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ABSTRACT

The human spine is a complex structure composed of 33 vertebrae. It holds the body and is important
for leading a healthy life. The spine is vulnerable to age-related degenerations that can be identified
through magnetic resonance imaging (MRI). In this paper we propose a novel computer-vison-
based deep learning method to estimate spine age using images from over 18,000 MRI series.
Data are restricted to subjects with only age-related spine degeneration. Eligibility criteria are
created by identifying common age-based clusters of degenerative spine conditions using uniform
manifold approximation and projection (UMAP) and hierarchical density-based spatial clustering
of applications with noise (HDBSCAN). Model selection is determined using a detailed ablation
study on data size, loss, and the effect of different spine regions. We evaluate the clinical utility of
our model by calculating the difference between actual spine age and model-predicted age, the spine
age gap (SAG), and examining the association between these differences and spine degenerative
conditions and lifestyle factors. We find that SAG is associated with conditions including disc bulges,
disc osteophytes, spinal stenosis, and fractures, as well as lifestyle factors like smoking and physically
demanding work, and thus may be a useful biomarker for measuring overall spine health.

1 Introduction

The spine is a complex anatomical structure consisting of numerous vertebrae (nominally, 7 cervical, 12 thoracic, and 5
lumbar) and motion segments that serves as both a supportive axis and a protective encasement for the spinal cord. It is
integral to biomechanical function and core stability, enabling a diverse range of movements, and plays a fundamental
role in facilitating the transmission of neural signals by distributing the peripheral nervous system. Age-related changes
and pathological alterations can substantially disrupt these functions, leading to reduced mobility, sensory impairments,
loss of motor function, and decreased quality of life. The aging process of the spine is multifactorial, driven by an
interplay of genetic predispositions, underlying pathologies, and lifestyle factors [1]. Radiological imaging is crucial
for the identification of spinal conditions, which may involve various components, including intervertebral discs, facet
(zygapophyseal) joints, neural canals, muscles, tendons, ligaments, and bony structures. Magnetic resonance imaging
(MRI) provides superior visualization of the musculoskeletal system, enabling the assessment and quantification of
age-related morphological changes. Consequently, there is an increasing interest in the development of automated
methods for spine age estimation utilizing imaging to determine what a healthy spine typically looks like at different
stages of life. The objective of this study was to explore the feasibility of predicting spine age using deep learning
models applied to whole-spine MRI images.

1.1 Spine Maturation and Degeneration

Spine degeneration and stratification of spine patients have been of interest to radiologists. Kim et al. [2] introduced the
classification of lumbar disc herniation from MR images in 1992. Pfirrmann et al. [3] developed a classification system
for lumbar intervertebral disc degeneration based on MR images. They showed a T2-weighted MRI is reliable for
grading disc degeneration. Riesenburger et al. [4] proposed a novel classification method for lumbar disc degeneration

ar
X

iv
:2

51
1.

17
48

5v
1 

 [
cs

.C
V

] 
 2

1 
N

ov
 2

02
5

https://arxiv.org/abs/2511.17485v1


A PREPRINT - NOVEMBER 24, 2025

that incorporates endplate changes, the presence of a high-intensity zone, and a reduction in disc height. Gille et al.
[5, 6] proposed a classification system for degenerative spondylolisthesis of the lumbar spine that was consistent with
age and health-related quality of life scales.

1.2 Previous Work in Spine Degeneration Detection

Previous work shows the feasibility of determining spine degeneration from MR images using deep learning. Lu et
al. [7] proposed a deep learning method to determine the severity of spinal canal stenosis, left foraminal stenosis, and
right foraminal stenosis. The method consisted of 1) segmentation and labeling of vertebrae using U-Net; 2) extracting
disc-level image volumes from sagittal and axial views; and 3) passing them through a Convolutional Neural Network
(CNN) to determine the severity. SpineOne [8] is a one-stage framework that detects lumbar vertebrae and discs and
classifies them into normal and degenerative. Hallinan et al. [9] proposed a deep learning method to automate the
detection and grading of the central canal, lateral recess, and neural foraminal stenosis in lumbar spine MR images.
They used a combination of faster Region-based Convolutional Neural Network (RCNN) to detect the region of interest
and a CNN classifier to grade the condition. Zheng et al. [10] quantitated lumbar disc degeneration from MRI based on
the feature extracted after segmenting vertebrae, discs, and the spinal cord and extracting feature points. Yi et al. [11]
used a combination of CNN and transformer to detect degenerative diseases in the cervical and lumbar regions from
T2-weighted MR images taken in sagittal and axial views. Chen et al. [12] proposed a two-stage framework using Mask
RCNN. The disc and vertebrae were localized based on sagittal view and the degenerative conditions were classified
based on sagittal and axial views.

These studies suggest that spine degeneration can be detected using deep learning approaches that mimic a visual
inspection of the spine. Given that these conditions are correlated with aging, we hypothesize that whole spine MRI
contains information that can be leveraged by deep learning models to predict spine age.

1.3 Previous Work in Age Estimation

In the field of computer vision, most age estimation methods focused on two-dimensional images of the face [13, 14,
15, 16]. In medical imaging estimation of age based on brain MRI scans has been extensively researched [17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28]. The estimation can be achieved through two approaches [17]:

• Regression method: The model predicts a continuous value representing the chronological age.

• Bins method: The model uses several bins and predicts the bin containing the chronological age, outputting
the probability of the brain age belonging to each bin. The final age is computed as the expected value.

Various models and loss functions have been proposed to tackle this task. Ordinal distance encoded regularization
loss has been added to the cross entropy loss to train a CNN [19]. Attention-guided deep learning was used to predict
the gestational age from T2-weighted MRI [20]. The Extreme Gradient Boosting (XGBoost) regression algorithm
was applied to approximately 42,000 T1-weighted brain MRI series [23]. Peng et al. [24] used a lightweight fully
convolutional structure based on VGGNet [29] architecture in T1-weighted structural MRI (sMRI). Armanious et al.
[25] proposed Age-Net, a deep CNN with a novel iterative data-cleaning algorithm to separate atypical-aging patients
in T1-weighted MRI. Two-Stage-Age-Network was proposed to improve the brain age estimation in T1-weighted MRI
[26]. The first-stage network estimates the brain age based on T1-weighted MRI and sex. Then, the age estimate is
refined in the second-stage network. The inputs to the second stage are MRI image, sex, and the discretized brain age
estimated by the first-stage network and the output is the residual that is added to the discretized estimated brain age.
Ensemble learning was applied to sMRI to improve the performance [27]. Three separate ensemble frameworks were
used for young, middle-aged, and older age groups to mitigate the dependency of model accuracy on age groups. Each
framework contained four models: a support vector machine, a CNN, GoogleNet [30], and ResNet [31]. In summary,
these studies demonstrate the feasibility of assigning organ-specific biological age using deep learning methods on MR
images.

In the context of the spine, there has been research on the relationship between spine conditions, age, and occupation
[32, 33, 34]. Some studies [35, 36] utilized machine learning techniques to estimate spine age from MR images.
However, the performance was low with R2 = 0.28 and a mean absolute error of 10.28 years for spine age compared
to chronological age in Sneath et al. study [36]. Moreover, these studies were limited by small datasets (60 and 70
MRI scans for training with test sets of 9 and 10 MRI scans, respectively) and relied on feature engineering rather than
directly using the MRI scans as inputs. Furthermore, none of these studies utilized a deep learning approach and instead
relied on classical methods such as random forests, extreme gradient boosting trees, and support vector machines.
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Figure 1: Overview of the three steps of the model to produce biological spine age. In the first step, semantic
segmentation of the spine is generated and masked using a nnUnet model [37]. Next, the masked spine series are passed
to a DCNN model consisting of multiple blocks of 3D convolution, batch-normalization, max-pooling layers, and a
linear layer for the final prediction. The details of the model and layers are available in Table 2. In the last step, we
perform bias correction to produce bias-corrected spine age.

1.4 Contributions

We propose a Deep Convolutional Neural Network (DCNN) for predicting spine age based on a large dataset of sagittal
T2-weighted MRI series.

• To the best of our knowledge, this is the first work that utilizes MRI as input to a deep learning model for spine
age estimation, achieving an R2 performance of 0.87 compared to 0.28 in prior studies. This demonstrates that
spine age can be estimated from T2-weighted MRI with high accuracy.

• We utilized an extensive dataset comprising of more than 18,000 series from more than 17,000 participants
with over 8,500 test samples of normal and abnormal MR images. This significantly surpasses previous work
in spine age estimation, which used only 70 series in total and 10 series in their test set.

• Our study demonstrates that the difference between chronological age and spine age, hereafter referred to as
Spine Age Gap (SAG), is related to spinal conditions, pathologies, and lifestyle factors. This finding suggests
that the SAG can serve as a valuable metric for assessing spine health.

2 Material and Methods

2.1 Overview

Figure 1 shows an overview of our proposed spine age estimation model. The pipeline consists of three steps: 1)
semantic segmentation and masking; 2) age estimation; and 3) bias correction. Next, we discuss the data and each of
these steps in detail.

2.2 Data

We utilized a comprehensive dataset comprising of 18,070 3D T2-weighted whole spine MRI series. This dataset
was acquired from 17,394 individuals with the sagittal view as the imaging plane. The scans were collected over a
thirteen-year period, from 2011 to 2024, using 19 Philips and Siemens machines across 10 clinics in North America. The
dataset included individuals aged 25 to 84 years, including those with supernumerary vertebrae (anomalous enumeration
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Table 1: Distribution of males and females in normal and abnormal series across age groups.
Age bracket No. normal series No. abnormal series

(years) male female male female
30 (25-34) 561 521 404 411
40 (35-44) 1306 1238 1249 1252
50 (45-54) 1617 1379 857 949
60 (55-64) 1264 1299 645 683
70 (65-74) 598 622 377 378
80 (75-84) 122 84 132 122

Total 5468 5143 3664 3795
10611 7459

of vertebrae). Individuals were divided into six age groups, each spanning a 10-year interval, as shown in Table 1. The
classification for ’normal’ and ’abnormal,’ as referenced in Table 1, are explained in detail in the following section.

2.3 Establishing Normal Spines Based on Reports

To train a DCNN model for predicting chronological age from MRI input, the dataset must be restricted to subjects who
exhibit only age-related spine degeneration. To this end, we propose data-driven eligibility criteria to define participants
who have a normal spine with respect to their age.

We follow a clustering approach for identifying normal participants based on spine conditions in their radiology report.
This includes spinal structural and canal pathologies, as well as degenerative conditions for each vertebra.

The seven spinal structural and canal pathologies are: 1) bone lesion; 2) congenital spinal canal narrowing; 3) cord
abnormalities; 4) fracture; 5) soft tissue edema; 6) spinal stenosis, and 7) spondylolisthesis.

The eight degenerative spinal conditions consist of: 1) disc bulge; 2) disc osteophyte complex; 3) uncovertebral
osteophyte; 4) protrusion; 5) extrusion; 6) desiccation; 7) endplate change; and 8) annular fissure. In total, we looked
at six cervical (C2-C7), thirteen thoracic (T1-T12, including T13 for cases with supernumerary vertebrae), and seven
lumbar (L1-L5, including L6-L7 for cases with supernumerary vertebrae) vertebrae that are 6 + 13 + 7 = 26 vertebrae
in total. Thus, we had 26× 8 + 7 = 215 features for each report associated with each series.

This 215 feature vector is extremely sparse for the typical participant. Furthermore, radiologists frequently perform
regional assessment of the spine and only report the most pertinent pathology in each region. We used this heuristic
to convert this sparse feature vector into a dense representation. To this end, we aggregated affected vertebrae by
region and severity of conditions. This reduced the number of features into 3× 8× 4 = 96 for three regions (cervical,
thoracic and lumbar) for eight degenerative spinal conditions and four severity values (mild, moderate, severe, and near
complete). However, not all conditions are associated with all severity values listed above, which results in a smaller
aggregated feature vector of size 60 for spinal conditions. By adding spinal structural and canal pathologies conditions
we arrive at a final vector of size 67.

In order to visualize this feature vector we performed a Uniform Manifold Approximation and Projection (UMAP) [38]
dimensionality reduction to planar features for each age bracket. However, for our feature vector the default Euclidean
distance used in UMAP evaluates different conditions and the frequency of conditions equally. In order to address this
issue, we used the Canberra distance as defined below:

d(p, q) =

m∑
i=1

|pi − qi|
|pi|+ |qi|

, (1)

where m is the total number of conditions, p and q are vectors of the conditions. This formulation ensures that the
distance between two cases where a specific condition has one more count is less than having a different condition. For
instance, if participant 1 (p1) has 3 mild disc bulges, participant 2 (p2) has 4 mild disc bulges, and participant 3 (p3)
has 3 mild disc bulges and 1 fracture, d(p1, p2) = 1

7 and d(p1, p3) = 1.

Next, we applied Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) [39] to the
reduced dimensions by UMAP to cluster samples. Within each age group clusters with more than 15% of the population
were considered normal, and clusters with less than 15% were considered abnormal.
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Table 2: Layers of the model including the shape and number of parameters (weights + biases). Total number of
parameters is 2,950,401.

Layer Shape Num Parameters

block1

conv3d [32, 1, 3, 3, 3] 864 + 32 = 896
batchnorm3d [32] 32 + 32 = 64
relu
maxpool3d

block2

conv3d [64, 32, 3, 3, 3] 55296 + 64 = 55360
batchnorm3d [64] 64 + 64 = 128
relu
maxpool3d

block3

conv3d [128, 64, 3, 3, 3] 221184 + 128 = 221312
batchnorm3d [128] 128 + 128 = 256
relu
maxpool3d

block4

conv3d [256, 128, 3, 3, 3] 884736 + 256 = 884992
batchnorm3d [256] 256 + 256 = 512
relu
maxpool3d

block5

conv3d [256, 256, 3, 3, 3] 1769472 + 256 = 1769728
batchnorm3d [256] 256 + 256 = 512
relu
maxpool3d

top

conv3d [64, 256, 1, 1, 1] 16384 + 64 = 16448
batchnorm3d [64] 64 + 64 = 128
relu
maxpool3d

prediction linear [1, 64] 64 + 1 = 65

2.4 Spine Age Estimation with Deep Convolutional Neural Network

The field of view in a whole spine MRI spans multiple organs that age at different rates. In order to disentangle the
spine from the rest of the organs, we first segment the spine using a semantic segmentation model [37]. This process
generates a segmentation mask that encompasses the cervical, thoracic, lumbar, and sacral vertebrae, intervertebral
discs, ribs, cerebrospinal fluid, and the spinal cord. This mask is dilated and used to remove other regions from the MR
image. In order to decrease the spatial variability of samples in our dataset, we resample all series to a common spacing
of 0.9× 0.9× 3mm3. Subsequently, we center cropped / padded all images to a fixed size of 384× 793× 14.

Our DCNN model was inspired by previous work in brain age estimation [40, 41]. The model is shown in Table 2.
Mean Squared Error (MSE) loss was used to train the model.

After training, we used the validation data to correct the bias using Cole’s method [18] as used in previous studies
[24, 17]. We computed the slope α and intercept β of the fitted line to the samples using linear regression

Ŷ = αY + β, (2)

where Y and Ŷ represent chronological and predicted age, respectively. The bias-corrected predicted age Ŷc is computed
as

Ŷc =
Ŷ − β

α
. (3)

3 Experimental Settings

3.1 Normal Data

We only used the images from individuals clustered as normal (see Section 4.1) within their age group for training
our DCNN model. This resulted in 10,611 series for the development of the spine age estimation model. We divided
the dataset into training, validation, and test sets with 8,491, 1,051, and 1,069 samples, respectively. The samples
were split while maintaining the gender and age ratios, as shown in Figure 2. To evaluate the relationship of spine
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(a) Male participants.

(b) Female participants.

Figure 2: Train, validation, and test set histogram based on gender across age brackets.

conditions and lifestyle with predicted spine age, we mixed the abnormal data with the test set, resulting in a set of
7459 + 1069 = 8528 samples for the full-test set.

3.2 Sample size, Loss, and Spine regions

To assess the proposed model, we compared it with models trained on a smaller number of samples, different loss,
and different regions of the spine. In particular, we trained the same model on 85 (85 train and 10 validation) and 850
(850 train and 100 validation) samples. In addition, we trained the model using smooth-L1 loss. Similar to L1 loss,
smooth-L1 loss helps mitigate the sensitivity to noisy series. We also trained the model on masked series that only
included cervical, thoracic, and lumbar regions. Having segmentations of cervical, thoracic, and lumbar vertebrae, we
masked those regions after dilation and trained models on the masked series.

The metrics used for comparison are mean absolute error (MAE), age bracket weighted MAE (WMAE), and R2

between the actual and predicted age. A lower absolute error indicates better performance, as it shows that the model is
predicting age more accurately. MAE is computed as:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (4)

where yi and ŷi are i-th participant’s chronological and predicted age and n is the number of participants.

WMAE is calculating by computing the MAE in each age category, then taking the global mean of these age category
errors as:

WMAE =
1

N

N∑
j=1

(
1

nj

nj∑
i=1

|yi − ŷi|), (5)
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where N is the number of age brackets and nj is the number of samples in each age bracket. This allows all age
categories to contribute equally in model evaluation regardless of the number of samples.

R2 has a range of −∞ to 1 and the higher values show better performance. It is computed as

R2 = 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − ȳ)2
, (6)

where ȳ is the mean of participants’ age.

3.3 Hyperparameters

3.3.1 UMAP

We set the number of neighbors to fifteen, and the minimum distance to zero.

3.3.2 HDBSCAN

We set the minimum number of samples in a cluster to 1% of the population in each age bracket. If a cluster has a
smaller number of samples, it is considered an outlier. We set the number of samples in a neighborhood for a sample
to be considered as a core sample to 5. Finally, we set the distance threshold that merges the clusters whose distance
is below this threshold to 0.3 for the 70 and 80 age brackets, 0.7 for 40 and 60, and 1 for 30 and 50 based on the
distribution of the sample points in the UMAP plot.

3.3.3 DCNN

For training the model, the batch size was set to two. Adam’s optimizer was used with a learning rate of 0.01. We also
used a reduce learning rate on plateau scheduler with a factor of 0.3 and a patience of five.

4 Results and Discussion

4.1 Establishing the Normal Spine

Our 15% population threshold for age-based clusters described in Section 2.3 resulted in 32% to 54% of spines defined
as abnormal across age brackets, as shown in Figure 3. We labeled normal clusters based on the primary conditions that
were observed in the majority of samples in the cluster.

In the 30-year-old age bracket, having one to three mild lumbar disc bulges is the dominant cluster (32% of the
population). The next cluster represents 27% of the population where most participants did not have a clinically
significant finding. In the 40-year-old population, the population percentage of mild lumbar disc bulges is increased
but divided into two groups based on having less or equal to 3 mild cervical disc osteophytes or between 1 to 3 mild
cervical disc bulges. Moreover, the percentage of the population without a clinically significant finding reduced from
27% to 15%.

The two clusters based on mild lumbar disc bulges either with mild cervical disc osteophyte or mild cervical disc bulge
exist in the 50-, 60-, and 70-year-old brackets as well. The only difference is the number of occurrences in normal
spines increases with age. Furthermore, the non-clinically significant findings cluster is not considered normal in these
age groups. Finally, in the 80-year-old group, mild cervical uncovertebral osteophyte is another condition in addition to
mild lumbar disc bulge and mild cervical disc osteophyte.

4.2 Model Results

Model results comparing different age estimation models are shown in Table 3. These results are based on model
evaluation of the 1069 normal spine series in the test set. While looking at the performance of the models with and
without bias correction in Table 3, we note that although bias correction has increased the MAE, it has reduced the
WMAE for all models except the proposed model where the WMAE remained unchanged. We see this because our data
has an imbalanced age distribution with many cases close to the overall mean age in our sample (Figure 2). Uncorrected
predictions tend to be biased towards these mean ages, while bias correction removes the bias toward the mean and
makes the error uniform. As a result bias correction increased the MAE, but the WMAE that computes error uniformly
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(a) 30-year-old age bracket (b) 40-year-old age bracket

(c) 50-year-old age bracket (d) 60-year-old age bracket

(e) 70-year-old age bracket (f) 80-year-old age bracket

Figure 3: Clusters based on UMAP-reduced spine conditions. Only clusters that were more than 15% of the population
were kept and the rest merged into one. We labeled the clusters based on the dominant conditions in the cluster. The
population percentage of each cluster is written in front of the label.
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Table 3: Comparison of age estimation models on normal data based on Mean Absolute Error (MAE) in years, R2, and
age bracket weighted MAE (WMAE) with and without Bias Correction (BC). Bold numbers represent the best results,
while underlined numbers represent second-best results.

Model Without BC With BC
MAE R2 WMAE MAE R2 WMAE

Data size 85 samples 9.77 -0.03 11.51 9.76 -0.04 10.55
850 samples 4.82 0.75 5.57 5.33 0.69 5.50

Loss Smooth-L1 3.60 0.86 4.47 3.94 0.83 4.00

Regions
Cervical 4.93 0.75 5.68 5.57 0.65 5.61
Thoracic 4.02 0.82 4.77 4.57 0.77 4.58
Lumbar 3.89 0.83 4.67 4.35 0.79 4.57

Proposed model 3.47 0.87 3.60 3.67 0.85 3.60

Table 4: Average years between scans, SAG intraclass correlation coefficient (ICC) and 95% bootstrap confidence
intervals of patients with two scans in our cohort.

Subgroup n Avg Years ICC
Full test set 303 1.59 0.73 (0.68, 0.78)

Male 172 1.60 0.72 (0.64, 0.79)
Female 131 1.56 0.74 (0.63, 0.81)

and independent of the imbalanced distribution across age brackets, declined. This result suggests that performing
bias correction improved age estimation for our DCNN model. For the remainder of this manuscript, the spine age
estimation refers to bias corrected values.

4.2.1 Size of Dataset

To evaluate the effect of dataset size on model performance, we tested our model on subsets of 85 and 850 samples in
addition to the full dataset of 8491 series used for training the proposed model. The 85 samples subset represents 1% of
the data and is larger than the largest dataset previously used for predicting spine age [35, 36]. The 850-sample model
represents the performance using 10% of the data. It can be observed in Table 3 that increasing the training set size
improves performance. Training with 85, 850, and 8491 series resulted in R2 of −0.04, 0.69, and 0.85, respectively.

4.2.2 Choice of the Loss Function

We trained the proposed DCNN model using the MSE (L2) loss vs. smooth-L1 loss and compared their respective R2

on the test set. The results of this experiment are shown in Table 3. L2 loss showed a 0.02 improvement in R2 and a
reduction of 0.27 and 0.40 years in MAE and WMAE, respectively when compared to smooth-L1 loss.

4.2.3 Region Specific vs. Whole Spine Model

Are specific regions of the spine a better indicator of spine age? In order to answer this question, we trained our model
on masked inputs from different regions and compared their performance against the proposed whole spine model. The
segmentation model [37] is capable of detecting lumbar, thoracic, and cervical vertebrae. We used this feature to keep
only one of these regions and mask the rest of the image. As seen in Table 3, the lumbar region exhibits improved
performance compared to cervical and thoracic. This shows that aging is more apparent in the lumbar back region [42].
Furthermore, the model trained on the whole spine region shows an improved performance of 0.06 in R2 compared to
the model trained only on the lumbar region. This suggests that all regions of the spine are important for the assessment
of the biological spine age.

4.2.4 Repeat Scan Stability

We evaluated model predictions on the 303 individuals who received two scans in the 8528 series in our test set. We
expect repeat scans done on the same individual in a short time frame to have similar predicted ages. Results of these
multiple scan predictions are shown in Table 4. We see moderately strong stability in our spine age predictions between
scans, with an intraclass correlation of 0.73. We note that we do not expect perfect stability given there was an average
of 1.6 years between scans and we expect biological and chronological aging differences between scans.
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Figure 4: Absolute error on the normal test set grouped based on gender and age bracket

4.3 Analysis of Large Spine Age Differences

In Figure 4, we illustrate the absolute error of the normal test set in years based on gender and age brackets. Upon
conducting inference on the full-test set, we identified 30 instances where the discrepancy between chronological age
and spine age exceeded 15 years. A thorough examination of these cases, supplemented by radiology reports and expert
feedback, revealed that 23 of those cases were consistent with expected clinical patterns. For instance, we had a healthy
77-year-old participant whose spine age was 37. Of the remaining 7 samples, 2 of them had artifacts in the MR images,
the segmentation model failed in 1 of the instances to properly mask the spine, and the spine age estimation model
failed in 4 cases. The failure description is as follows:

1. A 77-year-old participant whose spine age was estimated to be 39 years. However, based on expert feedback
a spine age estimation between 45 to 50 years appears to be more consistent with the participant’s spine
condition. There are areas of increased intensity, such as C6 vertebra. Looking at the Grad-CAM the model
has a high attention on C6 but was unable to predict the spine age more accurately.

2. A 80-year-old participant with a vertebral fracture whose spine age was estimated at 63 years. The model has
mostly focused on the disc bulges and has failed to attend to the vertebral fracture.

3. A 57-year-old participant whose spine age was estimated at 74 years. There is a loss of thoracic and cervical
curvature to some degree but there is nothing specific to explain the age overestimation.

4. A 61-year-old participant whose spine age was estimated at 77 years. There is loss of intervertebral disc space
at upper thoracic levels and slight rightward scoliosis but nothing special to indicate the overestimated spine
age. After looking into Grad-CAM heatmaps, we realized that the model has focused on regions not specific
to the spine, such as areas near the brain.

4.4 Grad-CAM Results

To interpret the model predictions, we used Grad-CAM [43] to assign heatmaps to each region based on the contribution
of the region in the final output. We generated two-dimensional heatmaps based on the fifth block of the model. The
heatmaps are adjusted for a better contrast based on f(x) = max(ln(288x), 1). The output of the function is visualized
on the middle frame of the series in Figure 5. It is important to note that the volume has been reduced to one channel at
the fifth block, so it is not possible to generate a 3D Grad-CAM heatmap at this layer.

Across all images in Figure 5, it can be seen that the model focuses on the disc bulges as one of the main indicators of
aging. The second image from the left shows a relatively healthy spine for a 77 year old, with a predicted spine age of
34.75 years. The third image is the series the model has attended to C6 as radiologists have suggested, but focused
more on disc bulges. Based on radiology feedback, the spine age should be younger than the chronological age but
around 45 to 50 years, not 39 years. The last picture depicts a participant whose spine has degenerated significantly
compared to their chronological age.

4.5 Spine Age Gap as a Biomarker for Spine Health

In this section, we explore the relationship between spine conditions, lifestyle factors, and predicted spine age.
Specifically, we aim to determine whether the gap between chronological age and predicted spine age is associated with
clinically relevant spine conditions, and whether this spine age gap can be used as a biomarker for overall spine health.

10
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1
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Figure 5: Grad-CAM heatmap on the middle frame of the MRI for four different patients. The values are adjusted based
on f(x) = max(ln(288x), 1) to have better contrast.

We begin by quantifying the associations between SAG and spinal conditions in Table 5. We fit separate linear regression
models using lumbar degenerative conditions, spinal structural and canal pathologies, or lifestyle factors as covariates,
with SAG as the predicted outcome. Lumbar degenerative conditions were categorized and in conditions with multiple
severities cases were only assigned to the most severe category present. We observe that lumbar disc bulges and
osteophytes are significantly associated with SAG, with the occurrence of a severe disc bulge resulting in a predicted
increased SAG of 2.96 years on average. Several spinal and canal pathologies are also associated with an increased
SAG, including spinal stenosis, fractures, and spinal canal narrowing. We find similar associations between SAG and
cervical degenerative conditions (see the Appendix for details).

Examining the association between SAG and lifestyle factors, we find higher levels of smoking and physically
demanding work are associated with an increase in SAG, while vigorous exercise is associated with a decrease in
SAG. This association with between spine health and smoking aligns with previous studies [44, 45] that identified
an association between smoking and intervertebral disc degeneration, as well as changes in vertebral bone structure.
Alcohol consumption has only a mild association with SAG, which again aligns with previous research indicating no
substantial relationship between alcohol intake and spinal degeneration [46, 47, 48, 49].

Next, we explore whether large spine age gaps are associated with an increased likelihood of clinically relevant spinal
conditions. We compare the odds of degenerative lumbar and spinal structural conditions in the test set of cases where
individuals had a SAG of greater than 5, with cases where individuals had a SAG of less than -5 (Figure 6). We find the
odds of individuals having lumbar disc bulges or osteophytes much higher in the group with SAG > 5. Individuals
with a large positive SAG have odds of moderate disc bulges four-times higher than individuals with a large negative
SAG, and this grows to eight-fold higher for severe disc bulges. Similarly, the odds of spinal fractures, stenosis,
spondylolisthesis, and canal narrowing are two- to four-times larger in individuals with a large positive SAG.

The relationship between spine health and lifestyle factors may change over chronological age. For example, it may be
that performing physically demanding work degrades spine health when individuals are young. However, for older
individuals, the ability to perform physically demanding work at all may suggest better spine health relative to those
not performing such work. This reverse in relationship over time is exactly what we see when comparing SAG and
actual age in individuals who do and do not perform physically demanding work (Figure 7). Average SAG is higher for
younger individuals performing physically demanding work, but lower for older individuals. This shows that SAG may
be a relevant marker of overall spine health.
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Table 5: Linear regression coefficients and 95% confidence intervals (CIs) quantifying the association between lumbar
degenerative conditions, spine structural and canal pathologies, and lifestyle factors with spine-age gap. Separate
regression models were fit for lumbar degenerate conditions, spinal structural pathologies, and lifestyle factors. In all
cases models controlled for biological sex.

Condition n Effect (95% CI)

Lumbar degenerative
spinal conditions

Mild disc bulge (No.>2) 801 1.27 (0.92, 1.63)∗
Moderate disc bulge (No.>1) 85 1.58 (0.55, 2.61)∗
Severe disc bulge (No.>0) 12 2.96 (0.27, 5.65)∗
Mild disc dessication (No.>1) 315 -0.30 (-0.84, 0.25)
Moderate disc dessication (No.>0) 295 0.02 (-0.55, 0.59)
Severe disc dessication (No.>0) 212 0.20 (-0.48, 0.88)
Near complete disc dessication (No.>0) 66 -0.59 (-1.76, 0.59)
Disc annular fissure (No.>0) 781 0.24 (-0.12, 0.59)
Vertebral endplate change (No.>0) 547 0.19 (-0.26, 0.64)
Mild disc osteophyte (No.>1) 630 2.34 (1.95, 2.73)∗
Moderate disc osteophyte (No.>0) 36 2.46 (0.88, 4.03)∗
Mild disc protrusion (No.>1) 249 0.41 (-0.19, 1.02)
Moderate disc protrusion (No.>0) 94 0.54 (-0.43, 1.51)
Mild disc extrusion (No.>0) 71 -0.59 (-1.70, 0.52)

Spinal structural and
canal pathologies

Spondylolisthesis 722 0.91 (0.56, 1.26)∗
Scoliosis 1477 0.64 (0.37, 0.91)∗
Kyphosis or lordosis 3061 0.45 (0.23, 0.66)∗
Fracture 229 1.45 (0.82, 2.07)∗
Spinal stenosis 125 1.87 (1.03, 2.72)∗
Congenital spinal canal narrowing 197 1.18 (0.50, 1.85)∗
Cord abnormalities 194 0.22 (-0.46, 0.90)
Transitional vertebra 542 -0.07 (-0.49, 0.34)
Tralov perineural cyst 601 -0.30 (-0.70, 0.10)

Lifestyle factors

Packs per day smoked ‡ 2302 0.93 (0.64, 1.22)∗

Days per week consuming alcohol ‡ 6136 0.08 (0.03, 0.13)∗

Time sedentary ‡ 8332 -0.01 (-0.04, 0.03)
Physically moderate work 1001 0.29 (-0.03, 0.62)
Physically heavy work 488 0.67 (0.22, 1.12)∗
Moderate exercise 2146 -0.40 (-0.70, -0.11)∗
Vigorous exercise 4285 -0.79 (-1.05, -0.52)∗

∗ statistically significant effects. ‡ continuous variables, with counts representing the number greater than zero.

5 Conclusion

We believe this work is a significant step towards understanding spine health and its key factors. By analyzing radiology
reports, we developed a data-driven framework for detecting typical age-related spine degradation in different age
groups, assessed alternate approaches to achieve optimal model performance for predicting spine age, and demonstrated
that SAG is an indicator of spine health based on its associations with spinal conditions and lifestyle factors.

This study is the first to utilize deep learning and convolutional neural networks to estimate spine age based on sagittal
T2-weighted MRI series. We developed a network inspired by brain age estimation research to estimate spine age. Our
experiments were conducted on a vast dataset of over 18,000 MRI series and 17,000 participants, with a detailed study
on the clinical relevance of SAG and spine conditions in more than 8,500 MRI series.

One limitation of our work is the lack of data on rare or severe conditions as the scans were primarily for preventive
health screening. Hospitals that deal with patients with these rare conditions may enhance model performance with
additional data. For example, conditions like soft tissue edema and severe lumbar disc osteophyte were rare in our
dataset, limiting our ability to analyze model performance on these conditions. More data may also help improve our
robustness to spine fractures, which was missed in one of the failure cases.

Future work includes:

1. Investigating the relationship between performance improvement and clinical findings by using more data,
especially data with rare or severe spine conditions.
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Figure 6: Odds ratios (OR) for lumbar degenerative and spinal structural conditions comparing cases with large positive
spine age gaps (greater than 5 years) and large negative spine age gaps (less than -5 years). The x-axis depicts odds
ratios between large and small spine age groups, with horizontal lines representing 95% confidence intervals for the
ORs.

Figure 7: Relationship between spine-age gap and actual age in individuals who do and do not perform physically
demanding work.

2. In our current model, we utilized a Deep Convolutional Neural Network. There is potential to investigate
state-of-the-art deep learning models, such as vision transformers, which could enhance both the model
performance and the clinical findings.

3. Additionally, we employed a combination of UMAP and HDBSCAN to identify normal and abnormal spine
groups within age brackets. Future research could explore more effective methods to replace these techniques.
For example, an encoder-decoder-based approach could be used for dimensionality reduction instead of UMAP,
providing more meaningful features and potentially improving the identification of normal populations.

4. Furthermore, our technique of identifying normal participants, estimating age, and analyzing clinical relevance
can be applied to other organs, such as prostate, kidney, and liver.
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Appendix

Table 6: Linear regression coefficients and 95% confidence intervals (CIs) quantifying the association between cervical
and thoracic degenerative conditions with spine-age gap. Separate regression models were fit for cervical and thoracic
degenerate conditions. In all cases models controlled for biological sex.

Condition n Effect (95% CI)

Cervical degenerative
spinal conditions

Mild disc bulge (No.>2) 459 0.64 (0.19, 1.10)∗
Moderate disc bulge (No.>1) 32 2.26 (0.60, 3.92)∗
Severe disc bulge (No.>0) 9 1.09 (-2.03, 4.21)
Mild disc dessication (No.>1) 243 -0.23 (-0.85, 0.38)
Moderate disc dessication (No.>0) 210 0.44 (-0.23, 1.10)
Severe disc dessication (No.>0) 124 -0.03 (-0.89, 0.84)
Near complete disc dessication (No.>0) 27 -1.14 (-2.94, 0.67)
Disc annular fissure (No.>0) 79 0.18 (-0.88, 1.25)
Vertebral endplate change (No.>0) 208 0.06 (-0.61, 0.74)
Mild disc osteophyte (No.>1) 1805 1.12 (0.86, 1.38)∗
Moderate disc osteophyte (No.>0) 276 1.09 (0.51, 1.67)∗
Mild disc protrusion (No.>1) 271 0.43 (-0.15, 1.01)
Moderate disc protrusion (No.>0) 64 1.00 (-0.17, 2.18)
Mild disc extrusion (No.>0) 12 -1.44 (-4.15, 1.26)

Thoracic degenerative
spinal conditions

Mild disc bulge (No.>2) 136 0.75 (-0.07, 1.58)
Mild disc dessication (No.>1) 96 -0.04 (-1.03, 0.94)
Moderate disc dessication (No.>0) 43 -1.01 (-2.44, 0.43)
Severe disc dessication (No.>0) 15 -3.42 (-5.87, -0.96)∗
Disc annular fissure (No.>0) 24 0.63 (-1.30, 2.56)
Vertebral endplate change (No.>0) 124 0.78 (-0.09, 1.65)
Mild disc osteophyte (No.>1) 30 1.13 (-0.59, 2.85)
Mild disc protrusion (No.>1) 177 0.67 (-0.04, 1.39)
Moderate disc protrusion (No.>0) 26 1.82 (-0.03, 3.66)
Mild disc extrusion (No.>0) 24 -1.72 (-3.64, 0.20)

∗ statistically significant effects.
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