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Abstract

World models learn to predict the temporal evolution of
visual observations given a control signal, potentially en-
abling agents to reason about environments through for-
ward simulation. Because of the focus on forward sim-
ulation, current world models generate predictions based
on factual observations. For many emerging applications,
such as comprehensive evaluations of physical Al behav-
ior under varying conditions, the ability of world models
to answer counterfactual queries — such as “what would
happen if this object was removed?” — is of increasing im-
portance. We formalize counterfactual world models that
additionally take interventions as explicit inputs, predict-
ing temporal sequences under hypothetical modifications to
observed scene properties. Traditional world models oper-
ate directly on entangled pixel-space representations where
object properties and relationships cannot be selectively
modified. This modeling choice prevents targeted interven-
tions on specific scene properties. We introduce CWMDT,
a framework to overcome those limitations, turning stan-
dard video diffusion models into effective counterfactual
world models. First, CWMDT constructs digital twins of
observed scenes to explicitly encode objects and their rela-
tionships, represented as structured text. Second, CWMDT
applies large language models to reason over these rep-
resentations and predict how a counterfactual intervention
propagates through time to alter the observed scene. Third,
CWMDT conditions a video diffusion model with the mod-
ified representation to generate counterfactual visual se-
quences. Evaluations on two benchmarks show that the
CWMDT approach achieves state-of-the-art performance,
suggesting that alternative representations of videos, such
as the digital twins considered here, offer powerful control
signals for video forward simulation-based world models.

1. Introduction

World models learn to predict the temporal evolution of vi-
sual observations, generating future states from current ob-
servation [18]. Recent work demonstrates their effective-

ness in reinforcement learning [49], robotic control [20, 59],
and game playing [28], where agents learn policies through
predicted interactions rather than direct environmental ex-
ploration. Yet, current world models generate only fac-
tual predictions following a given scene [14], lacking the
capability to reason about alternative outcomes under hy-
pothetical modifications. Consider an autonomous vehicle
encountering an obstacle: beyond predicting the default tra-
jectory, it needs to evaluate how counterfactual scenarios
evolve over time, such as “what sequence of events would
unfold if the obstacle moved?” or “how would the scene
dynamics change if road conditions were different?” [29].
Therefore, we propose counterfactual world models that ex-
tend traditional formulations by incorporating interventions
as explicit inputs, predicting temporal sequences that cap-
ture both immediate intervention effects and their propaga-
tion through subsequent time steps.

However, existing world models suffer from two con-
straints that prevent counterfactual reasoning. First, tradi-
tional world models learn direct mappings from observa-
tions to future states without explicit factorization of scene
components, preventing targeted interventions on specific
objects or relationships [18]. Video diffusion models like
OpenAI’'s SORA, LTX-video and Wan2.2 [4, 6, 19, 24, 54,
56], while capable of temporal generation, lack the inter-
vention capabilities required for counterfactual world mod-
els [39, 43]. They learn entangled pixel-space represen-
tations where object properties, spatial relationships, and
temporal dynamics are encoded within the latent distribu-
tion [12, 22]. When attempting to implement interven-
tions directly in this entangled space, modifying one ob-
ject’s properties cannot be isolated from other scene ele-
ments, preventing controlled propagation of intervention ef-
fects through time. Furthermore, the existing world models,
particularly those video diffusion models, lack the explicit
reasoning capability to determine how interventions should
propagate [42].

We introduce CWMDT (Counterfactual World Model
with Digital Twin Representation Conditioned Diffusion

Model), a framework that can transform video diffusion
models into counterfactual world models. Rather than oper-
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ating directly on entangled pixel space, we first extract dig-
ital twin representations i.e., a structured intermediate rep-
resentation that explicitly encode objects and relationships
in text. The digital twin representation enables large lan-
guage models (LLMs) to simulate counterfactual dynamics,
predicting how interventions affect object states and rela-
tionships over time rather than merely generating modified
pixels [50, 53]. Afterwards, the modified digital twin rep-
resentations from LLM condition a video diffusion model
to synthesize corresponding visual frames, translating the
LLM-predicted temporal evolution into pixel-space video
sequences. In other words, the digital twin representation
enables a decoupling between reasoning and synthesis, sep-
arating the logical determination of how interventions affect
scene dynamics from the pixel-level generation process that
existing world models cannot achieve.

The major contributions are three-fold. First, we formal-
ize counterfactual world models as an extension of tradi-
tional world models that incorporate interventions to gener-
ate alternative trajectories. Second, we present CWMDT, a
novel framework to turn video diffusion model into coun-
terfactual world model by decomposition of counterfac-
tual generation into perception, intervention, and synthe-
sis through digital twin representations. It demonstrates
how video diffusion models can be augmented with ex-
plicit reasoning capabilities for LLMs. Third, we validate
our approach through extensive experiments on reasoning-
intensive benchmarks, where CWMDT achieves superior
performance.

2. Related Work

World Models. World models learn latent representations
of environment dynamics to generate future states from cur-
rent observations [18]. For example, early work [18] in-
troduced variational autoencoders combined with recurrent
networks to compress visual observations into compact la-
tent representation, allowing agents to train policies through
simulated rather than direct interaction. Recent work has
explored transformer-based architectures for world model-
ing [9, 40, 65], showing improved sample efficiency and
long-range dependency modeling. Diffusion-based world
models have also emerged [1, 13, 45, 55], integrating
transformer backbones into diffusion processes for scal-
able video generation. Beyond architectural improvements,
learning paradigms have evolved to optimize for decision-
making rather than reconstruction. MuZero [49] learns
value-equivalent models that preserve decision-relevant in-
formation while discarding reconstruction fidelity. Dream-
erV3 [21] trains policies by back propagating through pre-
dicted trajectories in learned latent space, extending world
models to continuous control domains. These approaches
have found applications in autonomous driving [15, 26,
38, 57] and embodied Al [35], where simulated interac-

tions enable policy learning and scenario forecasting. Video
diffusion models like SORA [44] have been characterized
as world simulators due to their emergent object perma-
nence and temporal coherence [62], though recent studies
reveal limitations in complex physical reasoning and out-
of-distribution generalization [36, 42]. Despite these ad-
vances, existing world models generate predictions condi-
tioned solely on observed states and selected actions. Our
work formalizes counterfactual world models that accept in-
terventions as explicit inputs, generating multiple plausible
trajectories under modified scene conditions.

Video Diffusion Models. Video diffusion models such as
OpenATI’'s SORA [44] show simulation capabilities through
large-scale training on diverse visual data, with approaches
spanning latent space diffusion [4], text-conditioned gen-
eration [54], and real-time synthesis [19, 56]. Recent ef-
forts have adapted video diffusion models toward action-
conditioned world models, with Genie [6] learning latent
action spaces from unlabeled videos and AVID [48] intro-
ducing learned adapters that modify intermediate diffusion
outputs based on action inputs. Motion control approaches
such as Pandora [27] and Go-with-the-Flow [7] enable tra-
jectory manipulation through structured noise and optical
flow guidance [3, 8]. However, video diffusion models gen-
erate frames through entangled latent distributions where
object properties, spatial relationships, and temporal dy-
namics are implicitly encoded [12, 22]. Some approaches
like NewtonGen [64] attempt to inject physical constraints
into generation but remain limited to implicit physical pri-
ors embedded in data distributions without structured rea-
soning about intervention effects. We address this limita-
tion by introducing digital twin representations that decou-
ple reasoning from synthesis, enabling explicit intervention
determination before video generation.

Digital Twin Representations. Previous work [50] ar-
gues that foundation models (such as the world model) re-
quire digital twin representations to capture fine-grained
spatial-temporal dynamics and perform causal reasoning.
The argument rests on the observation that learned repre-
sentations in foundation models encode scene properties in
entangled latent spaces, making it difficult to isolate and
manipulate individual factors such as object positions or
physical relationships. Previous work such as just-in-time
digital twin framework [53] demonstrates that LLM can dy-
namically construct digital twin representations from video
using vision models, decoupling perception from reason-
ing to allow multi-step spatial-temporal inference without
model fine-tuning. These representations encode object at-
tributes, spatial relationships, and dynamic states in natu-
ral language, creating an interface for LLM to apply world
knowledge during reasoning [50, 53]. Unlike video dif-



fusion models that learn implicit scene dynamics through
entangled latent distributions, digital twin representations
make scene factors explicit and separable, allowing con-
trolled modifications to individual objects or relationships.

3. Methods

Formulation of Counterfactual World Model. The
world model can be defined as a predictor for future visual
observations, formulated as f : V; X C = P(Viy1:44k)-
Here, V; denotes the space of visual observations in time
t, representing a single video frame, while V; ;.. de-
notes a sequence of future video frames k that span time
t+ 1tot+ k. The space C represents all possible text
prompts as conditions, and P(V;y1..1x) denotes the prob-
ability distribution over these future visual observations.
We extend this definition to counterfactual world models
by introducing an intervention space Z C C, which rep-
resents conditions that specify counterfactual modifications
to scene such as “what would the scene look like if condi-
tion X were different?” The counterfactual world model
can therefore be formulated as fo : Vi X T — P(Vigr)s
where f/t:H_k represents the space of counterfactual video
sequences from time ¢ to ¢ + k Formally, given an initial
visual observation v; and an intervention 7 € Z, the coun-
terfactual world model generates ¥p.t1p ~ fer(ve,¢) that
incorporates both the immediate effects of the intervention
and its propagation through subsequent time steps. Sam-

pling from this distribution yields multiple possible outputs
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Method Overview. We introduce CWMDT (Counterfac-
tual World Model with Digital Twin Representation Condi-
tioned Diffusion Model), an end-to-end implementation of
the counterfactual world model using digital twin represen-
tations as an intermediate layer, as shown in Fig. 1. For-
mally, we decompose the counterfactual world model into
three consecutive mappings, depicted as

fcf = fsynth o finterv o (fpercepl, id)a (1)

where id denotes the identity function, ensuring that
(fpercept; 1d) transforms the input pair (v¢,4) into (s, 7).
Perception mapping fpereepe @ Vi — S; converts video
frames to digital twin representations through vision mod-
els [53], where S; denotes the space of digital twin repre-
sentations. The intervention mapping fiyery : St X Z —
P(Sie4x) generates modified digital twin representations
under interventions ¢ € Z through an LLM. Here, 5m+ i de-
notes the space of counterfactual digital twin representation
sequences spanning from time ¢ to ¢ + k that reflect both the
intervention and their predicted temporal evolution. Innova-
tively, rather than operating on video frames directly, inter-
ventions are applied to the digital twin representation s; to

enable explicit reasoning over scene factors with embedded
world knowledge in LLM Finally, the synthesis mapping
fsynth St:t% — P(fit:ﬂrk) generates video frames condi-
tioned on the modified digital twin representation through a
video diffusion model, where f/t:Hk represents the space of
counterfactual video sequences.

Digital Twin Representation Construction. To enable
counterfactual reasoning over the scene, we first transform
each given video frame v, € V; into a digital twin represen-
tation s; € S, depicted as:
LW ) (t VN
St:{(]?CE')aa;)vp;‘)am§'))}j:tl7 (2)
where N; denotes the number of object instances in the

frame v;. Each instance tuple contains an identifier j that

maintains correspondence across frames, a semantic cate-

gory c;t) describing the object class, attribute descriptions

() . . .
a;" capturing visual properties such as color and texture,

spatial properties p;t) = (z,y,2,w,h) encoding centroid

coordinates, depth, width, and height, and a segmentation
mask mgt) defining the precise object locations. We con-
struct s, through various vision foundation models operat-
ing on individual frames. Object segmentation and cross-
frame tracking are performed through SAM-2 [30, 47],
which generates instance-level masks and maintains object
identity across video sequences. Depth estimation network
DepthAnything [61] computes per-pixel depth maps that
we sample at object centroids to obtain spatial position-
ing. Semantic categorization assigns each detected instance
to conceptual classes through object detection model, i.e,
OWLV2 [41]. QWen2.5-VL [2] generates natural language
descriptions of object attributes by analyzing localized im-
age regions corresponding to each segmentation mask. We
serialize the resulting digital twin representation s; in struc-
tured text format of JSON, which transforms the counterfac-
tual world model problem from reasoning over visual obser-
vations to reasoning over explicit textual scene descriptions.

Counterfactual Reasoning over Digital Twin Represen-
tation. Given a digital twin representation s; and an inter-
vention ¢ € Z, we then implement the intervention mapping
fiterv © St X T — P(S’t;t%) to generate a sequence of
modified digital twin representations with LLM. First, the
LLM analyzes the given intervention to identify which ob-
jects and relationships within s; are directly affected. Then,
LLM predicts the temporal evolution of these changes in
the subsequent video frames. For instance, given an inter-
vention such as “remove the obstacle from the path,” the
LLM identifies the relevant object instance in s;, deter-
mines which spatial relationships change as a result, and
predicts how other objects might respond to the newly avail-
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Figure 1. Method overview for CWMDT. Our approach consists of three stages. (1) Digital twin representation construction: Vision
models extract structured scene representations s; from video frames v:. (2) Counterfactual reasoning: An LLM processes intervention
queries to predict temporal evolution, generating modified digital twin representations S:.:+. (3) Video synthesis: A fine-tuned diffusion
model generates counterfactual videos v;.¢+ conditioned on the edited first frame ¥, and the modified digital twin representation Sy.¢+ .

able space across subsequent time steps. The output con-
sists of a sequence of modified digital twin representations
St-t+k = {8ty 8441, - -, St+k }, where §; encodes the imme-
diate effects of the intervention, and subsequent representa-
tions capture the predicted temporal propagation. Each s,
maintains the same structural format as s;, preserving the
object-level decomposition. Finally, by sampling the distri-
bution P(St;“rk), we may obtain multiple plausible coun-
terfactual trajectories that reflect uncertainty in how inter-
ventions might propagate.

Video Synthesis Conditioned on Digital Twin Repre-
sentation. The synthesis mapping fenin S‘t:Hk —
,P(i}t:t+k) generates counterfactual video sequences from
the modified digital twin representations via a video diffu-
sion model. Formally, we adopt a pre-trained video dif-
fusion model as the backbone and fine-tune it on paired
data of digital twin representations and corresponding video
frames. During fine-tuning, the backbone video diffusion
model learns to condition the denoising process on both
the digital twin representations s, at each frame 7 as tex-
tual input and the corresponding first frame v; as visual
input to generate subsequent frames. Through this fine-
tuning process, the video diffusion model therefore learns
to predict subsequent frame dynamics from the initial vi-
sual state while respecting the temporal evolution specified

by the digital twin representations. During inference, we
first apply an image editing method to modify the origi-
nal frame v; according to the counterfactual modifications
specified in S;, producing an edited frame v, that visually
reflects the intervention effects. This editing step ensures
consistency between the visual starting point and the textual
scene description, as directly conditioning on the unmodi-
fied frame v; would create a mismatch with the counterfac-
tual digital twin sequence. Given the counterfactual digital
twin sequence 3.+ and the edited initial frame vy, the fine-
tuned video diffusion model then generates the correspond-
ing counterfactual video frames. Eventually, by sampling
multiple digital twin sequences from P(S};Hk), we can
therefore generate various counterfactual videos through re-
peated inference runs on this video diffusion model.

4. Experiments

Implementation Details. We implement all experiments
using PyTorch 2.8.0 on one NVIDIA GeForce RTX 4090
GPU with 48 GB memory. The intervention mapping uses
Qwen3-VL-8B-Instruct [2] as the LLM backbone to per-
form counterfactual reasoning on digital twin representa-
tions. For video synthesis, we adopt LTX-Video [19] as the
pre-trained video diffusion model backbone and fine-tune
it on 95 paired samples of digital twin representations and



Origi

>
2
z
g
]

InstructPix2Pix AnyV2Vv FlowDirector

Ours

Query: What if there i no food at the
table?

The food remains on the table, and the
squirrel continues to act as if eating.

The food stays unchanged on the table,
and the squirrel’s motion still reflects
feeding behavior.

The food is still clearly present, and the
squirrel continues interacting with it as
if food remains.

The food is not removed, and the squirrel’s
actions still follow an cating or searching-
for-food pattern,

Bl The food is removed from the table, and
the squirrel’s behavior shifls to searching
1 rather than feeding.

Original Video
g
By
, g

Query: Show what this scene would
look like after someone flipped over
aplastic vase.

§

7

o

InstructV2V

The vase remains upright, and the
flowers stay arranged as in the original
scene.

—
7

FlowDirector

‘The vase stays in its original upright
position, and the flowers remain
unchanged.

AnyV2v

The vase is not flipped, and the flowers
continue fo sit properly inside it, with no
physical disruption.

InstructPix2Pix

~| Produces inconsistent artifacts but does not
produce a flipped vase or realistic fallen
lowers.

-
| 5

The vase is flipped over, the flowers

Ou
¢
A
{
A
!
<
\
!
q
A
\
!
‘«
|
|
{
|

spill across the surface, and the water
pours out realistically.

S| =

o

Figure 2. Qualitative comparison of counterfactual world model capabilities across different methods. Two intervention scenarios test
whether models can predict alternative temporal sequences. CWMDT correctly generates counterfactual trajectories. Compared methods
fail to execute these interventions. Red boxes indicate regions where intervention effects should appear.

Table 1. Quantitative evaluation on RVEBench. Each metric is assessed across three levels of reasoning complexity (L1, L2, L3) in
percentage (%). Higher scores indicate better performance for all metrics.

CLIP-Text (1) CLIP-F (1) GroundingDINO (1) LLM-as-a-Judge (1)
Method LI 12 13 LI L2 13 LI 12 13 LI 12 L3
InstructDiff [17]  19.57 1823 17.21 86.80 8640 86.17 1473 1008 938 4433 39.89 36.79
InstructV2V [46] 2222 2143 19.78 91.80 9144 9059 1148 7.50 513 38.86 3595 34.70
FlowDirector [33]  19.56 18.70 17.15 93.90 94.06 9410 873 811 556 3552 30.75 29.96
AnyV2V [31] 1705 1629 1554 9371 9385 9361 1372 1238 994 2001 1847 17.68
InstructPix2Pix [5] 1849 17.45 1673 92.18 9273 9306 6.19 632 9.68 3453 30.76 29.49
CWMDT (Ours) 2618 2542 2639 97.87 9845 9848 29.16 28.57 33.33 6247 64.06 58.81

corresponding video frames from RVTBench [51]. Dur-
ing fine-tuning of the video diffusion models, we perform
LoRA [25] fine-tuning with rank 32 for 100 epochs with
a batch size of 2 using the AdamW optimizer and Cosine

scheduler with a learning rate of 1e-4. The diffusion model
generates videos at 24 fps with a resolution of 768 x 768 pix-
els over 65 frames. For image editing to produce the mod-
ified initial frame v,, we use Qwen-Image-Edit-2509 [58].



Query: What if the car was replaced with a motorcycle riding down the same road?

Video

AnyvV2v

InstructPix2Pix

Diverse Outputs from Our Method

Figure 3. Demonstration of diverse counterfactual trajectory generation from a single intervention. Given the query to replace a car with a
motorcycle, CWMDT produces three distinct plausible scenarios: maintaining the original motion pattern (Case 1), accelerating beyond the
frame boundary and reentering (Case 2), and executing agile cornering maneuvers (Case 3). Each trajectory respects physical constraints
while exploring different behavioral possibilities that could arise from the same initial intervention. Baseline methods either fail to execute
the vehicle replacement or produce visually inconsistent results, lacking the ability to reason about multiple plausible outcomes.

During inference, we sample 3 counterfactual digital twin Benchmark Datasets and Metrics. We evaluate
sequences from P (S;.¢4x) for each intervention to generate CWMDT on two benchmarks that test different as-
multiple plausible counterfactual trajectories. pects of counterfactual world model capabilities. First,

RVEBench [52] provides 100 videos with 519 queries for



Table 2. Ablation study evaluating the contribution of each component in CWMDT on the FiVE benchmark. Checkmarks (v') indicate
component presence, while crosses (X) indicate removal. Results show that digital twin representations and LLM-based intervention
reasoning are important for accurate counterfactual world modeling, while the edited initial frame ensures visual-textual consistency.

Digital Twin ~ LLM Intervention LLM Modified CLIP-Text  CLIP-F MUSIQ SSIM PSNR GroundingDINO ~ LLM-as-a-Judge
Representation Reasoning Scale Initial Frame o ) ) o) o) @ @
X v 8B v 26.3541.47 97214014 45744232 45.09+055  13.17+0.60 17.65 £12.42 43.62+9.52
v X 8B v 27104130 97154020 43.50:2.10 46.00+0.60 14.00x0.65 19.50+11.00 46.99+5.75
v v 1.5B v 28.90+1.10  98.00+0.28 47.20+185  50.10+0.50 16.50x0.55 24.00+10.50 51.26+6.13
v v 8B X 27.98+0.00  97.09+036 36.53+1.66 45.38+0.55  13.66+0.54 17.34 41158 48314751
v v 8B v 30.59+1.85  98.85:1025 50.19:195 53.47+052 18321057 30.18:6.25 63.02:5.01

Figure 4. Diverse counterfactual scenarios generated from a single
original video sequence using the proposed CWMDT.

reasoning video editing, which tests whether the model
can reason about counterfactual scenarios that require
multi-hop reasoning. It is organized into three levels of
complexity in reasoning (L1, L2, L3), where each level
requires progressively more reasoning steps to identify
the intervention targets from implicit queries. FiVE
benchmark [34] contains 100 videos with 420 object-level
query pairs across six fine-grained editing types, testing
the model’s ability to execute precise interventions while
maintaining temporal consistency. We employ four metrics:
CLIP-Text [23] measures the semantic alignment between
the generated counterfactual video and the intervention
description; CLIP-F [23, 60, 63] evaluates the temporal
coherence between frames in the counterfactual sequence;
GroundingDINO [37] assesses whether the intervention
targets are correctly localized in the generated video; and
LLM-as-a-Judge [66] assesses whether the counterfactual
outcome aligns with the intervention intent. We report all
metrics as percentage.

Compared Methods. We compare CWMDT with five
video generative models that represent different approaches
to instruction-driven visual manipulation. Three methods
operate directly on video: InstructV2V [46] performs end-
to-end instruction-based editing through diffusion models,
FlowDirector [33] applies optical flow for localized modi-

fications, and AnyV2V [31] converts image editing models
into video editors through temporal feature injection. Two
image editing methods are also included by frame-by-frame
processing in the videos: InstructDiff [17] interprets nat-
ural language instructions for image manipulation, while
InstructPix2Pix [5] learns to follow editing instructions
through conditional diffusion training. These baselines re-
veal the limitations of existing approaches when confronted
with counterfactual reasoning in world models as they oper-
ate directly on pixel representations without explicit scene
understanding. Our comparison evaluates whether decom-
posing counterfactual world modeling into perception, rea-
soning, and synthesis through digital twin representations
offers advantages over direct pixel-space editing.

Evaluations on RVEBench. Table | presents quantita-
tive results in RVEBench, where CWMDT outperforms all
compared methods in all metrics and complexity levels.
For GroundingDINO, CWMDT achieves 29.16%, 28.57%,
and 33.33% at L1, L2, and L3 respectively, compared
to the next best scores of 14.73%, 12.38%, and 9.94%.
This improvement demonstrates that digital twin represen-
tations enable precise spatial grounding during counterfac-
tual reasoning. Similarly, LLM-as-a-Judge scores show
CWMDT achieving 62.47%, 64.06%, and 58.81%, substan-
tially higher than others’ 20.01%-44.33%, 18.47%-39.89%,
and 17.68%-36.79% across the three levels. These results
validate that separating reasoning from synthesis through
digital twin representations produces counterfactual trajec-
tories that align better with intervention semantics. The
compared methods show declining performance as com-
plexity increases from L1 to L3, reflecting their limitation
in propagating intervention effects through time without
explicit scene understanding. On the contrary, CWMDT
maintains consistent performance and even improves at
L3 for GroundingDINO. The high CLIP-F scores across
all methods (above 86%) confirm temporal consistency in
video generation, yet CWMDT achieves the highest scores
(97.87%-98.48%), demonstrating that conditioning on dig-
ital twin representations preserves coherent temporal dy-
namics while executing interventions.

Fig. 2 presents qualitative comparisons. For example,



when asked to remove food from the table, CWMDT gen-
erates video sequences where the squirrel’s behavior adapts
from feeding to searching, while the compared methods fail
to execute the intervention and continue showing the squir-
rel interacting with the still-present food. Fig. 3 demon-
strates CWMDT’s ability to generate multiple plausible
counterfactual trajectories from a single intervention. Fig. 4
illustrates qualitative examples in which CWMDT gener-
ates realistic counterfactual scenarios for the same given
image with different counterfactual queries. These findings
confirm that by introducing interventions as explicit inputs
and reasoning over compositional scene structure, CWMDT
generates alternative trajectories that accurately reflect hy-
pothetical modifications to scene properties.

Table 3. Quantitative evaluation of video editing methods on FiVE
dataset. Each metric assesses editing quality from different per-
spectives. Higher scores indicate better performance for all met-
rics.

Method CLIP-Text  CLIP-F  GroundingDINO LLM-as-a-Judge
InstructDiff [17] 24.81+0.28 88.03+0.36 17.67+4.07 54.8347.11
InstructV2V [46] 25314025  91.8440.2s 14.67 +3.96 59.85+10.50
FlowDirector [33] 20.50+0.44 96.91+0.11 19.59+7.50 37.20+s8.16
AnyV2V [31] 24.73x036  96.98+0.12 20.00+5.26 54.85zx5.76
InstructPix2Pix [5] 23.2240.27 92.26+0.25 22.81+4.45 41.85+12.34
CWMDT (Ours) 30.59:1.53 98.85+0.25 30.18:6.25 63.02:5.01

Evaluations on FiVE Benchmark. Tab. 3 shows the
evaluation results on the FiVE becnhmark. CWMDT
achieves 30.59% CLIP-Text score, 98.85% CLIP-F score,
30.18% GroundingDINO score, and 63.02% LLM-as-a-
Judge score, outperforming all compared methods. The
improvements over baselines are particularly observable in
CLIP-Text (20.8% relative gain over the 25.31% achieved
by InstructV2V) and GroundingDINO (32.3% relative gain
over the 22.81% achieved by InstructPix2Pix), demonstrat-
ing that digital twin representations provide advantages be-
yond complex reasoning scenarios. Unlike RVEBench,
where the compared methods showed a consistent decline
in complexity levels, the FiVE results reveal that pixel-
space approaches achieve high temporal consistency (CLIP-
F scores greater than 88%) but struggle with semantic
alignment and spatial grounding. This pattern suggests
that existing video editing methods can maintain frame-
to-frame coherence but fail to execute interventions that
require understanding and modifying specific scene com-
ponents. The standard deviation analysis provides addi-
tional evidence. CWMDT shows comparable or lower vari-
ance than compared methods on CLIP-F (0.25) and LLM-
as-a-Judge (5.01), indicating stable performance despite
the added complexity of three-stage decomposition. Base-
line methods exhibit higher variance on GroundingDINO
(ranging from 3.96 to 7.50), reflecting inconsistent spatial

grounding. These results show that CWMDT’s advantages
extend beyond reasoning-intensive benchmarks to general
video editing tasks.

Ablation Study. We perform ablation on the FiVE bench-
mark to evaluate the contribution of each component in
CWMDT, as shown in Tab. 2. Removing digital twin rep-
resentations and instead directly conditioning the diffusion
model on input text prompts together with the edited first
frame results in decreased GroundingDINO scores (17.65%
versus 30.18%) and LLM-as-a-Judge scores (43.62% ver-
sus 63.02%). It demonstrates that structured digital twin
representations enable more accurate spatial localization
and intervention execution compared to entangled text
embeddings. Removing LLM intervention reasoning by
switching Qwen3 to non-reasoning mode reduces LLM-
as-a-Judge scores from 63.02% to 46.99%, indicating that
explicit multi-hop reasoning over digital twin representa-
tions produces counterfactual trajectories that better align
with intervention semantics. Scaling down the LLM from
Qwen3-8B to Qwen3-1.5B decreases performance across
all metrics, with GroundingDINO dropping from 30.18%
to 24.00% and LLM-as-a-Judge declining from 63.02%
to 51.26%, confirming that larger LLM provide stronger
reasoning capabilities for determining how interventions
should propagate over time. Removing the modified ini-
tial frame v; and instead using the original frame v, leads
to degraded MUSIQ scores (36.53% versus 50.19%) and
lower LLLM-as-a-Judge scores (48.31% versus 63.02%). It
reveals that visual-textual consistency between the starting
frame and the counterfactual digital twin sequence is nec-
essary for the diffusion model to generate alternative trajec-
tories. These results confirm that all components contribute
to counterfactual world modeling, with digital twin repre-
sentations and LLM-based reasoning being the most impor-
tant for producing accurate interventions and their temporal
propagation.

5. Conclusion

World models enable forward simulation of environment
dynamics, yet existing methods generate only factual pre-
dictions from observed states. We formalize counterfactual
world models that accept interventions as explicit inputs
alongside visual observations, extending forward simula-
tion to hypothetical scenarios. This extension serves phys-
ical Al evaluation, where agents must reason about alter-
native outcomes before committing to actions. CWMDT
demonstrates that video diffusion models can be trans-
formed into counterfactual world models through a three-
stage decomposition: perception constructs digital twin rep-
resentations that make scene structure explicit, interven-
tion reasoning through LLMs determines how modifica-
tions propagate across time, and synthesis generates cor-



responding visual sequences. Digital twin representations
function as alternative control signals for video forward
simulation, exposing compositional scene factors that en-
able selective modifications to specific objects and relation-
ships rather than operating on entangled pixel distributions.
This decomposition separates logical intervention determi-
nation from visual generation, allowing world models to
leverage embedded world knowledge in LLMs for reason-
ing about counterfactual dynamics. Future work may ex-
pand digital twin representations to capture finer-grained
physical properties and explore how counterfactual world
models can guide decision-making in autonomous systems
where evaluating hypothetical scenarios is necessary for
safe operation.



A. Additional Experiments

To validate CWMDT beyond the primary benchmarks, we
select the CausalVQA [16] debug dataset split. This choice
aligns naturally with our counterfactual world model formu-
lation for three reasons. First, CausalVQA explicitly tests
counterfactual reasoning through questions that probe al-
ternative outcomes under hypothetical modifications to ob-
served scenes, directly matching our model’s design objec-
tive of predicting temporal sequences under interventions.
Second, the benchmark grounds its questions in real-world
physical scenarios captured through egocentric videos, pro-
viding the complex visual dynamics and object interactions
that our digital twin representations are designed to capture.
Third, unlike synthetic simulation benchmarks that simplify
physical scenes, CausalVQA presents the authentic com-
plexity of real environments while maintaining focus on
physically grounded causal reasoning rather than purely de-
scriptive visual understanding.

Experimental Settings. We conduct our evaluation on
the CausalVQA debug dataset split, which contains 20
samples categorized as “easy” difficulty, with each sample
paired with two question variants to test robustness to lan-
guage perturbations. We select this split because it provides
ground-truth target values for every case, enabling detailed
analysis of model behavior. A similarly fine-grained exami-
nation on the full test split remains infeasible as those target
values are withheld for leaderboard purposes.

For each question in this debug split, we first ap-
ply CWMDT to generate the corresponding counterfactual
video sequence based on the intervention specified in the
question. We then construct the input to each VLM by con-
catenating the original video with the generated counterfac-
tual video, followed by the question text. This allows the
VLM to compare the factual trajectory against the coun-
terfactual trajectory predicted by CWMDT when answer-
ing. For baseline comparisons, we feed only the original
video and the question to the models, following the standard
CausalVQA evaluation protocol. This comparison reveals
whether CWMDT’s counterfactual predictions contain in-
formation that improves model performance on counterfac-
tual reasoning tasks, or alternatively, whether the generated
videos introduce artifacts that degrade answer quality.

Compared Methods. We evaluated the same set of mod-
els used in the original CausalVQA paper [16] under iden-
tical inference configurations. Open-source VLMs in-
clude LLaVA-OneVision [32], Qwen2.5-VL [2], Percep-
tionLM [11], and InternVL-2.5 [10]. Commercial closed
VLMs consist of GPT-40 and Gemini 2.5 Flash. To estab-
lish a human baseline, we recruit five independent anno-
tators with no prior exposure to the dataset to answer the
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benchmark questions.

Results and Analysis. Table 4 presents the results on
the CausalVQA debug dataset across five question cate-
gories. CWMDT augmentation (Qwen2.5VL+CWMDT)
achieves the best model performance on anticipation ques-
tions with 62.50% accuracy, exceeding the strongest base-
line by 7.50%. For counterfactual questions, our method
matches the top-performing closed model Gemini 2.5 Flash
at 70.00%, while outperforming the base Qwen2.5VL
model by 17.50%. On hypothetical questions, CWMDT
reaches 72.50%, tying with GPT-40 for the highest score.
These results suggest that explicit counterfactual video gen-
eration provides the most value for question types that
require reasoning about alternative temporal trajectories
(anticipation, counterfactual, hypothetical), while offering
smaller improvements for questions that primarily test fac-
tual understanding (descriptive) or goal-oriented reasoning
(planning).

B. Details of Digital Twin Representations

In this section, we describe the structure of our digital
twin representation. Specifically, it includes a global scene
summary, a spatial trajectory description, per-object frame-
level captions, and numerical traces including area curves,
depth estimates, and centroid movements. Formally, as
shown in Fig. 5, each digital twin representation is rep-
resented as a JSON object containing the following com-
ponents: (1) a summary describing the overall scene, (2)
a spatial_summary explaining object motion and spa-
tial behavior across the sequence, (3) amajor_elements
with per-frame annotations and numerical attributes, and (4)
a frame_range denoting the temporal span.

However, such digital twin representation is expressive
and large. Therefore, for the diffusion model fine-tuning
and inference, we introduce a condensed version of digi-
tal twin representation that retains only most relevant ele-
ments. The condensed form preserves the global summary,
the spatial description, and a compressed set of object at-
tributes, while removing redundant frames, long numerical
traces, and other high-granularity metadata.

C. Details for Editing the Digital Twin Repre-
sentations

In this section, we present example for the edited digital
twin representation. Given an initial digital twin represen-
tation as input, the LLM does more than rewrite the global
summary and spatial_summary: it also generates a
physically coherent update to the underlying motion cues,
object trajectories, and depth evolution. Moreover, LLM
adjusts frame-level descriptions, modifies object deforma-
tion patterns, and refines the numerical signals that govern



Original Digital Twin Representation

{"summary": "A pink lotus flower sways gently in a pond."
"spatial_summary":"Object 0 (pink lotus flower) stays in
the center foreground, drifting only slightly right as it
opens and closes. Its size stays constant, depth shifts are
mild, and the centroid barely moves. The whole pattern
matches a lotus gently swaying on pond water.",
"major_clements":
{"object_0": "pink lotus flower",
"frames": {"00000": {"description": "A pink lotus
flower blooms gracefully on a green stem against a blurred
natural background."},

"00040": {"description":

"A pink lotus flower blooms gracefully on a green stem
against a blurred green leaves."
"area": [...],

1
i

"frame_range": {
"start": 0,
"end": 80}

Condensed Digital Twin Representation

"This JSON describes a video as a digital twin representation.
SCENE_INFO gives total frames and 3x3 grid cut-lines forming
regions TL,T,TR,L,C,R,BL,B,BR. Each object has: REGIONS
(grid cell spans), PATH (8-way compass with counts), DEPTH
(N=near, M=mid, F=far) spans, SCALE (" grow, = steady, v
shrink) spans. summary and spatial_sum provide scene context
and relations. Frame indices in spans are actual frame numbers,
computed from the source sampling rate."

{"summary": "A pink lotus flower sways gently in a pond."
"spatial_summary":"Object 0 (pink lotus flower) stays in the
center foreground, drifting only slightly right as it opens and
closes. Its size stays constant, depth shifts are mild, and the
centroid barely moves. The whole pattern matches a lotus gently
swaying on pond water.",
"major_elements":

{"object_0": "pink lotus flower",

"frames": {"00000": {"description": "A pink lotus
flower blooms gracefully on a green stem against a blurred
natural background."},

"00040": {"description": "A
pink lotus flower blooms gracefully on a green stem against a
blurred green leaves."},

"regions": "L@0-0 > R@4-4 > BR@8-8 > L@12-12 >
T@16-16 > L@20-20",

"path": "Ex1 SEx1 WxI NEx1 SWx1",

"depth": "F@0-0 > N@4-8 > M@12-16 > F@20-20"} |,

"frame_range": {
"start": 0,
"end": 80}

Edited Condensed Twin Representation

"This JSON describes a video as a digital twin representation.SCENE_INFO gives
total frames and 3x3 grid cut-lines forming regions TL,T,TR,L,C,R,BL,B,BR. Each
object has: REGIONS (grid cell spans), PATH (8-way compass with counts), DEPTH
(N=near, M=mid, F=far) spans, SCALE (" grow, = steady, v shrink) spans. summary
and spatial_sum provide scene context and relations. Frame indices in spans are actual
frame numbers, computed from the source sampling rate."

{"summary": "An hour after the snowfall, the pink lotus flower remains damp and
slightly wilted, surrounded by cold mist rising from the pond."

"spatial_summary":"Object 0 (the pink lotus flower) stays near the center
foreground but shows a heavier, slower sway. Its area decreases slightly as petals
curl inward, retaining moisture from melting snow. Depth values rise marginally,
suggesting the flower leans closer to the water surface. The pond reflects pale light
under a dim sky, with thin patches of ice and lingering droplets on nearby leaves,
implying the temperature remains just above freezing.",

"major_elements":

{"object_0": "pink lotus flower",

"frames": {"00000": {"description": "A pink lotus flower stays near the
center and sways slowly, getting a bit smaller as its petals curl in and it leans closer
to the water. "},

"00040": {"description": "A pink lotus flower
remains damp and surrounded by a frozen pond. The pond shows dim light, a few
thin ice patches, and droplets on the leaves, meaning the temperature is just above
freezing."} },

"regions": "L@0-0 > C@4-4 > C@8-8 > R@12-12 > C@16-16 > R@20-
20",

"path": "Ex1 Ex1 SExI Ex1 Wx1",

"depth": "M@0-0 > M@4-8 > M@12-16 > M@20-20"} |,

"frame_range": {
"start": 0,
"end": 80}

Figure 5. Evolution of digital twin representations through the CWMDT. Left: Original digital twin representation extracted from video,
containing per-frame descriptions, numerical traces for area, depth, and centroid coordinates. Middle: Condensed representation retaining
scene summaries and compressed spatial attributes through compact notation for regions, motion paths, and depth spans. Right: LLM-
edited representation reflecting the counterfactual intervention. The LLM modifies not only textual descriptions but also spatial trajectories,
depth evolution, and motion patterns to maintain physical coherence under the hypothetical condition.

Table 4. Performance comparison on CausalVQA debug dataset. All values represent accuracy (%). Each category contains 40 question
pairs. The best model performance in each category is shown in bold, with human performance in italics.

Large/Closed Open (7-8B)
&
S
< 5 & > N N
q,o-) & o . OS/ Cﬁ %A
» & > ~ N o & $
& & & \3" & & & s

Category Difficulty © o S N i o o o
Anticipation Easy 50.00 55.00 52.50 27.50 47.50 47.50 62.50 86.00
Counterfactual ~ Easy 65.00 70.00 50.00 57.50 60.00 52.50 70.00 93.12
Descriptive Easy 70.00 80.00 50.00 60.00 55.00 65.00 67.50 90.50
Hypothetical Easy 72.50 67.50 67.50 60.00 67.50 40.00 72.50 88.75
Planning Easy 65.00 70.00 70.00 52.50 70.00 57.50 67.50 93.00

area traces, centroid drift, and depth scaling. As a result,
the edited digital twin representation is not merely a textual
reinterpretation of the original scene, but a fully revised spa-

tiotemporal representation that reflects the hypothetical or
counterfactual conditions requested by the user. This edited
form serves as a self-consistent, semantically aligned coun-
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terpart to the input twin, enabling downstream models to
reason about alternative scene states with accurate and co-
herent structural detail.
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