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Figure 1. Overview. Radar2Shape solves the challenging task of 3D shape reconstruction from radar captured at limiting viewing angles.
(a) Limited views cause self-occlusion, resulting in missing information in the measurement. (b) Our approach overcomes this ambiguity
by using a data-driven diffusion prior with a novel coarse-to-fine refinement technique in signed distance function space. This method
accurately generates occluded geometries based on partial radar measurements, leading to better performance than (c) existing domain-
adapted methods that can fail with limited views and struggle even in full observability.

Abstract

Determining the shape of 3D objects from high-frequency
radar signals is analytically complex but critical for com-
mercial and aerospace applications. Previous deep learn-
ing methods have been applied to radar modeling; how-
ever, they often fail to represent arbitrary shapes or have
difficulty with real-world radar signals which are collected
over limited viewing angles. Existing methods in optical
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3D reconstruction can generate arbitrary shapes from lim-
ited camera views, but struggle when they naively treat the
radar signal as a camera view. In this work, we present
Radar2Shape, a denoising diffusion model that handles a
partially observable radar signal for 3D reconstruction by
correlating its frequencies with multiresolution shape fea-
tures. Our method consists of a two-stage approach: first,
Radar2Shape learns a regularized latent space with hier-
archical resolutions of shape features, and second, it dif-
fuses into this latent space by conditioning on the frequen-
cies of the radar signal in an analogous coarse-to-fine man-
ner. We demonstrate that Radar2Shape can successfully re-
construct arbitrary 3D shapes even from partially-observed
radar signals, and we show robust generalization to two
different simulation methods and real-world data. Addi-
tionally, we release two synthetic benchmark datasets to en-
courage future research in the high-frequency radar domain
so that models like Radar2Shape can safely be adapted into
real-world radar systems.
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1. Introduction

Radar is a reliable sensing mechanism in adverse light and
weather conditions with wide-ranging applications such as
robotics [3], autonomous driving [6], and remote sens-
ing [5]. It operates by transmitting radio waves and an-
alyzing the response, echoes that return after striking an
object. Types of radar are typically distinguished by their
wavelength — longer wavelengths struggle to detect small
objects, like raindrops or geologic particles, while shorter
wavelengths (high-frequency radar) can detect a variety of
sizes, but may be more noisy. In both regimes, geometri-
cally characterizing and reconstructing an object from its
radar response still presents a challenging inverse learning
task. At long ranges, radar signals are often noisy and pro-
vide poor resolution [26]. Furthermore, radar sensors often
do not fully observe an object at all viewing angles. This
results in partial observability in the radar response that in-
troduces uncertainties in the reconstruction process. In this
work, we tackle this difficult problem of object reconstruc-
tion from long-range, high-frequency radar responses that
are partially observed.

Previous deep learning approaches to long-range high-
frequency radar modeling have focused primarily on ex-
tracting high-level features for classification, segmentation,
or pose estimation tasks [41, 42], which are still difficult
open problems. However, many downstream tasks require
full-shape reconstruction of an observed object, a higher di-
mensional and even more challenging problem. The com-
puter vision community has separately developed models
for 3D shape reconstruction — these models are typically
conditioned on partial point clouds or multi-view images,
and they often try to estimate camera intrinsic and extrin-
sic parameters. However, there are unique challenges when
conditioning on a radar signal for 3D reconstruction instead
of multi-view images. First, radar lacks analogous cam-
era parameters to estimate because the observed shape does
not correspond to simple geometric projections of the radar
response. Second, the partial observability introduces high
uncertainty. Much more of the object may be occluded from
a radar’s line of sight compared to a camera’s single view.
Additionally, the radar signal is spread across multiple fre-
quencies, which can correspond to different resolutions of
the object’s geometry. Previous methods have not focused
on the difficult problem of full-shape reconstruction from
long-range high-frequency radar signals or taken advantage
of individual frequencies in the radar response.

We propose Radar2Shape, a method that can recon-
struct full 3D shapes from high-frequency radar responses
by associating radar frequencies with shape resolutions.
Our approach consists of two stages: 1) learning a multi-
resolution, hierarchical latent space for 3D shapes, and 2)
training a diffusion model to denoise in this space by con-
ditioning on radar responses. The first stage uses a series

of encodings and a VAE to learn a regularized latent space
of vectors defining signed distance functions (SDFs) [12].
Instead of representing a shape with a single latent vector,
we separate the latent vector into components that repre-
sent shape features at multiple resolutions (e.g. the thin
structures in a shape versus its overall structure). This rep-
resentation is created by projecting multi-resolution point
cloud features onto triplanes of various spatial resolutions.
These are then processed separately and combined as input
into an SDF network. The second stage uses a Transformer
backbone to predict the denoised sequence of latent shape
vectors, iteratively from coarsest to finest resolution, condi-
tioned with attention on embeddings of the corresponding
radar resolution. Additionally, we incorporate a domain-
relevant 2D shape prior [41] and propose a more efficient
version of our method for this lower dimensional shape
space by 1) encoding the shape space as a projection of our
2D shape parameterization and 2) using a U-Net to jointly
encode the radar response and predict denoised latent shape
vectors. Overall, we make four primary contributions:

* We present Radar2Shape, a novel denoising diffusion
model that reconstructs an object’s 3D geometry from
partially-observable, high-frequency radar observations.

* We show superior results compared to many 3D recon-
struction models adapted to the radar domain and an ex-
isting competitive radar baseline.

* We demonstrate a general method for learning multireso-
lution signed distance functions of 3D geometries.

* We introduce the Manifold40-PO and Manifold40-PO-
SBR benchmark datasets, the first public datasets of di-
verse meshes and simulated high-frequency radar re-
sponses for radar-based single object reconstruction.

2. Related Work
2.1. Diffusion Models

Diffusion models [20] have emerged as a powerful gener-
ative model applicable in many scientific domains ranging
from bioinformatics [18] to climate science [4, 30]. Alter-
native methods for generative modeling include Generative
Adversarial Networks (GANs) [51], but diffusion has been
shown to outperform GANs [14, 48]. Flow Matching [33]
has also recently emerged as an alternative, but diffusion’s
demonstrated versatility across domains and its robustness
to noisy inputs [54] motivates its use in this work.

2.2. 3D Representations and Reconstruction

3D reconstruction is a long-standing task in computer
graphics and computer vision, leading to the development
of many deep learning methods that take as input 2D shape
projections (e.g., images, radar) and reconstruct the 3D ge-
ometries. In many use cases, entire scenes, consisting of ge-
ometries, lighting, transparency, density, and textures, must



be modeled. Techniques like Gaussian Splatting [25] and
Neural Radiance Fields [27, 38] (NeRF) excel at model-
ing these high dimensional structures, but they are opti-
mized for rendering, and extracting meshes from these rep-
resentations is not straightforward. Instead, much research
has focused on triplane features, point clouds, meshes,
voxel, or signed distance function (SDF) representations for
meshes [1, 9, 12, 17, 23, 41, 46, 50, 55].

Among these representations, Deep SDFs [47] and sub-
sequent improvements have gained popularity due to their
efficiency and small memory footprint. Two-stage Diffu-
sion [20] approaches have demonstrated success in gener-
ating these SDFs [12, 15, 57, 62]. Multiresolution hash
encodings have improved performance of SDF-based rep-
resentations by projecting the coordinates of query points
to a higher dimensional, spatially-aware feature [40]. These
models are typically conditioned on 2D images or partial
point clouds, and some use Octree-based structures to gen-
erate hierarchical features. However, none of these works
are conditioned on radar observations, and the Octree’s hi-
erarchical features require manual part segmentation of the
geometries as training labels. In this work, we use SDFs and
learn hierarchical features without part segmentation labels
by utilizing the multiresolution hash encoding in a novel
way.

2.3. Radar Modeling with Deep Learning

Many existing deep learning methods for radar modeling
have used tools like NeRF and Gaussian splatting to ex-
tract geometric representations from autonomous driving
data [7, 29], but they require per-scene optimization dur-
ing inference. There are existing methods that do not re-
quire per-scene optimization [16, 39, 60], but these focus
on reconstructing point-clouds, or use preprocessed radar
data like NuScenes [8] point clouds as input. None of these
works solve the difficult problem of full mesh reconstruc-
tion from unprocessed radar data, and they also do not focus
on long-range radar signals, where signal interference be-
tween closely spaced objects becomes minimal and single-
object reconstruction is feasible. Instead, this work focuses
on full mesh reconstruction from raw, long-range, high-
frequency radar signals without per-scene optimization.
Within this domain of high-frequency radar, many exist-
ing deep learning algorithms infer object class rather than
full shape. They typically encode spatial information us-
ing 1D convolutional neural networks (CNNs) [36, 53] or
recurrent neural networks (RNNs) [58]. Some of these ap-
proaches also apply attention to spatial encodings [45, 53,
58], increasing model performance. InvRT [41], a custom
transformer model, was designed to encode both the spatial
and temporal structure of the radar signature to reconstruct
the shape of roll-symmetric objects. The few methods that
focus on full single-shape reconstruction do so for human

body meshes [10, 59, 61], but rely on parametric body pri-
ors, like SMPL [34], to reconstruct meshes.

The radar-based reconstruction of 3D shapes with arbi-
trary topology remains a challenging task with high sensi-
tivity across geometries in noisy, partially observable set-
tings. In addition, there is a lack of diverse high-frequency
radar datasets that can be used to train robust deep learn-
ing models for radar-based reconstruction. This gap is
likely because existing real high-frequency radar data is
heavily restricted by security and IP concerns, and captur-
ing such data at high fidelity requires access to specialized
equipment. In order to drive future research and reduce
the barrier to entry for single-shape reconstruction meth-
ods from high-frequency radar, we introduce two large-
scale datasets of diverse geometries and simulated radar re-
sponses. We also tackle full 3D shape reconstruction and
evaluate Radar2Shape against noisy, partially observable,
and real radar responses to observe robustness.

3. Background

In this section, we discuss two core background concepts
for Radar2Shape: Denoising Diffusion Probabilistic models
and the first-principles physics model that generates high-
frequency radar signatures from 3D object scattering. More
details for each topic are provided in Appendix A and B.

3.1. Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPMs) [20]
are generative models that leverage a forward diffusion pro-
cess and a reverse denoising process to generate samples.
The forward process adds Gaussian noise to a clean data
sample x( over T  timesteps, creating noisy samples x;. The
reverse process aims to recover the clean data distribution
by progressively denoising x;. The training objective of
DDPMs is to minimize the variational lower bound of the
negative log-likelihood of the generated data to match the
true data distribution, over all timesteps 1 to 7.

3.2. High-Frequency Radar Simulation for Single
Object Reconstruction

The techniques for modeling radar signatures of 3D objects
depend on the relative size of the object [ and the wave-
length of the radar A\. Most commercial and defense-related
applications use high-frequency radar waveforms, where
the object size is much larger than the radar wavelength, and
where multiple closely spaced objects can be resolved. Be-
cause of this, signal interference between objects is minimal
and can be ignored [43]. Therefore, in this domain, single
object reconstruction from radar is feasible. A single ob-
ject’s scattering response can often be reduced to a summa-
tion of discrete scattering centers by taking advantage of the
Geometric Theory of Diffraction (GTD) [24]. This reduc-
tion allows the use of parametric, component-based, scat-
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Figure 2. Method. Radar2Shape consists of two stages: 1) learning a multi-resolution, hierarchical latent space for 3D shapes, and 2)
training a diffusion model to denoise in this space by conditioning on radar responses. In this figure, three hierarchical levels (L = 3) are
shown. (a) In Stage 1, we learn per-point multiresolution features from a point cloud that are projected onto triplanes of L different grid
resolutions. (b) A VAE then reconstructs each triplane independently to keep feature resolutions separate in its latent space. (c¢) Features
are combined across resolutions to reconstruct the 3D geometry. (d) In Stage 2, a Transformer learns a sequence of L multiresolution radar
embeddings from a radar response interleaved with the VAE’s multiresolution latent shape features. This enable coarse-to-fine prediction
in a conditional diffusion process. Green and purple modules represent parameters trained during Stage 1 and Stage 2, respectively.

tering models that reduce radar modeling to summing over
responses of individual components. Examples of compo-
nents are discrete points, spheres, rings, and triangles of a
mesh, the latter being the focus of this paper.

4. Method

In this section, we present Radar2Shape, our method for
generating 3D geometries from radar observations. Our
approach relies on raw radar responses (Section 4.1).
Radar2Shape consists of two stages: first, we learn a latent
space for 3D geometries using a point cloud to SDF model
(Section 4.2). Second, we train a diffusion model to denoise
in this latent space by conditioning on radar responses, then
produce an SDF by feeding the generated latent vector into
our SDF decoder and running Marching Cubes [35] to ob-
tain the mesh (Section 4.3). More details on each topic are
in Appendix C and D.

4.1. Radar Signal Input

Figure 1 demonstrates our problem setting. The input to
the learning task is a collection of radar responses at dif-
ferent viewing directions, and the output is the proposed

observed geometry. Let w be viewing direction u =
(sinacos ¢, sinasin ¢, cos ), for « € [0,7] and ¢ €
[0, 27], representing the aspect and roll angles, respectively.
The corresponding radar response F'(u, f) of an object is a
sequence of real and imaginary scattering responses calcu-
lated using a linear set of frequencies {f;} € [fmin, fmax)s
where the bandwidth of the signal is B = fiin — fmax- The
input to Radar2Shape is the amplitude measurement, cal-
culated by taking the magnitude of the real and imaginary
components F' and converted into decibel scale following
20 x logq(]F'|). This scale smooths out large fluctuations
in signal strength and allows the input to represent a large
range of values.

For general 3D geometries, we discretize « and ¢
into N, and Ny bins, respectively, such that F' €
RNexNox[{fi} " We also incorporate a roll-symmetric
shape prior when comparing to the baseline method, InvRT,
which considered only roll-symmetric shapes of the Frusta
dataset [41]. In this case, the radar response F' is identi-
cal across all roll angles ¢, and it is sufficient to index F’
by the aspect angle « and the frequency f alone, such that
R € RNax{fi}l



4.2. Stage 1: Hierarchical SDF Training

In the first stage denoted by the gray box in Figure 2, the
SDF model is trained together with an encoder mapping ob-
ject meshes M to hierarchical latent SDF codes h € H,
which represent the geometry of M at different resolutions.
We draw inspiration from Diffusion SDF’s [12] architecture
that regularizes H for easier downstream diffusion training,
but we disentangle the hierarchies in the regularized latent
space which has not been done in previous work.

For a given number of resolution levels L, batch size B,
points p; € P on the surface of M where 1 < 7 < N,
we first embed each point into hierarchical feature space
£ = MultiRes(p;), f'" € RL*" using the multiresolu-
tion hash encoding, and linearly project to the model dimen-
sion H such that FiW ¢ REXNXLxH Each level’s features
are independently processed with a series of ResNet blocks
with local pooling, resulting in F(©) ¢ RBXNXLxXH hat
contains per-point spatial context.

We then train a Hierarchical VAE (Figure 2.b.) to recon-
struct triplanes generated from these features, while main-
taining hierarchical levels. Each plane (XY, X7, Y Z7) is
initialized as a grid for each level [ € L with spatial reso-
lutions R increasing by powers of 2, from coarse to fine —
for Radar2Shape, we use R € {8,16,32,64}. Each grid
cell’s value is the mean of features from points projecting
orthographically into it:

1 ou
Fuo = 52 > F) (1)

This creates a sparse feature grid for each level F] €
RBXCXEXR where the channel dimension of each level’s
grid uniquely corresponds to the features at that resolution
from the multiresolution hash encoding (Figure 2.a.). A
2D U-Net then densifies each sparse grid independently, re-
sulting in multiresolution triplane features {F;", F}*, F}*}.
The VAE independently reconstructs each resolution tri-
plane feature (Figure 2.b.), maintaining the level dimension
in its stochastic latent variables in, 02 € RE*Z where Z is
the latent shape dimension. We treat the all levels jointly as
a distribution and apply the following KL-divergence loss:
KL(N (tn, o) || N'(0,0.25)), where h ~ N (un, o) with
the reparameterization trick, h € RF*Z and h; € R?.

Query points g; . . . gas are then used to grid sample each
triplane for all resolutions L, then summed across planes
and resolutions to create a rich per-point multiresolution
shape representation 7;. Each point’s g; coordinate posi-
tion is concatenated with 7; which is input into a SDF MLP
(Figure 2.c). The final objective becomes the sum of the L1
SDF prediction error and the KL-divergence loss, with no
need for a traditional VAE reconstruction loss.

4.3. Stage 2: Radar-Conditional Generation

In the second stage, we jointly train a radar encoder @ :
F +— r and a denoising network © : (h;),,r,t — €
to predict denoised latent shape codes (h;), in a coarse-
to-fine manner along hierarchical levels. First, the radar
response F' defined in Section 4.1 is split into L linearly
spaced blocks along the frequency dimension such that
Fj = RNaXNoxA yhere A = HJ;—}' We treat bin
7 = 0...L as positions and add a sine-cosine positional
encoding so ® can distinguish inputs of different radar fre-
quencies. We use a ResNet152 [19] for & due to its abil-
ity to efficiently extract information from signals with two
spatial dimensions, which are aspect and roll in F. Each
block is encoded as r; = @(F;ln)). To encourage robust-
ness in partially-observable scenarios, we randomly mask
between 0% and 70% of the aspect and roll dimensions dur-
ing training such that the unmasked regions remain continu-
ous. We use a Transformer [52] to learn a sequence of inter-
leaved low-to-high-frequency radar encodings and low-to-
high resolution shape encodings (defined in Section 4.2) as
rg,hg,...,r;,h;, ..., rr, hr, and apply a lower-triangular
causal attention mask. Therefore, ® predicts the noise of
a shape feature at resolution [ only by attending to shape
features at a coarser resolution and frequencies of the radar
response j < [, enabling coarse-to-fine prediction.

The loss function is the mean squared error between the
predicted noise and scheduled noise added to the odd tokens
of the sequence. The denoising process is defined as:

1 Nie=rm
\/OTt ((h)t - m

(W), , = o((h), ,r,t>) @

Incorporating Roll-Symmetric Shape Priors. For roll
symmetric objects, we define a lower dimensional space of
potential shapes. This space can be used to define a re-
duced parameter model and to output the radial profile, a
sequence of coordinates (r, z) defining the outer bounds of
a half cross-section. We encode this shape parameteriza-
tion h; with a single linear layer and ReLU to match the «
dimension of R, then concatenate h, with R along the fre-
quency dimension. A 1D U-Net [49] then jointly encodes
the noisy latent shape vector at timestep ¢ with the radar
response during downsampling, and learns the noise pre-
diction for h; during upsampling.

5. Experiments

In this section, we describe baselines, metrics, and the data
generation process, then present results of Radar2Shape on
three benchmark datasets and real radar data.

Baselines. We use three competitive image-to-shape
models with tuned hyperparameters that span a variety of



Table 1. Quantitative Results. Test performance of models after training on the Manifold40-PO dataset, with partial observability models
using training-time mask augmentations. Metrics are evaluated across 20 random heldout meshes in the zero noise setting. Test-time
partial observability is applied using a randomly sampled mask on 70% of the signal, with monoconic having a fixed masked for consistent
evaluation. Radar2Shape largely outperforms TMNET and LIST which struggle to learn and also Diffusion-SDF which is competitive in
this domain. Radar2Shape has relatively strong zero-shot generalization to Manifold40-PO-SBR and the real monoconic radar response.

Full Observability Partial Observability

Dataset Model cD () ToU (1) F-Score (1) cDp () ToU (1) F-Score (1)
Radar2Shape 64.47 + 86.87 0.51+0.19 0.22+0.11 44.72 + 58.54 0.594+0.27 0.27 +0.18
Manifold40-PO Diffusion-SDF 508.92 + 386.10 0.13 £ 0.11 0.05 + 0.03 566.73 + 321.76 0.10 £ 0.06 0.04 + 0.02
TMNet 3501.14 + 391.20 0.01 + 0.00 0.02 + 0.02 9801.15 + 3164.11 0.00 + 0.00 0.01 + 0.01
LIST 73599.60 + 10230.19  0.00 + 0.00 0.00 £ 0.00 79936.75 + 12058.06 0.00 £ 0.00 0.00 = 0.00
Radar2Shape 96.91 + 85.96 0.44+0.26  0.10 + 0.05 121.14 + 91.18 0.444+0.25 0.10 + 0.08
Manifoldd0.po.spr  Diffusion-SDF 531.71 + 322.96 0.12 +0.10 0.04 + 0.01 456.92 + 284.12 0.11 £ 0.10 0.05 £ 0.02
antiolaat-ro- TMNet 1235.35 & 773.37 0.02 + 0.02 0.02 4 0.04 1060.80 4 703.15 0.02 4 0.02 0.03 4 0.02
LIST 20723.39 + 2073.50 0.00 £ 0.00 0.00 + 0.00 20728.32 4 2080.41 0.00 + 0.00 0.00 + 0.00
Radar2Shape 8.403 0.811 0.139 40.647 0.681 0.104
Monoconic Diffusion-SDF 40.510 0712 0.077 504.227 0.191 0.047
onoconic TMNet 229.233 0.041 0.028 916.115 0.014 0.012
LIST 564.531 0.025 0.007 1189.351 0.021 0.016

Table 2. Quantitative Results for Roll-symmetric Shapes. Test performance of Radar2Shape and InvRT after training on the Frusta
dataset, with both models using training-time mask and noise augmentations for their respective observability and noise level. Metrics are
evaluated across 20 random heldout meshes under different observability and noise conditions (low =—80dB, medium =—60dB, and high
=—40dB), with test-time partial observability applied as the same randomly sampled masks for up to 70% of the aspect. Radar2Shape

outperforms InvRT across most metrics, notably with a larger performance gap in the difficult high-noise setting.

Full Observability

Partial Observability

Noise Model 1oU-R (1) 10U-S (1) MATCH-S (1) IoU-R (1) 10U-S (1) MATCH-S (1)
Low Radar2Shape 0.67 + 0.22 0.73 + 0.24 0.11 £ 0.09 0.62 £ 0.24 0.67 £ 0.25 0.12 £+ 0.12
g InvRT 0.70 £ 0.13 0.66 + 0.20 0.16 + 0.11 0.61 + 0.25 0.66 + 0.20 0.18 + 0.21
Medium Radar2Shape 0.71 £+ 0.18 0.76 £ 0.20 0.11 + 0.11 0.66 £ 0.21 0.71 + 0.24 0.12 £ 0.11
“ InvRT 0.70 £ 0.24 0.64 + 0.18 0.18 + 0.09 0.63 + 0.23 0.66 £+ 0.15 0.19 £ 0.12
Hich Radar2Shape 0.77 £ 0.16 0.79 £ 0.17 0.10 £ 0.10 0.70 + 0.19 0.74 £ 0.21 0.14 £+ 0.12
8 InvRT 0.70 £+ 0.20 0.72 £ 0.13 0.26 + 0.22 0.63 + 0.23 0.67 £ 0.17 0.27 £ 0.20

reconstruction methods to benchmark the performance of
Radar2Shape on 3D reconstruction. TMNet [44] iteratively
transforms a topology to fit a target shape, and LIST [1]
uses spatial transformers for a coarse and fine prediction.
Diffusion-SDF [12] uses diffusion to predict SDFs, concep-
tually similar to our method. We adapt baselines to the radar
problem by swapping their existing point cloud or image
encoders for the same encoding network as Radar2Shape,
a ResNet152, allowing equal comparison. We also choose
these models for a fair comparison because they do not re-
quire camera estimation or pixel alignment, which would
not make sense in the radar domain. For roll-symmetric ge-
ometries, we compare directly against the InvRT method, a
transformer-based model that provides state-of-the-art per-
formance on the roll-symmetric Frusta dataset [28, 41].

Metrics of Evaluation. We measure the ability
of Radar2Shape to reconstruct general geometries
by considering popular metrics for 3D mesh recon-
struction [1, 11, 13, 31, 44]: Chamfer distance (CD),
intersection over union (IoU), and F-Score (1%). For
roll-symmetric shapes, the simplified (r, z) parametrization
enables accuracy to be evaluated more extensively than the
metrics used for general geometries: IoU-S measures the

quality of shape predictions using the 2-dimensional binary
mask intersection-over-union (IoU). (2) IoU-R evaluates
the ability of the predicted shapes to generate the ground
truth radar phenomenology, and MATCH-S evaluates
the accuracy between ground truth and predicted shape
segments by matching pairs of (r, z). For further details on
these metrics and their calculations, refer to Appendix E.

5.1. Dataset Generation

As discussed in Section 2.3, there is a lack of diverse
large-scale high-frequency radar datasets that can be used
to train robust deep learning models for radar-based single-
object reconstruction. We use the previously studied Frusta
dataset to train and evaluate Radar2Shape against a compet-
itive radar baseline, and although these shapes are domain-
relevant, they are limited to 2D, roll-symmetric geometries.
Therefore, we introduce Manifold40-PO, the first publicly
available, large-scale, high-frequency radar dataset which
is generated from ModelNet40’s [56] diverse set of over ten
thousand unique real-world meshes. We rely on a widely
accepted first-principles simulator using Physical Optics
(PO) [2] to generate radar responses, and use the Man-
ifold40 [22] variant of ModelNet40 for it’s advantageous
simulation properties.
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Figure 3. Ablation. Reconstruction of learned hierarchical latent
codes with mixed coarse and fine features. For chairs, the model
learns that the fine features correspond to arms and legs, because
coarse features maintain the overall shape while the arms and legs
are added or removed. This interpretability experiment demon-
strates that our hierarchical SDF training method does indeed cap-
ture these coarse and fine features geometrically.

We also introduce a benchmark evaluation dateset with
higher-fidelity effects, like multi-bounce interactions, using
the Physical Optics and Shooting and Bouncing Rays (PO-
SBR) algorithm [32], which we refer to as Manifold40-PO-
SBR. This algorithm is computationally expensive, so we
only generate approximately two thousand samples for fine-
tuning and evaluation to show that Radar2Shape can gener-
alize when trained with Manifold40-PO.

Real data in this radar domain, and equipment to record
such data, is heavily restricted by cost, security and IP con-
cerns. To our knowledge, there is no publicly available real
high-frequency radar responses of single meshes. However,
for this work, we are able to obtain real radar measurements
across varying viewing angles of a monoconic object in-
troduced in [37]. We evaluate Radar2Shape on these mea-
surements after training on Manifold40-PO, and we make
this data publicly available for future benchmarking. For
further details on the monoconic object and simulation, see
Appendix F and G.

5.2. Performance on SDF Reconstruction

Validating learned shape representations. To validate
that Stage 1 learns to represent shape latent vectors at dif-

ferent shape resolutions, Figure 3 shows the meaning of
these latent resolution levels from a geometric view. For
chairs, the model learns that the fine features correspond
to arms and legs, because the figure shows that coarse fea-
tures maintain the overall shape while the arms and legs are
added or removed. Note that in the bottom row, the legs of
(h) are not substituted into the other shapes. This does not
indicate failure, but is likely a mixing of geometric features
across multiple granularity dimensions in the latent code, so
unlike other samples, the legs of (h) may be encoded along
with the shape’s coarse feature. This is correct, and it can be
expected because the legs appear thicker than other chairs,
so they can be represented more coarsely. Stage 2 can then
“piece together” these shapes part-by-part in a coarse-to-
fine manner, without any ground truth segmentation labels.

Comparison to baselines. Radar2Shape’s two-stage
training approach greatly outperforms two competitive
multi-view reconstruction methods, as shown in Figure 4.
TMNet is unable to learn sphere deformations of sharp local
features from the radar response, although it can generally
learn the relative dimensions of the shape. LIST typically
correlates query points with local image features, but since
radar responses have different geometric dimensions than
images, the model is unable to learn. This performance
demonstrates the necessity for Radar2Shape, which geo-
metrically leverages the frequencies of the radar response.

We further observe the benefit of Radar2Shape’s coarse-
to-fine refinement technique geometrically by comparing
against the strongest baseline, Diffusion-SDF. Figure 4.b
shows how Diffusion-SDF incorrectly reconstructs an air-
plane shape from the radar response of a chair. However,
Diffusion-SDF still extracts the overall upward bending
shape of the chair’s arms and backrest, which it decodes as
upward bending wings and a tail fin. Instead, Radar2Shape
can first classify the shape correctly as a chair using the
lowest frequency of the radar response and coarsest SDF
resolution, then can focus on fine-grained features like the
arms and backrest for an accurate reconstruction.

Figure | demonstrates the largest advantage of our
method — in partial observability. Stage 1 of Diffusion-SDF
learns a latent space which struggles to disentangle lower
level shape features from the overarching structure, so the
latent space for diffusion tends to represent entire objects. If
Stage 2’s encoder learns a feature that represents only part
of an object, as is often the case in partially-observable radar
responses, it may not be representable in the latent space but
might be “nearest” to an entire object with similar features —
this results in high-variance guesses (Figure 1.c.). Instead,
Radar2Shape first learns a disentangled latent space with
hierarchical features (Figure 3), allowing the radar features
to be learned in accordance with the observed signal (Fig-
ure 1.b.). Table | reports reconstruction accuracy, where
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Figure 4. Qualitative Results. Comparison of select reconstruc-
tions from heldout fully-observed radar responses of Manifold40-
PO. Radar2Shape consistently outperforms all baselines across a
diverse set of meshes. TMNet and LIST exhibit mode-collapse,
showing the difficulty of the radar-based 3D reconstruction prob-
lem when adapted to deterministic single/multi-view image-based
reconstruction methods. Diffusion-SDF does the best among base-
lines, but often fails at reconstructing low-level features (shown
with the chairs, table legs, and number of airplane engines).

Radar2Shape also largely outperforms baselines across ag-
gregate reconstruction metrics.

Fine Tuning on Higher Fidelity Simulation. We show
the zero-shot generalization results to Manifold40-PO-SBR
in Table 1, but to extract additional performance, we also
fine-tune on a portion of the generated data while maintain-
ing heldout samples for evaluation. We use LoRA [21] fine-
tuning on query and value attention projections, instead of
full fine-tuning, to demonstrate that domain adaptation re-
quires only lightweight changes to our model pretrained on
the Manifold40-PO dataset. We observe a slight improve-
ment in the fully observed setting, but modest improvement
of about 0.07 IoU and F-Score in the partial setting, sug-
gesting high-fidelity artifacts may be more important when
shape information is sparse. Further discussion and quanti-
tive metrics are in Appendix H.

5.3. Performance on Roll-symmetric Shapes

Table 2 compares the U-Net variation of Radar2Shape (Sec-
tion 4.3) against InvRT across a variety of signal noise and
observability settings. MATCH-S scores degrade for InvRT
as noise increases, while Radar2Shape maintains perfor-
mance. Since more noise creates an increasingly ill-posed
problem, this performance gap demonstrates the advantage

/

Radar2Shape Ground Truth

Figure 5. Qualitative Results on Real Data. Reconstructions of a
monoconic object from its real radar response, using Radar2Shape
trained on Manifold40-PO. Radar2Shape predicts a wider tip, but
is able to correctly predict the overall shape, base width, height,
and angle near the base with low variance.

of diffusion as an inherently probabilistic model compared
to a Transformer. Additionally, IOU-S provides an anal-
ogous metric to 3D IoU in Table I, with a modest per-
formance gap between Manifold40-PO and Frusta perfor-
mance in partial and full observability. This demonstrates
that incorporating a roll-symmetric shape prior indeed im-
proves shape reconstructions. Appendix I contains analysis
on common failure cases and distributional accuracy.

5.4. Application to Real Radar Data

To test zero-shot generalization properties of Radar2Shape,
we consider real radar measurement data of a mono-
conic object introduced in [37]. Since this object is roll-
symmetric, its measurements are taken only along the
aspect dimension «. Although we could use the roll-
symmetric variation of Radar2Shape, we choose to demon-
strate the harder problem of full 3D reconstruction. There-
fore, the input to Radar2Shape becomes the measurement
repeated along roll angle ¢. Figure 5 and Table 1 (Mono-
conic) show the results of single-shot generalization to this
object, given that Radar2Shape is trained on Manifold40-
PO objects. Radar2Shape struggles with the tip of the cone
likely due to the real data being recorded at a different ob-
ject scale, but even with this slight distribution shift, it ex-
hibits the best performance compared to the other baselines
and reconstructs elements like base width accurately.

6. Conclusion

We present Radar2Shape, a novel method that can recon-
struct 3D shapes from radar responses by associating signal
frequencies with multiresolution shape features. We empir-
ically demonstrate that this method proves to be more ac-
curate than previous work, especially in noisy and partially
observable settings. This work also introduces a general
method to learn multiresolution signed distance functions,
and establishes two benchmark datasets consisting of di-
verse meshes and high-frequency radar responses to drive
future research in high-frequency radar modeling.

Limitations and Future Work. There are some limita-
tions to this work. We find that the hierarchical features
learned in Stage 1 can be spatially bound (e.g. if pose



changes, the fine-grained representation of a chair’s leg
might change its shape), which future work could mitigate
by using rotation invariance. Radar2Shape does not attempt
to learn the scale of reconstructed objects, since Model-
Net40 does not represent relative scale among objects cor-
rectly. Future work can also collect more diverse real-world
data to evaluate performance, fine-tuning if necessary as we
have demonstrated with Manifold40-PO-SBR.
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