resources
define standard formats for clinical data. Resources in-
clude Patient, Observation, Medication, Procedure, etc.
We use FHIR R4.

HIPAA: Requires access controls, audit logs, and
data encryption. Our architecture maps to HIPAA’s ad-
ministrative (identity-based access control with explicit
authorization), physical (N/A for digital systems), and
technical safeguards (encryption at rest and in transit).

GDPR: European privacy regulation granting data
subject rights. Blockchain immutability creates tension
with “right to be forgotten”—we address through mini-
mal on-chain data, treating blockchain entries as legally-
required audit logs potentially exempt from erasure un-
der Article 17(3)(b), and implementing data minimiza-
tion strategies.

3 System Architecture

3.1 Overview

The system separates concerns across three layers:

1. Storage Layer: Distributed storage (IPFS) or
cloud storage (S3) holds encrypted health records.
Storage providers see only ciphertext.

2. Blockchain Layer: Ethereum smart contracts
manage metadata, permissions, and audit trails.
Each patient has a dedicated contract instance.

3. Application Layer: Client applications handle en-
cryption/decryption, signature generation, and user
interfaces.

3.2 Key Management Architecture

Key Registry Contract: A separate registry contract
maintains current encryption public keys for all partici-
pants. The invariant is that getKey(user) returns the
latest non-revoked key and its version. Clients MUST
fetch the key immediately prior to wrapped key com-
putation to avoid time-of-check-time-of-use (TOCTOU)
issues:

1 interface IKeyRegistry {
2 function registerKey(bytes memory publicKey)

external;
3 function rotateKey(bytes memory newPublicKey)

external;
4 function getKey(address user)
5 external view returns (bytes memory , uint256

version);
6 function revokeKey () external;

Figure 1: System architecture showing separation be-
tween on-chain authorization and off-chain encrypted
storage. Digest d = SHA-256(C||T ||N ||AD).

7

8 event KeyRegistered(address indexed user , bytes
publicKey);

9 event KeyRotated(address indexed user ,
10 bytes newKey , uint256 version);
11 event KeyRevoked(address indexed user);
12 }

Listing 1: Key Registry Interface

3.3 Data Model

Each health record consists of:

• Record ID (rid): Unique identifier within pa-
tient’s contract

• Plaintext (M): FHIR resource bundle in JSON
format

• Symmetric Key (SymmK): AES-256 key for
record encryption

• Ciphertext (C): Encrypted record stored off-
chain
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• Storage Pointer (ptr): IPFS CID or S3 URL

• Content Digest (d): SHA-256 hash of complete
ciphertext blob: d = SHA-256(C||T ||N ||AD)

• Wrapped Keys (W ): ECIES-encrypted SymmK
for authorized parties

• Permissions: Time-bounded access grants with
wrapped keys

3.4 AEAD Metadata Considerations

When using AEAD, the associated data (AD) parameter
authenticates but does NOT encrypt additional context.
To prevent metadata leakage:

1. Minimal AD: Use only non-sensitive, constant val-
ues (e.g., version number, fixed resource type iden-
tifier)

2. Encrypted Metadata: Include sensitive meta-
data (timestamps, detailed resource types) within
the encrypted payload M itself

3. Constant Format: Ensure AD format doesn’t
vary in ways that leak information through length
or structure

4 Protocol Workflows

4.1 Workflow 1: Record Creation

Patient creates new health record:

1. Prepare Plaintext: Construct FHIR bundle M
containing clinical data.

2. Generate Symmetric Key: Generate ran-
dom AES-256 key: SymmK ← {0, 1}256 using
CSPRNG.

3. Encrypt Record: Using AES-256-GCM with
CSPRNG-generated nonce:

(C, T )← AES-GCM-Enc(SymmK,N,M,ADminimal)

where ADminimal contains only non-sensitive ver-
sion identifier.

4. Upload to Storage: Store (C, T,N,ADminimal)
to IPFS/S3. Receive storage pointer ptr.

5. Compute Digest: d ←
SHA-256(C||T ||N ||ADminimal).

6. Wrap Key for Owner: Using patient’s public key
from registry:

Wowner ← ECIES-Enc(PKP , SymmK)

7. Register On-Chain: Call
addRecord(ptr, d,Wowner). Contract stores meta-
data, assigns rid, emits RecordAdded(rid, d, ptr).

4.2 Workflow 2: Permission Grant

Patient grants time-bounded access using EIP-712 signa-
tures. Note that patients MUST generate unique nonces
for each grant (e.g., 256-bit random values) to enable
parallel permission grants. Figure 2 illustrates this work-
flow:

1. Retrieve Recipient Key: Query key registry for
recipient’s current public key PKR immediately be-
fore wrapping.

2. Wrap Symmetric Key: WR ←
ECIES-Enc(PKR, SymmK).

3. Generate Unique Nonce: Patient generates
unique nonce (256-bit random recommended).

4. Prepare Typed Data: Construct EIP-712 mes-
sage with explicit nonce:

{

recordId: rid,

grantee: addr_R,

expiration: timestamp,

wrappedKey: W_R,

nonce: uniqueRandomNonce

}

5. Sign Message: σ ←
ECDSA-Sign(SKP ,TypedDataHash(message)).

6. Recipient Submits: Recipient calls
grantPermissionBySig(rid, expiration,WR, nonce, σ).

7. Contract Verification: Contract verifies sig-
nature, checks nonce hasn’t been used, stores
permission, marks nonce as consumed, emits
PermissionGranted.

4.3 Workflow 3: Record Access

Authorized recipient retrieves and decrypts record as
shown in Figure 3. Note that the contract optionally
gates metadata for UX consistency; confidentiality relies
solely on encryption:

1. Request Metadata: Call
getRecordMetadata(rid) which returns (ptr, d)
if authorized. The gating is for user experi-
ence; the same data is available in public events.
Patient additionally receives Wowner through
getOwnerWrappedKey(rid).

2. Retrieve Ciphertext: Fetch (C, T,N,AD) from
storage using ptr.

3. Verify Integrity: Compute d′ =
SHA-256(C||T ||N ||AD). Verify d′ = d.
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Figure 2: Permission grant workflow using EIP-712
signed messages with explicit nonce management. Each
nonce can be used only once.

4. Unwrap Key: Decrypt wrapped key using recipi-
ent’s private key:

SymmK ← ECIES-Dec(SKR,WR)

5. Decrypt Record: M ←
AES-GCM-Dec(SymmK,N,C, T,AD).

6. Optional: Log Access: Call
logAccess(rid,SHA-256(accessDetails)) to create
on-chain access receipt (not just authorization).

4.4 Workflow 4: Permission Revocation

Patient revokes access:

1. Submit Revocation: Patient calls
revokePermission(rid, addrR). Contract sets
permissions[rid][addrR].revoked = true and emits
PermissionRevoked(rid, addrR).

2. Future Access Blocked: Subsequent
getRecordMetadata(rid) calls by addrR fail
permission check.

Limitation: Revocation prevents future access but
cannot retract already-decrypted plaintext. If recipient
downloaded M before revocation, they retain that data.
This is fundamental to cryptographic access control and
must be clearly communicated to patients.

Figure 3: Record access workflow. Contract gates meta-
data for UX consistency (data also in events). Digest
verification: d = SHA-256(C||T ||N ||AD).

4.5 Workflow 5: Record Update/Key Rotation

For stronger guarantees when trust relationships end or
to update record content:

1. Generate New Key: SymmK ′ ← {0, 1}256.

2. Re-encrypt Record: Encrypt updated content
M ′ with SymmK ′, upload to storage, get new ptr′.

3. Compute New Digest: d′ =
SHA-256(C ′||T ′||N ′||AD′).

4. Update On-Chain: Call
updateRecord(rid, ptr′, d′,W ′

owner).

5. Invalidate Old Version: Previous
(ptr, d, SymmK) become obsolete. Revoked
recipients cannot access new version.

6. Emit Event: Contract emits
RecordUpdated(rid, d′, ptr′) for audit trail.

5 Smart Contract Implementation

5.1 Design Rationale

The smart contract serves three roles: (1) Metadata
Registry—storing storage pointers and content digests;
(2) Authorization Engine—verifying permissions be-
fore metadata release; (3) Audit Log—emitting events
for all operations.

We deploy one contract per patient using a sim-
ple authorization model without token standards. This
provides:
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• Strong isolation between patients

• Simplified permission model (no cross-patient
checks)

• Clear ownership semantics

• Independent upgrade paths per patient

While this increases deployment costs, it eliminates
shared-state vulnerabilities and aligns with patient
sovereignty.

5.2 Core Data Structures

1 contract PatientHealthRecords is EIP712 {
2 address public immutable patient;
3 uint256 private _recordCounter;
4

5 struct RecordMetadata {
6 string storagePointer;
7 bytes32 contentDigest;
8 bytes wrappedKeyOwner;
9 uint64 createdAt;

10 uint64 updatedAt;
11 }
12

13 struct Permission {
14 uint64 expiration;
15 bool revoked;
16 bytes wrappedKey;
17 }
18

19 mapping(uint256 => RecordMetadata) private
_records;

20 mapping(uint256 => mapping(address => Permission))
21 public permissions;
22 mapping(bytes32 => bool) public usedNonces;
23

24 modifier onlyPatient () {
25 require(msg.sender == patient , "Only patient")

;
26 _;
27 }
28

29 modifier validRecordId(uint256 rid) {
30 require(rid > 0 && rid <= _recordCounter ,
31 "Invalid record ID");
32 _;
33 }
34

35 // Event Declarations
36 event RecordAdded(uint256 indexed rid , bytes32

digest , string ptr);
37 event RecordUpdated(uint256 indexed rid , bytes32

digest , string ptr);
38 event PermissionGranted(uint256 indexed rid ,
39 address indexed grantee , uint64 expiration);
40 event PermissionRevoked(uint256 indexed rid ,
41 address indexed grantee);
42 event EmergencyAccessGranted(bytes32 indexed

grantId ,
43 uint256 indexed rid , address physician1 ,

address physician2 ,
44 uint8 justificationCode , uint64 expiration ,

uint64 requestTime);
45 event EmergencyAccessConfirmed(bytes32 indexed

grantId ,
46 uint256 indexed rid , address physician ,
47 bytes32 justificationHash);
48 event AccessLogged(uint256 indexed rid ,
49 address indexed accessor , bytes32 detailsHash)

;
50 }

Listing 2: Smart Contract Data Structures

5.3 Record Registration

1 function addRecord(
2 string memory ptr ,
3 bytes32 digest ,
4 bytes memory wrappedKey
5 ) external onlyPatient returns (uint256) {
6 _recordCounter ++;
7 uint256 rid = _recordCounter;
8

9 _records[rid] = RecordMetadata ({
10 storagePointer: ptr ,
11 contentDigest: digest ,
12 wrappedKeyOwner: wrappedKey ,
13 createdAt: uint64(block.timestamp),
14 updatedAt: uint64(block.timestamp)
15 });
16

17 emit RecordAdded(rid , digest , ptr);
18 return rid;
19 }

Listing 3: Record Registration Function

Gas cost: ∼180,000 gas first record (cold storage),
∼165,000 gas subsequent records.

5.4 Signature-Based Permission Grant with Ex-
plicit Nonce

Gas cost: ∼78,000 gas. The ecrecover precompile it-
self costs ∼3,000 gas; storage operations and calldata
processing account for the remainder.

5.5 Permission Verification and Metadata Ac-
cess

5.6 Record Update and Key Rotation

5.7 Permission Revocation

Gas cost: ∼31,000 gas.

5.8 Emergency Access Pattern

When patients are incapacitated and cannot grant per-
missions, emergency access is critical. The two-physician
multisignature pattern ensures medical necessity while
maintaining accountability. The wrapped keys for
emergency physicians are generated by an institutional
guardian service (HSM-backed) that unwraps the pa-
tient’s owner key (or uses a pre-established envelope key)
and re-wraps for each authorized physician—see §9.2
for institutional key management details. The contract
merely anchors authorization and audit.

1 mapping(address => bool) public emergencyPhysicians;
2 mapping(bytes32 => EmergencyGrant) public

emergencyGrants;
3

4 struct EmergencyRequest {
5 uint256 rid;
6 uint8 justificationCode;
7 uint64 requestTime;
8 uint64 maxSkewSeconds;
9 }
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1 function grantPermissionBySig(
2 uint256 rid ,
3 uint64 expiration ,
4 bytes memory wrappedKey ,
5 uint256 nonce ,
6 bytes memory signature
7 ) external validRecordId(rid) {
8 // Construct nonce hash to prevent reuse
9 bytes32 nonceHash = keccak256(

10 abi.encodePacked(patient , nonce)
11 );
12 require (! usedNonces[nonceHash], "Nonce already

used");
13

14 // Recover signer with provided nonce
15 address signer = _recoverSigner(
16 rid , msg.sender , expiration ,
17 wrappedKey , nonce , signature
18 );
19 require(signer == patient , "Invalid signature");
20

21 // Check expiration is future
22 require(expiration > block.timestamp ,
23 "Expiration must be future");
24

25 // Mark nonce as used
26 usedNonces[nonceHash] = true;
27

28 // Store permission
29 permissions[rid][msg.sender] = Permission ({
30 expiration: expiration ,
31 revoked: false ,
32 wrappedKey: wrappedKey
33 });
34

35 emit PermissionGranted(rid , msg.sender , expiration
);

36 }
37

38 function _recoverSigner(
39 uint256 rid , address grantee , uint64 expiration ,
40 bytes memory wk , uint256 nonce , bytes memory sig
41 ) internal view returns (address) {
42 bytes32 structHash = keccak256(abi.encode(
43 PERMISSION_TYPEHASH ,
44 rid , grantee , expiration ,
45 keccak256(wk), nonce
46 ));
47 bytes32 hash = _hashTypedDataV4(structHash);
48 return ECDSA.recover(hash , sig);
49 }

Listing 4: Permission Grant with Explicit Nonce
Management

10

11 struct EmergencyGrant {
12 uint256 recordId;
13 address physician1;
14 address physician2;
15 uint64 expiration;
16 bool confirmed;
17 }
18

19 function emergencyGrantAccess(
20 uint256 rid ,
21 address physician2 ,
22 uint8 justificationCode ,
23 uint64 requestTime ,
24 uint64 maxSkewSeconds ,
25 bytes memory wrappedKey1 ,
26 bytes memory wrappedKey2 ,
27 bytes memory signature1 ,
28 bytes memory signature2
29 ) external validRecordId(rid) {
30 require(emergencyPhysicians[msg.sender],
31 "Not emergency physician");
32 require(emergencyPhysicians[physician2],
33 "Not emergency physician");

1 function hasValidPermission(uint256 rid)
2 public view validRecordId(rid)
3 returns (bool) {
4 // Patient always has access
5 if (msg.sender == patient) return true;
6

7 Permission memory p = permissions[rid][msg.sender
];

8 return !p.revoked &&
9 p.expiration > 0 &&

10 p.expiration > block.timestamp; // Strict
inequality

11 }
12

13 function getRecordMetadata(uint256 rid)
14 external view validRecordId(rid)
15 returns (string memory ptr , bytes32 digest) {
16 require(hasValidPermission(rid),
17 "Not authorized");
18

19 RecordMetadata memory rec = _records[rid];
20 ptr = rec.storagePointer;
21 digest = rec.contentDigest;
22 // Note: This gating is for UX; data is public in

events
23 }
24

25 // New function for owner to retrieve their wrapped
key

26 function getOwnerWrappedKey(uint256 rid)
27 external view onlyPatient validRecordId(rid)
28 returns (bytes memory) {
29 return _records[rid]. wrappedKeyOwner;
30 }

Listing 5: Permission Check with Owner Key Retrieval

34 require(msg.sender != physician2 ,
35 "Different physicians required");
36

37 // Check time skew tolerance
38 uint256 timeDiff = (block.timestamp > requestTime)

?
39 block.timestamp - uint256(requestTime) :
40 uint256(requestTime) - block.timestamp;
41 require(timeDiff <= uint256(maxSkewSeconds),
42 "Request time outside tolerance");
43

44 // Verify both signatures over EIP -712 struct
45 bytes32 requestHash = _hashTypedDataV4(
46 keccak256(abi.encode(
47 EMERGENCY_REQUEST_TYPEHASH ,
48 rid ,
49 justificationCode ,
50 requestTime ,
51 maxSkewSeconds
52 ))
53 );
54

55 address signer1 = ECDSA.recover(requestHash ,
signature1);

56 address signer2 = ECDSA.recover(requestHash ,
signature2);

57 require(signer1 == msg.sender && signer2 ==
physician2 ,

58 "Invalid signatures");
59

60 // Create 2-hour emergency grant
61 uint64 emergencyExpiration = uint64(block.

timestamp + 2 hours);
62

63 // Store wrapped keys for both physicians
64 permissions[rid][msg.sender] = Permission ({
65 expiration: emergencyExpiration ,
66 revoked: false ,
67 wrappedKey: wrappedKey1
68 });
69

70 permissions[rid][ physician2] = Permission ({
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1 function updateRecord(
2 uint256 rid ,
3 string memory newPtr ,
4 bytes32 newDigest ,
5 bytes memory newOwnerWrappedKey
6 ) external onlyPatient validRecordId(rid) {
7 RecordMetadata storage rec = _records[rid];
8

9 rec.storagePointer = newPtr;
10 rec.contentDigest = newDigest;
11 rec.wrappedKeyOwner = newOwnerWrappedKey;
12 rec.updatedAt = uint64(block.timestamp);
13

14 emit RecordUpdated(rid , newDigest , newPtr);
15 }

Listing 6: Record Update Function

1 function revokePermission(
2 uint256 rid , address grantee
3 ) external onlyPatient validRecordId(rid) {
4 require(permissions[rid][ grantee ]. expiration > 0,
5 "No permission to revoke");
6

7 permissions[rid][ grantee ]. revoked = true;
8 emit PermissionRevoked(rid , grantee);
9 }

Listing 7: Permission Revocation

71 expiration: emergencyExpiration ,
72 revoked: false ,
73 wrappedKey: wrappedKey2
74 });
75

76 // Compute deterministic grant ID
77 bytes32 grantId = keccak256(abi.encode(
78 rid , requestTime , msg.sender , physician2
79 ));
80

81 // Record emergency grant for audit
82 emergencyGrants[grantId] = EmergencyGrant ({
83 recordId: rid ,
84 physician1: msg.sender ,
85 physician2: physician2 ,
86 expiration: emergencyExpiration ,
87 confirmed: false
88 });
89

90 emit EmergencyAccessGranted(
91 grantId , // Include grantId for easy

confirmation
92 rid ,
93 msg.sender ,
94 physician2 ,
95 justificationCode ,
96 emergencyExpiration ,
97 requestTime
98 );
99 }

100

101 function confirmEmergencyAccess(
102 bytes32 grantId ,
103 bytes32 justificationHash
104 ) external {
105 EmergencyGrant storage grant = emergencyGrants[

grantId ];
106 require(msg.sender == grant.physician1 ||
107 msg.sender == grant.physician2 ,
108 "Not authorized physician");
109 require (!grant.confirmed , "Already confirmed");
110 require(block.timestamp <= grant.expiration + 24

hours ,
111 "Confirmation window expired");
112

113 grant.confirmed = true;
114 emit EmergencyAccessConfirmed(

115 grantId , // Include grantId for tracking
116 grant.recordId ,
117 msg.sender ,
118 justificationHash
119 );
120 }

Listing 8: Corrected Emergency Access Implementation

5.9 Optional Access Logging

1 event AccessLogged(uint256 indexed rid ,
2 address indexed accessor , bytes32 detailsHash);
3

4 function logAccess(uint256 rid , bytes32 detailsHash)
5 external {
6 require(hasValidPermission(rid), "Not authorized")

;
7 emit AccessLogged(rid , msg.sender , detailsHash);
8 }

Listing 9: Optional Read Receipt Logging

5.10 Security Properties

Read Gating: getRecordMetadata enforces autho-
rization via hasValidPermission for UX consistency.
The same metadata is available in public events; con-
fidentiality relies entirely on encryption, not on gating.
The permissions mapping is public for transparency
and indexing; confidentiality relies solely on encryp-
tion—exposing wrappedKey ciphertexts does not endan-
ger plaintext.

Complete Owner Access: Patient can always re-
trieve their wrapped key via getOwnerWrappedKey, en-
suring they never lose access to their own records.

Transparency Trade-off: Storage pointers ptr and
digests d are public in events and contract storage. This
is acceptable because pointers reference encrypted con-
tent. Without wrapped keys, adversaries obtain only
ciphertext.

Replay Protection: Explicit nonce management
prevents signature replay. Each nonce can be used ex-
actly once. Patients must generate unique nonces (e.g.,
256-bit random values) for each grant to enable paral-
lel permission grants without ordering hazards. Clients
MUST generate a fresh 256-bit random nonce per grant
and persist it until on-chain confirmation to avoid acci-
dental reuse.

Time-Bounded Access: All permissions have
expiration timestamps. Expired permissions fail
hasValidPermission checks automatically, using strict
inequality (> rather than ≥) for clear expiration seman-
tics.

6 Security Analysis

6.1 Confidentiality Against Storage Providers

Theorem 1 (Storage Provider Confidentiality). Assum-
ing AES-GCM provides IND-CCA2 security and ECIES
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(with specified parameters) provides IND-CCA2 security,
no honest-but-curious storage provider S can distinguish
encrypted health records from random strings with non-
negligible advantage.

Proof Sketch. By contradiction. Suppose adver-
sary S has non-negligible advantage ϵ in dis-
tinguishing encrypted records. Storage contains
(C, T,N,ADminimal) where (C, T ) are outputs of
AES-GCM-Enc(SymmK,N,M,ADminimal) and
ADminimal contains only non-sensitive version identi-
fiers. By IND-CCA2 security of AES-GCM, (C, T ) is
computationally indistinguishable from random strings
without SymmK. Since S cannot obtain SymmK
(wrapped keys W are ECIES ciphertexts using specified
KDF/MAC, also indistinguishable from random without
private keys), S cannot distinguish (C, T ) from random.
This contradicts the assumption of advantage ϵ > 0.
□

6.2 Integrity Verification

Theorem 2 (Tamper Detection). Assuming SHA-256
is collision-resistant, any modification to stored records
is detected with probability ≥ 1− 2−128.

Proof Sketch. On-chain digest d =
SHA-256(C||T ||N ||AD) commits to encrypted
blob. To pass verification, adversary must produce
(C ′, T ′, N ′, AD′) where SHA-256(C ′||T ′||N ′||AD′) = d
with (C ′, T ′) ̸= (C, T ). This requires finding collision in
SHA-256. With 256-bit output and collision resistance,
success probability is ≤ 2−128 (birthday bound). □

Authentication Tag: AES-GCM’s tag T provides
additional integrity protection. Even if adversary finds
hash collision, forging valid tag without SymmK has
negligible probability (AES-GCM provides 128-bit au-
thentication security).

6.3 Authorization Authenticity

Theorem 3 (Cryptographically Attributable Autho-
rization). Assuming ECDSA over secp256k1 provides
existential unforgeability under chosen message attacks
(EUF-CMA), no adversary without patient’s private key
SKP can forge valid permission signatures with non-
negligible probability.

Proof Sketch. Suppose adversary A forges signature
σ′ for message (rid, addrR, expiration,WR, nonce) that
passes verification. By EUF-CMA security of ECDSA,
this occurs with negligible probability without SKP .
EIP-712 domain separator binds signature to specific
contract and chain, preventing cross-contract/cross-
chain replay. Unique nonces prevent same-message re-
play. □

Table 1: Threat Coverage

Threat Defense Residual Risk

Storage snooping Encryption None
Data tampering Digest verification None
Unauthorized access On-chain authz None
Permission forgery EIP-712 signatures None
Replay attacks Unique nonces None
Audit log tampering Blockchain immutability None
Patient key theft — High
Malicious patient — Inherent
Storage unavailability Redundancy Low
DoS on blockchain Fees deter, multi-L2 Medium

6.4 Replay Attack Prevention

Nonces provide replay protection:

Property 1 (Unique Nonce Consumption). For each
patient, each nonce can be used exactly once. Signature
σ for (rid, addrR, expiration,WR, nonce) is valid only
if nonce has not been previously used. After successful
grant, nonce is marked as consumed, invalidating all fu-
ture signatures using the same nonce.

Time-Based Replay: Expiration timestamps pre-
vent long-term replay. Even if adversary captures signa-
ture, using it after expiration fails require(expiration
> block.timestamp) check.

6.5 Auditability

Property 2 (Authorization Audit Trail
Completeness). All authorization-changing
operations emit events: RecordAdded,
PermissionGranted, PermissionRevoked,
RecordUpdated, EmergencyAccessGranted. Events are
permanently stored in blockchain logs, queryable by any
observer. The system provides complete authorization
history (who was granted access), not complete access
history (who actually retrieved/viewed records) unless
optional logAccess is used.

Blockchain immutability ensures events cannot be
deleted or modified after confirmation. Patients, reg-
ulators, or auditors can reconstruct complete authoriza-
tion history by filtering events for specific records or ad-
dresses.

6.6 Threat Analysis Summary

Table 1 summarizes threat coverage.
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Table 2: Cryptographic Operation Latency

Operation Mean (ms) 95th % (ms)

AES-GCM Enc (1 KB) 0.42 0.58
AES-GCM Enc (100 KB) 2.1 2.7
AES-GCM Enc (1 MB) 18.3 22.1
AES-GCM Enc (10 MB) 181.5 205.3
AES-GCM Dec (1 MB) 16.8 20.5
ECIES Key Wrap 3.2 4.1
ECIES Key Unwrap 3.5 4.3
ECDSA Sign (EIP-712) 2.8 3.6
ECDSA Verify 3.1 3.9
SHA-256 (1 MB) 12.1 14.8

7 Performance Evaluation

7.1 Experimental Setup

Blockchain: Ethereum Sepolia testnet, September-
October 2024. Transactions via Web3.js v4.2.1.

Storage: IPFS (go-ipfs v0.18) on 8-core, 16 GB RAM
server. AWS S3 for comparison. Client in Dhaka,
Bangladesh; IPFS nodes in Singapore; S3 in us-east-1.

Client: Intel Core i7-1165G7 @ 2.80GHz, 16 GB
RAM, Ubuntu 22.04. Web Crypto API for AES-GCM,
eth-crypto for ECIES/ECDSA.

Workload: Synthea v3.2.0 generated FHIR R4 re-
sources. Record sizes: 1 KB (observations) to 10 MB
(imaging reports). 50 trials per measurement for mean
and 95th percentile.

7.2 Cryptographic Operations

Table 2 shows operation latencies.

AES-GCM achieves ∼55 MB/s throughput, linear in
plaintext size. Hardware AES acceleration (AES-NI)
provides these speeds on modern processors. Public-key
operations (ECIES, ECDSA) take 3-4 ms regardless of
record size—operate on fixed-size keys/hashes. For typ-
ical sharing (one signature, one key wrap), total crypto-
graphic overhead ¡10 ms, negligible vs network latency.

7.3 On-Chain Gas Costs

Table 3 reports gas consumption.

Layer-2 solutions reduce gas consumption 10-13×
through batching and off-chain computation. However,
data availability charges for posting calldata to L1 can
dominate actual costs during high congestion periods.
Fees on rollups are dominated by L1 data-availability;
published ’gas used’ reductions (Table 3) do not directly
translate linearly to USD costs.

Cost Breakdown: grantPermissionBySig costs:
signature verification (∼3,000 gas for ecrecover precom-
pile), storage writes (∼40,000 gas for new permission),

Table 3: Smart Contract Gas Consumption

Operation Gas

Ethereum Mainnet (L1)
Contract Deployment 2,341,829
addRecord (first) 183,742
addRecord (subsequent) 166,542
grantPermissionBySig 78,331
revokePermission 31,204
updateRecord 45,123
emergencyGrantAccess 156,432
confirmEmergencyAccess 35,211

Layer-2 (Arbitrum One)
addRecord 14,392
grantPermissionBySig 6,127

Layer-2 (zkSync Era)
addRecord 11,243
grantPermissionBySig 5,894

Table 4: End-to-End Access Latency (1 MB Records)

Component Mean (ms) 95th % (ms)

Blockchain query 245 312
IPFS retrieval 1,087 1,523
Integrity verification (SHA-256) 12 15
Key unwrapping (ECIES) 4 5
AES-GCM decryption 17 21

Total (IPFS) 1,365 1,876

S3 retrieval 423 589
Total (S3) 701 942

state updates (∼20,000 gas), events (∼10,000 gas), exe-
cution overhead (∼5,000 gas).

Economic Viability: At $3,000/ETH and 30 gwei
gas price, permission grant costs ∼$7 on L1, ∼$0.54 on
L2. Healthcare institutions or insurance can subsidize
L1 costs; L2 enables direct patient payment models with
substantially lower costs.

7.4 End-to-End Access Latency

Table 4 shows total record access time.

Storage retrieval dominates latency. IPFS exhibits
higher variance due to distributed nature—retrieval from
distant/slow peers. S3 provides consistent performance
through CDN. Cryptographic operations contribute ¡5%
total latency. The abstract reports mean values (0.7–1.4
s) for typical performance expectations.

Scalability: For 10 MB records, total latency in-
creases to ∼3.5 s (IPFS) or ∼2.1 s (S3). Encryption/de-
cryption scale linearly but remain small fraction. For
typical clinical documents (10-500 KB), latency stays <1
s.
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7.5 Storage Overhead

Encryption overhead: AES-GCM adds 12 bytes (nonce)
+ 16 bytes (tag) = 28 bytes per record. For 1 MB plain-
text: overhead 0.003%. Content-addressing (IPFS CID)
adds 32-byte identifier. Total storage penalty negligible.

On-chain storage per record: 32 bytes (digest) + 50
bytes (storage pointer string) + 110-150 bytes (wrapped
key, implementation-dependent with ECIES ephemeral
public key + IV + MAC + ciphertext) ≈ 192-232
bytes. Persistent storage on Ethereum is charged per 32-
byte storage slot (20,000 gas for first-write). Dynamic
types (strings/bytes) span multiple slots. In practice,
addRecord costs ∼166-184k gas on L1 (Table 3), dom-
inated by storage writes and event emission; this mea-
sured figure is more representative than per-byte esti-
mates.

8 Privacy and Regulatory Compliance

8.1 Metadata Privacy

Public Information: Storage pointers ptr and con-
tent digests d are public on-chain, visible in events
and contract storage. This transparency is by de-
sign—pointers reference exclusively encrypted content.
Without wrapped keys, adversaries obtain only cipher-
text.

Metadata Leakage: On-chain data reveals: (1)
Which addresses participate in health data sharing; (2)
How many records each patient has; (3) When records
are created/accessed; (4) Which recipients have permis-
sions.

Mitigation: Recipients concerned about linkability
should use fresh addresses per patient via HD wallet
derivation (BIP-32/BIP-44). Patients can use mixing
services or privacy-preserving layer-2s (zkSync) to ob-
scure transaction origins. However, complete meta-
data privacy contradicts auditability—trade-off between
transparency and privacy must be balanced per deploy-
ment requirements.

8.2 HIPAA Compliance

Health Insurance Portability and Accountability Act
(HIPAA) mandates safeguards for protected health in-
formation (PHI). Our system addresses HIPAA require-
ments:

Administrative Safeguards: Patients define access
policies through cryptographic permissions. Audit logs
track all authorization events. Risk analysis identifies
vulnerabilities (key management, storage availability).

Physical Safeguards: Encrypted storage prevents
PHI exposure during theft/breach. Hardware wallets
protect private keys.

Technical Safeguards: Authentication (ECDSA
signatures), encryption (AES-256), integrity (SHA-256),
audit trails (blockchain events for authorization his-
tory), transmission security (TLS for off-chain commu-
nication).

Access Control: Identity-based access through per-
mission grants. Patient controls who accesses what,
when. Emergency access mechanisms (Section 6.8) bal-
ance safety with privacy.

Audit Logs (§164.312(b)): Blockchain events cre-
ate tamper-proof audit trail of all authorization events.
The system provides complete authorization history
(who was granted access) though not access history (who
actually retrieved records) unless optional logAccess is
used.

8.3 GDPR Compliance

General Data Protection Regulation (GDPR) grants
data subjects rights over personal data. Our architec-
ture supports GDPR requirements:

Right to Access: Patients always have permission
to their records via getOwnerWrappedKey. Can query
blockchain for complete metadata and retrieve encrypted
data anytime.

Right to Portability: FHIR format enables
standards-based data export. Patients can download en-
crypted records, decrypt with their keys, and transfer to
other systems.

Right to Erasure: Complex due to blockchain im-
mutability. We implement a three-tier approach:

1. Off-chain data can be deleted from storage

2. On-chain pointers can be nullified through contract
updates

3. Permission/audit events remain as legally-required
logs

Organizations should establish legal basis treating
blockchain entries as audit logs potentially exempt
from erasure under regulatory compliance requirements
(GDPR Article 17(3)(b)).

Data Minimization: Only encrypted pointers and
hashes stored on-chain. No protected health informa-
tion appears in blockchain. Metadata in associated data
minimized to version identifiers.

Consent Management: EIP-712 signatures provide
explicit, informed, unambiguous consent for each data
sharing event with cryptographic proof.

8.4 De-Identified Data for Research

Healthcare research requires large datasets while pro-
tecting privacy. We support de-identification pipelines
creating research-safe datasets.
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De-Identification Methods: We implement Safe
Harbor method (HIPAA) removing 18 identifier cate-
gories: names, addresses (except ZIP regions), dates
(except year), phone numbers, emails, SSNs, medical
record numbers, account numbers, certificate numbers,
vehicle identifiers, device identifiers, URLs, IP addresses,
biometric identifiers, full-face photos, and other unique
identifiers.

Pipeline Architecture: Patients select records for
research contribution. De-identification service: (1) De-
crypts records using patient-authorized temporary key;
(2) Applies transformations (identifier removal, quasi-
identifier generalization, date shifting); (3) Re-encrypts
with research consortium key; (4) Uploads to research
database with new permissions.

Performance: Evaluation on 1,000 Synthea FHIR
bundles (mean 127 KB): de-identification takes mean
47.3 ms/record (95th: 68.5 ms). Processing 1M records
requires ∼13 hours sequential, parallelizable to <1 hour
with 32-core cluster.

Re-Identification Risk: Even de-identified data
carries re-identification risk through quasi-identifiers.
We apply k-anonymity (k ≥ 5) [25] and evaluate with
ARX Data Anonymization Tool. Results show:

• Maximum risk: 0.18% (highest risk individual)

• Average risk: 0.04% (across all records)

• Population uniqueness: 0.09%

These metrics meet standard thresholds for de-
identified data release while maintaining research utility.

9 Discussion and Future Work

9.1 Deployment Barriers

Integration Challenges: Most EHR systems don’t
natively support blockchain. Middleware or API gate-
ways can bridge, but introduce operational dependen-
cies. Standards development and vendor cooperation are
essential.

User Experience: Non-technical patients need in-
tuitive interfaces hiding cryptographic complexity. Wal-
let software must balance security (key protection) with
usability (avoiding lock-out). Social recovery mecha-
nisms—where trusted contacts help restore access—show
promise but need careful design to avoid vulnerabilities.

Economic Models: Gas costs require sustainable
funding. Options: (1) Healthcare institutions subsidize
as infrastructure cost; (2) Insurance covers as benefit;
(3) Patients pay directly (raises equity concerns); (4)
Tiered models with basic access funded by institutions.
Contract deployment costs (∼2.3M gas on L1, ∼$200 at
typical prices) can be amortized over patient lifetime.

9.2 Institutional Key Management

Per-recipient key wrapping becomes impractical for large
institutions (hospitals with hundreds of staff). We pro-
pose institutional guardian keys:

Design: Organizations represented by single en-
cryption key managed institutionally. Patient wraps
SymmK once for hospital’s key. Hospital maintains
internal access control determining which staff can de-
crypt. Reduces on-chain operations from O(n) per insti-
tution (where n = staff count) to O(1).

Implementation: Institution deploys guardian
contract: (1) Registers encryption public
key; (2) Maintains staff roster; (3) Provides
requestDecryption(rid, patientContract) for staff;
(4) Verifies caller is authorized staff; (5) Uses institu-
tional private key (in HSM) to unwrap SymmK and
re-wrap for requesting clinician.

Trade-offs: Trades patient-controlled fine-grained
access for scalability/usability. Patients trust institu-
tion to enforce internal policies rather than controlling
individual clinicians directly. Matches real-world prac-
tice: patients authorize “my hospital” rather than enu-
merating every provider. On-chain audit still records
institutional-level grants/revocations.

9.3 Advanced Cryptographic Enhancements

Proxy Re-Encryption: Allows patients to dele-
gate re-encryption to semi-trusted proxy, enabling effi-
cient re-sharing without patient remaining online or re-
encrypting. Introduces operational complexity but could
improve usability for frequent re-sharing.

Attribute-Based Encryption: Encodes access poli-
cies directly in ciphertexts, automatically enforcing con-
ditions like “any cardiologist in my hospital.” Introduces
computational overhead and complex key management.

Zero-Knowledge Proofs: Enables proving permis-
sion validity without revealing access control policy.
Provider could prove they have valid access without dis-
closing which permission grant they use, obscuring meta-
data about sharing patterns.

9.4 Cross-Chain Interoperability

Healthcare is global involving diverse stakeholders po-
tentially operating on different blockchains. Cross-chain
interoperability protocols could enable permission grants
on one blockchain recognized on another, or aggregate
records across multiple blockchains.

Polkadot [26] provides heterogeneous multi-chain
framework through relay chains and parachains. Cosmos
offers Inter-Blockchain Communication for sovereign
blockchain interoperation. Atomic swaps or blockchain
bridges could enable interoperability. However, each ap-
proach introduces complexity and trust assumptions re-
quiring careful evaluation for sensitive medical data.
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9.5 Formal Verification

Smart contracts manage safety-critical assets (health
data). Bugs have severe consequences. Formal verifi-
cation tools (Certora, K Framework, Coq) can math-
ematically prove contracts satisfy specified properties,
providing stronger assurance than testing. Future work
includes formal verification of our contract against con-
fidentiality, integrity, and authorization properties.

9.6 Long-Term Data Stewardship

Digital estate planning mechanisms could allow patients
to designate heirs or archival repositories for records.
Medical research could benefit from posthumous data
donation through advance directives recorded on-chain.
Decentralized autonomous organizations (DAOs) could
distribute governance across stakeholders with on-chain
voting on protocol upgrades.

10 Limitations

Key Compromise: If patient’s SKP is stolen, adver-
sary can sign arbitrary authorizations. Multi-signature
wallets, hardware wallets, and social recovery reduce risk
but add complexity.

Revocation Limits: Revocation prevents future
access but cannot retract already-decrypted plain-
text—fundamental limitation of cryptographic access
control.

Storage Availability: Depends on off-chain infras-
tructure. Storage provider failure makes records inac-
cessible until restored. Redundant storage mitigates but
increases cost.

Transaction Costs: Gas prices fluctuate. High con-
gestion makes L1 expensive. L2 solutions reduce costs
but introduce additional trust assumptions (optimistic
rollup fraud proofs, zkRollup trusted setup).

Scalability: Per-recipient key wrapping doesn’t scale
to very large recipient lists (e.g., sharing with 1,000+
researchers). Institutional guardian keys and proxy re-
encryption address some cases, but massive-scale sharing
requires additional techniques.

Metadata Privacy: On-chain transparency reveals
sharing patterns. While not exposing PHI, metadata
can enable inference attacks (frequency analysis, timing
correlation). Complete metadata privacy contradicts au-
ditability—fundamental trade-off requiring deployment-
specific balance.

Denial of Service: While fees deter spam, coordi-
nated attacks or network congestion can delay critical
healthcare operations. Multi-chain deployment with au-
tomatic failover provides resilience.

11 Conclusion

We presented a patient-centric blockchain architecture
for health record management that cryptographically en-
forces access control while maintaining practical perfor-
mance. By separating encrypted storage from on-chain
authorization and deploying one contract per patient, we
achieve confidentiality against curious storage providers,
tamper-evident audit trails, and true patient sovereignty
over medical data.

Our Ethereum implementation demonstrates feasibil-
ity with reasonable gas costs (78,000 gas per permis-
sion grant on L1, 6,000 gas on L2 though DA charges
dominate actual costs) and acceptable latency (0.7–1.4
s mean end-to-end for 1 MB records on S3 and IPFS re-
spectively). Security analysis establishes that standard
cryptographic primitives composed correctly provide de-
sired properties. The system provides complete autho-
rization history (who was granted access), not complete
access history (who actually retrieved/viewed records)
unless optional read receipts via logAccess are used.

Critical implementation details—explicit nonce man-
agement for parallel grants, owner key retrieval
paths, metadata privacy through minimal associated
data, and comprehensive update/emergency access pat-
terns—ensure the system is deployable in real clinical
settings. Integration with FHIR standards and compli-
ance mapping to HIPAA/GDPR requirements demon-
strate regulatory viability.

The architecture addresses key challenges in health-
care data management: eliminates trusted intermedi-
aries, provides cryptographic rather than policy-based
access control, creates immutable audit trails, and re-
stores patient agency over sensitive medical information.
While not solving all healthcare IT problems (key man-
agement, emergency access, metadata privacy require
ongoing research), this work establishes a foundation for
truly patient-controlled health information exchange.

Future work includes formal verification of smart con-
tracts, enhanced privacy through zero-knowledge proofs,
cross-chain interoperability for global health data net-
works, and user studies evaluating real-world adoption
barriers. The path forward requires collaboration among
cryptographers, healthcare informaticists, policymakers,
and patient advocates to realize the vision of patient-
empowered, secure, and interoperable health data infras-
tructure.
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