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Abstract

Modeling realistic and interactive multi-agent behavior is
critical to autonomous driving and traffic simulation. How-
ever, existing diffusion and autoregressive approaches are
limited by iterative sampling, sequential decoding, or task-
specific designs, which hinder efficiency and reuse. We pro-
pose Masked Denoising Generation (MDG), a unified gen-
erative framework that reformulates multi-agent behavior
modeling as the reconstruction of independently noised spa-
tiotemporal tensors. Instead of relying on diffusion time
steps or discrete tokenization, MDG applies continuous,
per-agent and per-timestep noise masks that enable local-
ized denoising and controllable trajectory generation in a
single or few forward passes. This mask-driven formula-
tion generalizes across open-loop prediction, closed-loop
simulation, motion planning, and conditional generation
within one model. Trained on large-scale real-world driv-
ing datasets, MDG achieves competitive closed-loop per-
formance on the Waymo Sim Agents and nuPlan Planning
benchmarks, while providing efficient, consistent, and con-
trollable multi-agent trajectory generation. These results
position MDG as a simple yet versatile paradigm for multi-
agent behavior modeling.

1. Introduction

Multi-agent behavior modeling is a cornerstone for enabling
safe and interactive autonomous systems in complex real-
world environments [25]. Accurate and controllable behav-
ior generation supports a range of downstream tasks, from
open-loop motion prediction [36, 60, 63] to traffic simula-
tion [35, 56] and closed-loop planning [5, 47]. These tasks
are typically addressed using distinct models and objec-
tives: prediction emphasizes accuracy and diversity, simula-
tion demands controllability and interactivity, and planning
prioritizes consistency and efficiency. This separation pre-
vents models from generalizing or being reused across tasks
[18, 22, 57], hindering scalable autonomy development.
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Figure 1. Comparison of MDG with existing trajectory genera-
tion paradigms. MDG denoises masked spatiotemporal tensors un-
der varied noise-masking patterns, enabling temporal-wise, agent-
wise generation, guided conditioning, and closed-loop reuse. Un-
like autoregressive models, MDG predicts full-sequence multi-
agent futures in a single step, and unlike joint trajectory diffusion,
it supports fine-grained control with efficient, flexible sampling.

Recent advances in generative modeling have improved
realism and diversity by learning joint scene-level distri-
butions over agent behaviors [43, 44, 55]. Two major
paradigms have emerged: diffusion-based [2, 58] and au-
toregressive (AR) approaches [32, 49, 64]. However, both
paradigms exhibit inherent limitations. Joint trajectory dif-
fusion models [18, 21, 59] operate through iterative noise
removal at the scene level, which limits controllability, in-
creases computational cost when guidance is used, and may
produce out-of-distribution actions as denoising steps accu-
mulate [18]. AR generative models, which discretize con-
tinuous states or actions into tokens and rely on sequential
sampling, struggle to capture continuous dynamics and en-
force long-term guidance for specific agents. Recent ex-
tensions such as Diffusion Forcing [3] and Masked Diffu-
sion [33, 37] introduce per-element noise or partial mask-
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ing, but still rely on diffusion time-stepping or categorical

data. Consequently, existing approaches struggle to gener-

ate multi-agent behaviors that are efficient, consistent, and
easily controllable across diverse tasks.

To address these limitations, we propose Masked De-
noising Generation (MDG), a continuous, structured, and
noise mask-driven generative paradigm for multi-agent be-
havior modeling. MDG reformulates multi-agent trajectory
generation as the reconstruction of independently noised
spatiotemporal tensors rather than as iterative diffusion or
token decoding. Each agent-time position receives an inde-
pendent mask intensity that determines how much noise is
applied, enabling the model to perform localized denoising
and targeted conditioning within a single or a few forward
passes. This design combines the controllability and effi-
ciency of masked modeling with the expressiveness of con-
tinuous denoising, while avoiding the diffusion time axis
[42]. As illustrated in Fig. 1, MDG supports several in-
ference modes, such as temporal or agent-wise denoising,
conditional guidance, and closed-loop reuse. By introduc-
ing a continuous mask field over structured multi-agent tra-
jectories, MDG provides a simple yet general framework to
perform open-loop prediction, interactive simulation, and
motion planning. The main contributions of this paper are
summarized as follows:

1. We introduce Masked Denoising Generation (MDG), a
generative paradigm that models multi-agent behaviors
through mask-based denoising of spatiotemporal ten-
sors, supporting diverse behavior modeling tasks.

2. We propose a per-agent, per-timestep mask field that reg-
ulates localized denoising and enables flexible inference
modes, including temporal-wise, agent-wise, condition-
guided generation, and closed-loop reuse.

3. We demonstrate that MDG is a general framework for
behavior modeling, achieving competitive closed-loop
results on Waymo Sim Agents and nuPlan benchmark,
while supporting efficient and controllable generation.

2. Related Work

Multi-agent Behavior Modeling in Traffic Scenarios.
Modeling the joint behaviors of multiple interacting agents
is a central challenge in autonomous driving [1, 14, 15, 19,
20, 27, 34]. Traditional predictive methods, such as MTR
[40] and GameFormer [16], directly decode future trajec-
tories from historical states, achieving accurate but often
marginalized predictions that fail to capture inter-agent de-
pendencies. As generative modeling advances, recent ap-
proaches have shifted toward learning scene-level distribu-
tions over all agents’ futures, enabling richer and more in-
teractive behaviors. Models such as MotionLM [38] and
MotionDiffuser [21] improve behavioral diversity but re-
main limited to pairwise or partially joint dependencies.
More recent generative frameworks, including autoregres-

sive Transformers (e.g., Trajeglish [32], BehaviorGPT [64],
SMART [49]) and diffusion-based models (e.g., VBD [18],
SceneDiffuser [22]), have advanced multi-agent prediction
and simulation. Advanced training methods, such as closed-
loop fine-tuning [53] and reinforcement fine-tuning [17, 31]
have further enhanced performance. Despite this progress,
both AR and diffusion paradigms have intrinsic limitations.
Autoregressive models rely on discrete sequential decod-
ing, which hinders long-horizon guidance and temporal co-
herence, while diffusion-based models require slow itera-
tive sampling and struggle with fine-grained control. MDG
unifies these paradigms by replacing sequential or iterative
generation with a continuous, mask-conditioned denoising
process that reconstructs the spatiotemporal tensor in a sin-
gle step. This formulation enables MDG to produce consis-
tent, diverse, and controllable multi-agent futures.

Trajectory Diffusion Models. Diffusion models [13, 24,
41] have demonstrated strong performance in generating
continuous and temporally consistent behaviors [46, 61].
In autonomous driving, diffusion models have been ap-
plied to trajectory prediction (e.g., MotionDiffuser [22]),
scene simulation (e.g., SceneDiffuser [22], SceneDM [12],
VBD [18]), and planning (e.g., Gen-Drive [17], Diffusion-
ES [51], Diffusion-Planner [57]). However, existing ap-
proaches typically apply uniform noise across entire multi-
agent sequences and rely on iterative denoising or integra-
tion of ordinary differential equations for sample genera-
tion, which increases computational cost and yields limited
benefits under strong conditioning tasks (e.g., behavior gen-
eration in a traffic context). Recent flow-based variants for
trajectory generation, such as Leapfrog [29], TrajFlow [50],
and MoFlow [9], still depend on such iterative processes.
In contrast, MDG performs single-step masked reconstruc-
tion with per-timestep, per-agent noise, enabling localized
conditioning and efficient generation while maintaining the
expressive capacity.

Masked Generative Modeling. Masked generative mod-
eling has recently shown strong scalability across modal-
ities such as language [33, 37], video [28], and images
[10]. These approaches train models to reconstruct masked
inputs, offering an efficient alternative to stepwise gener-
ation. Inspired by this, MDG adopts a masked denois-
ing formulation, introducing independent per-token noise
levels for localized reconstruction and adaptive condition-
ing. Masked modeling has been explored in trajectory pre-
diction and generation (e.g., masked trajectory model [48]
and Forecast-MAE [4]), which demonstrate that random-
ized masking improves robustness and inference flexibility.
MDG generalizes these ideas by introducing a continuous
mask field over structured spatiotemporal tensors, combin-
ing the efficiency of masked modeling with the expressive
power of denoising.



3. Masked Denoising Generation

3.1. Preliminary

Diffusion Models. Diffusion models [13] are a family of
generative models that learn to recover structured data from
noise through iterative denoising. Let ¢(x) represent the
data distribution, and x ~ ¢(x) denote clean data sampled
from this distribution. The forward diffusion process grad-
ually adds Gaussian noise over K steps:
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where &y, is a noise schedule controlling the magnitude of
noise at step k. The reverse process learns to sequentially
denoise zj, to recover the original data. In our context, x is
structured as a spatiotemporal tensor x%, with temporal axis
t and agent axis a.

Diffusion Forcing. Diffusion forcing [3] extends standard
diffusion by assigning an independent noise level to each
element in a sequence rather than a single global timestep.
This allows the model to treat some elements as nearly clean
while others remain highly corrupted, effectively interpolat-
ing between next-token prediction and full-sequence diffu-
sion. However, it still relies on multi-step denoising and is
primarily applied to one-dimensional token sequences (e.g.,
text or video tokens), without modeling of structured spa-
tiotemporal data.

Masked Discrete Diffusion. Masked diffusion [33, 37]
represents another form of partial corruption, typically used
in discrete domains. These methods replace missing ele-
ments with a [MASK] token and train a model to recon-
struct them from the visible context. While computationally
efficient, they operate on categorical data and cannot handle
continuous-valued signals or partially noised inputs.

3.2. Masked Denoising

We propose Masked Denoising Generation (MDG), a
continuous spatiotemporal generalization of masked and
diffusion-based paradigms. The key idea is to represent
noise as a continuous mask field applied independently to
each agent-time position in the trajectory tensor. This al-
lows single-step or few-step denoising, localized condition-
ing, and controllable scene generation.

* Compared to standard diffusion, MDG supports single-
step reconstruction for efficient prediction and also admits
controlled iterative refinement when required.

e Compared to diffusion forcing, MDG generalizes per-
element noise to continuous, structured spatiotemporal
tensors with per-agent and per-timestep masking, en-
abling more flexible control.

» Compared to masked discrete diffusion, MDG represents
masking as continuous Gaussian corruption (soft masks)
instead of discrete mask tokens, permitting partial corrup-
tion and continuous outputs.

Mask-driven Corruption Process. Each element of the
trajectory tensor is assigned a noise level (mask intensity)
indicating how strongly it should be perturbed. Let m €
[0, K]T*N (N agents, T timesteps) be a noise-level mask,
where m!, specifies the noise magnitude applied to position
xt . The forward-noising process is defined as:

z=+am)Oox++/1—a(m)oe e~N(0I), (2)

where z is the noised states and « : [0, K] — [0, 1] maps
noise level values to corresponding noise scales, where K is
the maximum noise level. During training, MDG samples
noise masks across agent-time positions, and the denoiser
D learns to reconstruct the clean trajectories from the cor-
responding noised inputs:

£ =Eyme [HD(s/a(m) ®x+1/1—a(m)®em)— x||2] ,

(3)
where m ~ pysx 18 sampled from a predefined distribution.
Generation via Masked Denoising. In inference,
MDG follows a predefined denoising schedule
{mp,mp_y,...,mp}, where L is the number of de-
noising steps. Each mask m, defines the desired noise
level for every spatiotemporal position (agent and timestep)
at step £. The process begins from a fully noised state
z, ~ N(0,1I) corresponding to the highest noise mask
my, and progressively reduces the noise level toward my,
representing the clean output.

At step ¢, the model receives the current noisy state z,
and the mask my, and produces a clean estimate X, =
D(z¢, my). If iterative refinement is desired, the clean es-
timate is then re-noised according to the next mask in the
schedule for the subsequent denoising step:

ze—1 = va(me) 0%+ /1 —-a(me) e @)

At each iteration, the model predicts a clean reconstruc-
tion, which is then re-noised to the level specified by my_;
before the next call. After the final iteration, the model out-
puts z, the fully denoised trajectory ready for use.

3.3. Problem Formulation

We consider a multi-agent traffic scene involving N agents
observed over a past temporal window H. The historical

trajectories of all agents are denoted by A = {z!, Z::]fv:o,
where ¢ = 0 corresponds to the current timestep. The

environmental context, including high-definition map fea-
tures and traffic signal states, is represented by M and
S, respectively. These components form the scene con-
text ¢ = {4, M,S}. Given c, the goal is to predict
the joint future trajectories of all agents over a horizon T":
x = {z!}1=11,. Formally, the model learns a conditional
generative mapping pg(x|c). This unifies multiple down-
stream tasks: Open-loop prediction: the model generates
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Figure 2. Overview of the MDG model structure. The Scene Encoder integrates scene context, including agent states, map polylines, and
traffic lights, using modality-specific networks and a query-centric Transformer to produce a unified scene representation. An auxiliary
MLP head decodes from the representation of agents to predict trajectories as regularization. The ego route polylines are encoded via
an MLP-Mixer network. The Denoiser processes mask-conditioned noised spatiotemporal trajectory tensor through stacked Transformer
blocks with: intra-agent temporal self-attention, inter-agent interaction cross-attention, and agent-scene condition cross-attention, where
only the ego agent attends to its route context for planning tasks. A final MLP head outputs clean, denoised trajectories.

the entire future sequence x in a single or few denoising
steps; Multi-agent simulation: only a short segment of the
predicted multi-agent future is executed before re-querying
the model with updated agent histories; Closed-loop Plan-
ning: the model conditions generation on constraint, allow-
ing consistent ego-agent motion planning.

3.4. Model Structure

The MDG model is based on a Transformer encoder-
decoder architecture, designed to denoise spatiotemporal
tensors and fuse scene context for multi-agent trajectory
generation. Fig. 2 provides an overview of the model struc-
ture, and a detailed description is provided as follows. Ad-
ditional details are provided in the supplementary material.
Scene Encoder. MDG encodes a multimodal scene con-
text comprising agent states A € RN*H*xDa  vectorized
map polylines M € RN=*NwxDw "and traffic light states
S € RMs*Ps_ For planning tasks, we additionally condi-
tion on the ego agent’s navigation route R € RV *NwxDuw,
Here, N,,,, N,, N,, and N, denote the numbers of road
map polylines, ego-route polylines, waypoints, and traffic
lights, respectively; D,, D,,, and D, represent their cor-
responding feature dimensions. To process these inputs,
MDG adopts three modality-specific MLP-Mixer encoders
[45] for agents, maps, and optional ego-routes, and an MLP
encoder for traffic lights. Temporal features in A and spa-
tial features in M and R are aggregated through adaptive
max-pooling along the temporal and waypoint axes, pro-
ducing compact yet informative latent embeddings. The re-
sulting unified scene representation C € R(N+Nm+No)xD

encodes all entities in a shared latent space. Then, query-
centric Transformer layers [18, 40, 62] model high-order
dependencies among agents, maps, and signals, yielding re-
fined context features ' € RIVFTNm+N:)XD  Eor the ego
agent, route encoding is concatenated to preserve naviga-
tion intent. To stabilize encoder learning, an auxiliary MLP
head decodes C’ to predict future trajectories, providing reg-
ularization signals.

Denoiser. The denoiser operates on a noised future trajec-
tory tensor z € RV*T*D= and its associated noise mask
m € Név *Twhich specifies per-timestep, per-agent noise
magnitudes. Each token in z represents an action (accelera-
tion, yaw rate), which is propagated through a differentiable
motion model into continuous physical states (z,y, 0, v).
The resulting state tensor is encoded with an MLP, while the
noise mask is embedded separately and fused downstream.
The denoiser consists of stacked Transformer blocks that in-
terleave three specialized attention mechanisms: (1) intra-
agent temporal self-attention to model temporal dependen-
cies within each agent’s trajectory, (2) inter-agent interac-
tion cross-attention with learned inter-agent relation encod-
ing to capture multi-agent interactions, and (3) agent-scene
condition cross-attention with agent-scene relation encod-
ing to inject spatial and semantic context into trajectory re-
finement. All cross-attention modules employ relative re-
lation encodings to preserve local coordinate invariance.
For planning tasks, only the ego agent can access route-
conditioned context. The stacked denoising layers progres-
sively reconstruct clean trajectories, followed by an MLP
decoder that outputs the final denoised trajectories.



3.5. Training

MDG is trained to reconstruct clean trajectories from ar-
bitrarily noised inputs. The training objective jointly opti-
mizes denoising and auxiliary prediction losses:

L= Lq+ ALy, 5)

where L is the denoising loss and L, is the prediction loss,
and ) is the balance weight.

Given the noise mask m applied to the action sequence,
the corrupted input is z, and its corresponding physical
states (derived through the differentiable dynamics model)
are represented as § = g(D(z, m)). The per-sample denois-
ing loss encourages the model to directly reconstruct clean
states for all spatiotemporal positions:

1 N T
Lq= ﬁZZ'sz_s (6)

=1 t=1

Details of the auxiliary prediction loss £,, are provided in
the supplementary material.

We employ a linear a-scheduler that linearly distributes
noise variance across discrete noise levels in the range o €
[0.99,0.01]. Higher noise levels correspond to larger vari-
ance (lower «), while lower noise levels retain a stronger
signal component. This scheduling ensures stable learning
across denoising difficulty levels.

Training MDG with strong noise or random noise can
obscure inter-agent dependencies and hinder learning. To
address this, we introduce an adaptive masking strategy that
varies the masking rate § across samples in a batch and ap-
plies noise either along the temporal or agent dimension.
For each training sample: if temporal masking, a § fraction
of later timesteps for each agent is fully noised, while re-
maining timesteps receive progressively increasing random
noise levels; if agent masking, a § fraction of agents is fully
noised, and the rest are assigned lower, uniform noise lev-
els across timesteps. The masking rate  is uniformly dis-
tributed across samples within a batch, ensuring diverse ex-
posure to corruption patterns. This encourages the denoiser
to generalize across both temporal degradation and inter-
agent corruption, improving its ability to recover structured
multi-agent dynamics during inference. Further details are
provided in the supplementary material.

3.6. Inference

Our MDG model supports flexible inference through cus-
tomized denoising strategies tailored to diverse downstream
scenarios, as illustrated in Fig. 1.

One-step Denoising. Given the highly conditional nature
of traffic-agent interactions, MDG can generate realistic tra-
jectories in a single denoising step (L = 1). Starting from

a fully noised mask, the model produces clean rollouts di-
rectly. This strategy is well-suited for closed-loop planning,
offering better runtime efficiency.

Denoising along Time. Denoising can proceed along
the temporal axis, gradually reducing noise over time
steps. The denoised granularity can be flexibly adjusted,
with noise levels decreasing progressively for traversed
timesteps and remaining consistent across agents. This ap-
proach is effective for open-loop forecasting, promoting di-
versity and iterative refinement of multi-agent futures.
Denoising along Agent. Alternatively, denoising can be
performed agent-wise, selectively reconstructing subsets of
agents at each step. Noise levels are consistent across time
for individual agents but vary between agents. This enables
conditional behavior prediction and target-agent planning,
facilitating interactive and controllable simulation.
Long-horizon Guidance. MDG enables long-horizon con-
trol by perturbing modified trajectories (with certain objec-
tive functions) with small additive noise and re-denoising.
This approach efficiently refines trajectory adjustments
while constraining future behaviors within desired bounds,
outperforming guided diffusion methods [21, 59].
Closed-loop Result Reuse. To ensure temporal consistency
during continuous rollouts, MDG can reuse previous-step
results by shifting the latest actions and adding small pertur-
bations. This supports high-frequency planning and reduces
distributional drift caused by accumulated errors.

4. Experiments

4.1. Experimental Setup

Datasets. For the simulation and prediction tasks, we em-
ploy the Waymo Open Motion Dataset (WOMD) [8], which
contains 486,995 training scenarios, each covering 9 sec-
onds of agent trajectories with the corresponding map data.
To enable closed-loop simulation, we use the Waymax Sim-
ulator [11] for roll-out. For planning evaluation, we adopt
the nuPlan dataset [23], which comprises approximately
1,300 hours of real-world driving data. During training, we
include all scenario types from the nuPlan dataset while lim-
iting each type to a maximum of 4,000 scenarios, resulting
in a total of 176,218 training samples.

Implementation Details. Our MDG model consists of six
query-centric Transformer encoder layers and two denoiser
blocks, each containing three Transformer layers. The hid-
den dimension is set to D = 256, leading to a total of ap-
proximately 10 million parameters. We adopt a five-level
noise schedule (K = 5), where the schedule parameter « in
Eq. (2) is linearly distributed from 0.99 to 0.01. Additional
training details are provided in the supplementary material.
Overview. MDG adopts a unified formulation and model-
ing for multi-agent behavior generation, enabling a single
model to handle diverse tasks without task-specific adapta-



Table 1. Closed-loop Multi-Agent Simulation Results on the Waymo Sim Agents Benchmark. * denotes results from the 2024 benchmark.

Agent Policy Realism Meta Kinematic Interactive Map-based minADE
Metric (1) Metric (1) Metric (1) Metric (1) [m] (})
VBD* [18] 0.7200 0.4169 0.7819 0.7207 1.4743
BehaviorGPT* [64] 0.7473 0.4333 0.7997 0.7636 1.4147
SMART-Large* [49] 0.7614 0.4786 0.8066 0.7682 1.3728
DRoOPE* [56] 0.7625 0.4779 0.8065 0.7715 1.2626
UniMM [26] 0.7829 0.4914 0.8089 0.9161 1.2949
SMART-CLSFT [53] 0.7846 0.4931 0.8106 0.9177 1.3065
TrajTok [54] 0.7852 0.4887 0.8116 0.9207 1.3179
SMART-R1 [31] 0.7858 0.4944 0.8110 0.9201 1.2885
MDG (1-step, closed-loop) | 0.7844 | 04928 08099 | 09183 1.3123

tions. Its one-stage training and versatile denoising facili-
tate both efficient closed-loop rollout and diverse open-loop
prediction. The following experiments demonstrate the
generality and effectiveness of MDG across a wide range
of traffic behavior modeling tasks.

4.2. Closed-loop Tasks

4.2.1. Multi-Agent Simulation

Task Description. The objective of this task is to generate
32 future trajectories for up to 128 agents per scenario, each
spanning 8 seconds and conditioned on 1 second of histor-
ical context. Agent trajectories are produced in a closed-
loop manner using our MDG model in one-step denoising
mode, which directly predicts clean samples and executes
them within the Waymax simulator. Simulations are per-
formed with a replanning frequency of 1 Hz. We follow the
official evaluation protocol of [30], which includes metrics
evaluating motion realism, agent interactions, map compli-
ance, and displacement error (minADE). The overall real-
ism meta-metric is then derived as the primary metric.
Results. As shown in Tab. I, MDG achieves competi-
tive performance on the Waymo Sim Agents Benchmark,
closely matching the best results across core metrics, with
only marginal differences (< 0.2%). Unlike SMART-based
models (AR) such as SMART-R1 and SMART-CLSFT,
which rely on multi-stage training and partially open-loop
rollouts, MDG operates fully in closed-loop with a single-
stage training. These results demonstrate that the proposed
one-step denoising mode effectively captures multi-agent
dynamics without requiring complex supervision or objec-
tives. Additional closed-loop simulation results are pro-
vided in the supplementary material, and a qualitative ex-
ample is shown in Fig. 3.

4.2.2. Ego-Agent Planning

Task Description. This task evaluates the ability of navi-
gating the ego agent along a predefined route in a closed-
loop simulation environment. We evaluate on the nuPlan
Vall4 [7] and Testl4 [5] benchmarks under both non-
reactive and reactive agent behavior modes. The closed-

Table 2. Closed-loop Motion Planning Results on the nuPlan
Vall4 and Test14 Benchmarks. NR and R denote simulation with
non-reactive and reactive agent settings, respectively. * denotes
methods that incorporate prior knowledge or rules about scoring.

Pl \ Val14 Test14
anner

| NR() R(M® NR({T) R®)
IDM 75.60 77.33  70.39 7442
GameFormer [16] 79.94  79.78 83.88  82.05
PlanTF [6] 84.27 7695 85.62 79.58
PLUTO [5] 88.89  78.11 89.90  78.62
Diffusion Planner [57] | 89.87 82.80 89.19 82.93
PDM-Closed* [7] 92.84 9212 90.05 91.63
CarPlanner* [52] 91.45 - 94.07 91.10
MDG (1-step) 88.85 81.32 8843 81.10
MDG (1-step, reuse) 90.45 83.89 90.16 83.21

loop score (CLS) is computed as the average across all
scenarios, incorporating metrics such as Ego Progress, No
At-Fault Collisions, and Drivable Area Compliance, where
higher values indicate better performance. Each simulation
scenario lasts 15 seconds and runs at 10 Hz.

Results. As shown in Tab. 2, MDG demonstrates strong
closed-loop planning performance on the nuPlan bench-
marks. The MDG (reuse I-step) variant achieves the best
overall scores, surpassing the one-step version by selec-
tively reusing ego-agent actions from the previous step,
thereby enhancing trajectory consistency. Compared to pre-
vious diffusion-based planners, MDG attains higher scores,
indicating improved performance in dynamic environments.
While methods that incorporate explicit priors or rule-
based scoring (i.e., CarPlanner and PDM-Closed) achieve
marginally higher scores, MDG delivers comparable per-
formance without relying on such heuristics, highlighting
its generality and scalability.

4.3. Open-loop Tasks
4.3.1. Multi-modal Motion Prediction

Task Description. This task evaluates the model’s ability to
predict six joint future trajectories for all agents in a scene,
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Figure 3. Qualitative results of MDG in closed-loop multi-agent simulation and ego-agent planning tasks. MDG controls all agents in an
interactive, map-compliant manner and navigates the ego vehicle effectively in complex scenarios.

with a fixed prediction horizon of 8 seconds. Experiments
are conducted on the WOMD validation split. We report
three evaluation metrics: collision rate (CR) to assess scene-
level consistency of predictions; scene average displace-
ment error (SADE), which quantifies the overall accuracy of
the predicted trajectories; and minimum SADE (minSADE),
which reflects the quality of the most accurate prediction.
All metrics are computed over agents labeled as modeled.
The difference between SADE and minSADE can provide
insight into the diversity of the prediction results. We also
explore different inference modes for our MDG model, such
as denoising along time and agent axes.

Results. Quantitative results in Tab. 3 demonstrate that
MDG achieves the best overall performance on the WOMD
validation set. The MTR baseline shows the highest col-
lision rate, indicating limited scene-level consistency due
to marginal predictions. Both VBD and SMART achieve
strong results, while MDG (1-step) achieves the lowest col-
lision rate, and MDG (temporal, 5-step) achieves the lowest
minSADE metric. Increasing the number of denoising steps
(along temporal or agent dimensions) generally enhances
prediction diversity, as reflected by higher SADE and lower
minSADE, although excessive denoising steps may still
slightly degrade accuracy due to out-of-distribution sam-
pling. Qualitative results in Fig. 4 further illustrate that
MDG with five-step temporal denoising generates richer
and more diverse multi-agent behaviors compared to the
one-step setting. Additional results are provided in the sup-
plementary material.

4.3.2. Controllable Generation

Task Description. This task evaluates controllable scenario
generation, where the behaviors of target agents are condi-
tioned on predefined goals. To evaluate both controllability

Table 3. Open-loop Prediction Results on WOMD Validation Set

Method ‘ CR [%] () SADE () minSADE (])
MTR [40] 9.990 3.171 2.014
VBD [18] 6.427 2.988 2.006
SMART [53] 4.993 2.896 1.849
MDG (1-step) 4.415 2.755 1.951
MDG (time 5-step) 4.875 3.122 1.840
MDG (agent 5-step) 4.641 2.994 1.863
MDG (time 10-step) 5.026 3.233 1.964
MDG (agent 10-step) 4.981 3.107 1.916
MDG (time 20-step) 5.071 3.279 2.050

and scene consistency, we adopt an open-loop generation
setting and produce three samples with different random
seeds. Specifically, ground-truth goals are assigned to the
labeled target agents, and the model generates trajectories
for all agents in the scene. For MDG with multi-step guid-
ance, we apply denoising along the agent axis. We use the
following evaluation metrics: collision rate (CR), SADE,
and goal-reach rate (GR). These metrics quantify how ef-
fectively the assigned agents achieve the desired target be-
haviors while preserving the coherence of the scene. We
randomly select 1K scenarios from the WOMD validation
set for evaluation. The detailed guidance procedure is pro-
vided in the supplementary material.

Results. The results in Tab. 4 indicate that the MDG model
achieves better controllability and scene consistency com-
pared to the guided VBD model. MDG attains higher goal-
reach rates and lower collision rates, indicating a better bal-
ance between goal satisfaction and scene consistency. For
the MTR model, directly selecting the trajectory closest to
the target goal yields the highest GR and lowest SADE,
but this heuristic approach significantly degrades scene con-
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Figure 4. Qualitative results of MDG in multi-agent open-loop prediction. The one-step denoising mode can produce plausible and
interactive scenarios, but with limited sample diversity. By using multi-step denoising along the temporal axis, the generated scenarios
exhibit greater diversity, and agents display obvious multimodal behaviors.
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Figure 5. Illustration of the controllable generation task. Goals are
assigned to target agents, and MDG guides them to reach the des-
ignated goals while maintaining reactions for surrounding agents.

sistency, as reflected in increased collision rates. Among
different inference modes, the 5-step guidance offers the
best trade-off between controllability and consistency, out-
performing 1-step and 10-step settings. Runtime compar-
isons in Tab. 5 further show that MDG significantly reduces
computation overhead compared to diffusion-based (VBD)
guidance, highlighting its efficiency for controllable sce-
nario generation.

Table 4. Results on Controllable Scenario Generation

Method | CR[%] (1) GR[%](1) SADE (})
MTR (goal) 15.1320.08 69.3+0.05 2.386-:0.002
VBD (guide) 9.83+£0.09 43.840.06 3.40640.006
MDG (guide 1-step) | 5.0320.20 36.440.16 2.88620.002
MDG (guide 5-step) | 5.4240.03 48.94+0.21 2.919-£0.007
MDG (guide 10-step) | 6.3940.26 48.5+£0.23 3.35740.001

4.4. Ablation Study

Effect of Training Noise Masking. We investigate the
effect of different noise-masking strategies during MDG
training, including random, binary, and multi-level mask-
ing. All models are tested with 5-step denoising, and re-

Table 5. Comparison of Runtime Performance (ms, mean = std)

Model AR 1-step 5-step  S-step Guidance

SMART|253.8+26.9 - - -
VBD - 282.2+41.8 1155.0+£94.6  9076.6+62.3
MDG - 252.6+49.4 1115.2+45.1 1160.7+48.4

sults are reported in Tab. 6. When random noise levels are
used, the model fails to capture consistent spatiotemporal
patterns, leading to degraded performance. Binary masking
(K=1) shows suboptimal performance due to limited mask-
ing diversity, while excessive noise levels (K =10) add un-
necessary complexity without performance gain. Our used
configuration (K =b) achieves an effective balance between
noise variability and testing performance. Additional abla-
tion results are provided in the supplementary materials.

Table 6. Influence of Noise Masking on Open-loop Prediction

Noise Mask | CR [%] (}) SADE (}) minSADE (})

Random 12.477 4.085 3.982
Multi K = 10 4.956 3.274 1.956
Multi K =5 4.875 3.122 1.840
Binary K =1 5.635 3.374 2222

5. Conclusions

We introduce MDG, a masked denoising generative model
for multi-agent behavior modeling in traffic scenarios.
MDG leverages noise-based masking in a multi-agent spa-
tiotemporal tensor and a Transformer-based denoiser to re-
construct clean samples from arbitrarily masked inputs.
MDG achieves competitive performance in closed-loop
simulation on the Waymo Sim Agents Benchmark and in
planning on the nuPlan benchmark. MDG also proves ef-
fective in open-loop tasks such as trajectory prediction and
goal-conditioned controllable generation. Future work will
focus on improving runtime efficiency and extending MDG
to integrate user-provided text or other conditioning inputs.
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MDG: Masked Denoising Generation for Multi-Agent
Behavior Modeling in Traffic Environments

Supplementary Material

A. Model Details

A.l. Scene Encoder

Agent Encoder. The agent state tensor contains per-
timestep states for all agents, including their (z,y) coor-
dinates, heading, velocity, and bounding box dimensions
(length, width, height). All agent trajectories are trans-
formed into their respective local coordinate frames, us-
ing the final observed state as the origin. An MLP-Mixer
encoder is employed to capture both temporal dynamics
and feature interactions within each agent’s state sequence.
Specifically, the agent state tensor is processed by stacked
MLP-Mixer blocks that alternately mix information along
the temporal and feature dimensions, producing a latent ten-
sor of shape [N, H, D], where N is the number of agents,
H the historical timesteps, and D the hidden dimension.
Temporal max-pooling is then applied to summarize mo-
tion patterns across time. Each agent type is embedded via
a learnable embedding vector and added to its feature rep-
resentation. The final agent encoding has the shape [NV, D).

Map Encoder. The map tensor consists of N,,, polylines
(e.g., road centerlines, lane boundaries, crosswalks), each
with V,, waypoints described by (x,y) coordinates and
heading. All map elements are transformed into local co-
ordinates using the first waypoint of each polyline as the
origin. Each polyline is processed by an MLP-Mixer that
models both intra-polyline spatial dependencies and cross-
feature correlations. The Mixer operates on a tensor of
shape [N,,, N, D], and its outputs are aggregated by max-
pooling along the waypoint axis to produce a polyline-
level feature tensor [N,,, D]. Polyline type and associated
traffic-signal state are encoded via learnable embeddings
and added to the feature representation. The final map en-
coding has the shape [N, D].

Ego-Route Encoder. For planning tasks, we include route
polylines for the ego agent, consisting of N,. polylines, each
with N, waypoints defined by (z,y) coordinates and head-
ing. All waypoints are transformed into local coordinates
using the first waypoint of each polyline as the origin. An
MLP-Mixer encoder processes these route polylines in the
same manner as the map encoder, capturing both waypoint-
wise spatial relations and inter-feature dependencies. The
resulting ego-route encoding has shape [N, D].

Traffic Signal Encoder. Traffic signals are represented by
their stop points. Since we adopt relative spatial encoding,
only the current signal phase (e.g., red, yellow, green) is
encoded. An MLP Embedding layer converts each signal
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state into a feature tensor of shape [N, D].

Relative Relation Encoder. To model spatial relationships
among all scene elements, we compute pairwise relative at-
tributes between every pair (4, j). The relative distance and
heading are computed as follows: (1) for agents, using the
last observed position; (2) for map elements, using the first
waypoint of each polyline; and (3) for traffic signals, using
the stop point position. Self-relations are assigned a small
constant. An MLP-based Fourier Embedding relation en-
coder [62] encodes these pairwise relations into a relation
tensor of shape [N + N,, + N5, N + N,,, + Ng, D], en-
abling subsequent attention modules to incorporate spatial
context and topology-aware reasoning.

Query-centric Transformer Encoder. The Transformer
encoder is employed to extract relationships among all
scene elements. It comprises a stack of query-centric at-
tention layers, which use the same attention mechanism in
Eq. (S1). The relative relation encodings are incorporated
into this encoder. All scene elements (agents, map poly-
lines, and traffic signals) are concatenated into a tensor of
shape [N + N,,, + Ny, D], which is input to the Transformer.
After passing through several attention layers, the Trans-
former learns to capture the interactions and relationships
between the scene elements. Invalid elements are masked
out during the attention calculations. The final scene con-
text encoding retains its original shape [N + N,,, + N, D].
The relative position and heading differences between el-
ements ¢ and j are encoded as edge attributes, forming a
relation encoding tensor €'/, The relative cross-attention

q

(RCA) is defined as:
T
K 4 e
VD { e }jeﬂm] )

X {vj + eiﬂj} R
J€Q())

where q°,k7, v’ represent the query, key, and value el-
ements respectively, each containing relevant element-
centric information, and j € §(j) defines the set of indices
corresponding to neighboring elements.

A.2. Decoder

Noised Future Encoder. We first compute each agent’s
control actions (acceleration and yaw rate) from their
logged trajectories. These actions are normalized to form
a clean action tensor of shape [N, T,, 2], where T, denotes
the reduced temporal dimension obtained via action chunk-
ing, which improves computational and memory efficiency.
Gaussian noise is then applied to the clean actions, which

i

RCA(Q',K,V,e) = softmax(

(Sh



are subsequently transformed into noisy physical states (po-
sitions, headings, and velocities) through a differentiable
dynamics function, resulting in a tensor of shape [N, T, 5].
The noised states are encoded using an MLP. Mask and
timestep embeddings are then added to produce the noised
future query tensor of shape [N, T, D], serving as the input
to the denoising Transformer.
Transformer Denoiser. The denoiser consists of stacked
Transformer blocks, each containing complementary atten-
tion layers that operate over different relational dimensions:
e Intra-Agent Temporal Attention. A multi-head self-
attention layer extracts temporal dependencies within
each agent’s future trajectory.
 Inter-Agent Interaction Attention. The outputs are
passed through a cross-attention layer that models inter-
agent interactions. Invalid or missing agents are masked.
Relation encodings from the encoder are used as posi-
tional and relational priors (inter-agent relations) in this
attention computation.
¢ Agent-Scene Condition Cross-Attention. A cross-
attention layer fuses the agent features with scene context
representations from the encoder (map, traffic lights, and
agents). For planning tasks, the ego agent receives addi-
tional conditioning through cross-attention with the ego-
route encoding, which provides route-level geometric and
semantic guidance. This route information is exclusively
accessible to the ego agent. Relation encodings for agents
and scene elements (map polylines, traffic agents, traffic
lights, and optional ego-route polylines) are incorporated
into this attention process.
Residual connections are applied across all Transformer
layers to stabilize optimization and preserve gradient flow.
The final denoised latent tensor is decoded with an MLP
that outputs denoised action sequences for each agent.
Trajectory Decoder. An auxiliary MLP decoder operates
directly on the agent-specific scene context encodings to
predict future trajectories of shape [N, M, T, 3], where M
is the number of trajectory modalities. This auxiliary pre-
diction branch stabilizes training and encourages the scene
encoder to learn trajectory-relevant representations.
Differentiable Dynamic Function. We adopt the differ-
entiable dynamics function from [18] to convert predicted
agent actions (acceleration and yaw rate) into correspond-
ing physical states (positions and headings), conditioned on
each agent’s current state. As this function is differentiable,
it is integrated into the model as a trainable layer, enabling
end-to-end gradient propagation through both the kinematic
transformation and the denoising process.

A.3. Model Parameters

The primary parameters used in our MDG model are sum-
marized in Tab. S1 and Tab. S2. Separate configurations are
adopted for the Waymo and nuPlan experiments to account
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for differences in scene complexity and task requirements.
Unless otherwise specified, parameters in the nuPlan setup
are identical to those in the Waymo configuration.

B. Training Details

The training objective combines two loss components and
invalid agents and timesteps are excluded:

L=Lg+ ANy, (S2)
where Lg represents the denoising loss, and £,, is an auxil-
iary prediction loss, and A = 5 is the balance weight. The
prediction loss £, is defined as:

N
1 ] . -
Lp= ;551(52‘ —s{"), i" = argmin 8" — s{'||2,

(83)
where S£; denotes the smooth L, loss applied to the best-
predicted trajectory §;, defined as the trajectory with the
minimal Ly from the ground truth s/ t
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Figure S1. Illustration of the proposed training noise masking
strategy. Top: Temporal masking; Bottom: Agent masking. Each
column shows an example under either a high or low masking rate.

We propose a novel masking strategy that distributes the
masking rate across training batches and applies masking
randomly along either the temporal or agent axis. This ap-
proach facilitates adaptive denoising generation during in-
ference and guidance. The training procedure is detailed



Table S1. Model Parameters for Waymo Experiments

Parameter Value Description

N 128 Number of agents per scene

Np, 320 Number of map polylines

Ny 16 Number of waypoints per polyline

N, 16 Number of traffic lights

H 11 History steps

T 80 Future steps

Ta 40 Reduced future timesteps

D 256 Hidden dimension

M 6 Number of trajectory modalities in predictor
Modality encoder layers 2 Number of MLP-Mixer layers in the encoder
Encoder layers 6 Number of query-centric Transformer layers
Decoder blocks 2 Number of Transformer denoising blocks
Attention heads 8 Number of attention heads per layer
Dropout rate 0.1 Dropout probability

Feed-forward dimension 1024 Dimension of the feed-forward network
Action chunk 2 Action sequence granularity

Action mean [0.0,0.0] Mean of action distribution [acceleration, yaw rate]
Action std [1.0,0.5]  Standard deviation of action distribution [acceleration, yaw rate]

Table S2. Model Parameters for nuPlan Experiments

Description

Parameter Value
N 32
N 256
N, 32
Nuw 20
H 20
T 80

Number of agents per scene
Number of map polylines

Number of ego-route polylines
Number of waypoints per polyline

History steps
Future steps

in Algorithm 1. The strategy involves randomly select-
ing masking patterns: masking over time or masking over
agents. For each training sample, a masking rate ¢ is
assigned. When masking over time, a § fraction of the
later timesteps for each agent are fully noised, while other
timesteps are randomly assigned noise levels that progres-
sively increase. When masking over agents, a  fraction
of the agents are fully noised with the highest noise levels,
and the remaining agents are randomly assigned lower noise
levels, while the noise levels for an individual agent remain
consistent across timesteps. Importantly, the masking rate
¢ is evenly distributed across all samples in a batch to en-
sure robust learning. Fig. S1 illustrates both masking types
under high and low masking rates.

For Waymo experiments, to balance computational ef-
ficiency and model performance, we limit training to the
64 agents nearest to the labeled self-driving car (including
itself). This reduces GPU memory usage while accommo-
dating most scenarios, as they typically involve fewer than
64 valid agents. During testing, the model can scale up to
128 agents, leveraging the flexible attention mechanisms of
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the Transformer architecture.

For the nuPlan experiments, following established prac-
tice [5, 57], we apply random perturbations to the current
state as data augmentation. A short interpolation segment is
inserted to ensure a physically plausible transition, allowing
the model to remain robust to perturbations and converge
back to the ground-truth trajectory.

Training is performed on eight NVIDIA L40S GPUs us-
ing the AdamW optimizer with a weight decay of 0.01 and
BFloat16 precision. The set of training hyperparameters is
provided in Tab. S3.

C. Inference Details

Multi-step Denoising. Our proposed MDG framework of-
fers flexibility during inference by enabling multi-step gen-
eration along either the temporal axis or the agent axis. Be-
low, we elaborate on the inference process of our masked
denoising model. The inference begins by initializing the
process with full Gaussian noise, corresponding to a mask
my, that fully covers the data with noise. This noisy in-



Table S3. Hyperparameters for Model Training

Hyperparameter  Value Description

Noise levels 5 Number of distinct noise levels
Learning rate 0.0002 Initial learning rate

LR decay step 2000 Step interval for learning rate decay
LR warmup step 1000 Warmup steps at the beginning
LR decay factor 0.98 Multiplicative decay factor
Batch size 4 Number of samples per GPU
Training epochs 20 -

Gradient clip 1.0 Maximum gradient norm for clipping

Algorithm 1 Training Procedure for MDG

Algorithm 2 Inference Procedure for MDG

1: Input: Data X, Noise schedule «, Noise level K, De-
noising model Dy,

2: Output: Trained model Dy«
3: Initialize model parameters 6
4: for Each training batch X} do
5:  for Each sample x € X}, do
6: Randomly select masking type: time-axis or
agent-axis
7: Assign masking rate § € [0, 1]
8 if masking over time then
: Apply full noise to § fraction of later timesteps
10: Assign random progressively increasing noise
levels to remaining timesteps
11: else
12: Apply full noise to § fraction of agents
13: Randomly assign noise levels across timesteps
for each agent
14: end if
15: Generate noise mask m and add noise to x accord-
ing to schedule o(m)
16:  end for
17:  Perform a forward pass of the model on X,
18:  Compute loss £
19:  Backpropagate the loss and update 6 using an opti-
mizer
20: end for

put, along with the corresponding mask, is fed into the de-
noising model to generate an intermediate clean sample. In
the subsequent iteration, the generated clean sample is re-
noised according to the noise mask at the next step my,_.
This noised sample is then passed through the model for de-
noising. This iterative process continues until the final step,
where the final denoised sample is obtained. The complete
inference procedure is illustrated in Algorithm 2.

The design of denoising schedules at inference time is
important. We propose three strategies for this purpose. 1)
Single-step Denoising: The model produces a clean out-
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1: Input: Denoising step L, Noise mask schedule
{Iﬁg}g: 1.» Noise schedule «, Denoising model Dy
Output: Denoised sample X = z
Initialize z;, ~ MN(0,I) {Start with full Gaussian
noise}
for /= Lto1ldo
%X < Dy(z¢, my) {Denoise the current sample }
Zy_1 \/a(ﬁlzfl)f(g + /11— Oz(ﬁlgfl)ﬁ, € ~
N(0,1) {Re-noise for next step}
end for
Return z, {Final denoised output}

put in a single pass starting from a fully masked noisy in-
put. 2) Temporal Axis Denoising: Denoising proceeds pro-
gressively along the temporal dimension, analogous to au-
toregressive next-step generation. The noise level at each
step is adjusted based on the remaining timesteps and the
predefined noise scale, enabling flexible and fine-grained
temporal refinement. 3) Agent Axis Denoising: Similar
to temporal-axis denoising, this strategy iterates along the
agent dimension instead. It offers flexibility in the order-
ing and progression of agents, which can be advantageous
in multi-agent scenarios with heterogeneous importance or
interaction structures. Fig. S2 illustrates an example of the
temporal-axis inference schedule. These flexible strategies
allow the MDG framework to tailor its denoising process to
diverse tasks and operational constraints.

Guidance Imposition. The training mechanism of the
MDG model facilitates a straightforward yet effective guid-
ance imposition method to change the behavior of selected
target agents while preserving the reactivity of other agents
and maintaining overall scene consistency. This method
involves replacing the denoised trajectories of the target
agents with modified ones and adding small controlled
noise. The adjusted trajectories are then fed into the next de-
noising iteration. To implement this, we define a guidance
noise mask g, assigning a fixed low noise level a = 0.8 to
all timesteps of the target agents while leaving other agents
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Figure S2. Example of a five-step temporal-axis denoising sched-
ule used during inference.

=1

unaffected. This mask remains consistent throughout the
denoising generation process, and the noise mask schedule
controls the denoising of other agents. This design allows
us to explicitly optimize the trajectories of the target agents
or replace them with prior prediction results, without com-
promising the overall scene dynamics. The guidance proce-
dure is illustrated in Algorithm 3. Notably, unlike diffusion-
based models [21, 59], our method avoids differentiating
through the denoiser, which shows significantly faster in-
ference speeds, enhancing its practical applicability.

Algorithm 3 Guidance Imposition Procedure for MDG

1: Input: Noise mask schedule {m;}?_; , Guidance noise
mask g, Denoising schedule «, Denoising model Dy,
Objective function J

2: Output: Denoised sample X = z

3: Initialize z;, ~ N(0,I) {Start with full Gaussian
noise }

4: for { = Lto1ldo

5. %Xy + Dy(z¢,my) {Denoise the current sample }

KM+ J(%,) {Modify the target agents’ trajectories
on the clean sample}

7.z - \/a(max(rhe_l, g)xM  +

D) {Apply
guidance mask and re-noise for the next step }

8: end for

9: Return z, {Final denoised output}

\/l—a(max(rhg_pg))e, e ~ N(O,
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D. Experiment Details

D.1. Evaluation Metrics

The evaluation metrics employed in the Waymo Sim Agents
benchmark are detailed in [30]. These metrics are designed
to quantify the distributional divergence between ground-
truth agent trajectories and simulated agent trajectories. The
evaluation contains three key aspects: kinematic features,
interactive features (e.g., time-to-collision (TTC), collision
rate, distance to the nearest object), and map-based fea-
tures (e.g., off-road and distance to road edge). A meta-
composite realism score aggregates these components and
serves as the primary evaluation metric.

For the nuPlan benchmark, we employ the closed-
loop evaluation metrics defined in [23]. These include
No At-Fault Collisions, Drivable Area Compliance, Mak-
ing Progress, Driving Direction Compliance, TTC Within
Bound, Progress Along Route Ratio, Speed Limit Compli-
ance, and Comfort. The individual scores are weighted to
produce the final Closed-Loop Score (CLS).

In addition to these benchmark-specific metrics, we

report several supplementary measures to compare our
model against state-of-the-art methods in open-loop set-
tings. These metrics include:
Collision Rate (CR). This metric measures the average col-
lision rate per scene (the number of colliding agents divided
by the total number of agents), averaged by the total number
of testing scenarios:

Ns  Na

MZMMZZl

Jj=11:=1

(§4)

where Nt is the number of test scenarios, Vs is the number
of samples, N is the total number of modeled agents in
a scenario, and s? is the trajectory of agent ¢ of sample j.
1.(s?) is an indicator function that equals 1 if the simulated
trajectory results in a collision, and 0 otherwise.

Off-road Rate (OR). This metric quantifies the proportion
of agents deviating off-road. It is calculated as the average
off-road rate per scene (samples and agents), averaged by
the total number of test scenarios:

Ns Na

MZMMZzl

j=11i=1

(S5)

where 1,(s7) is an indicator function that equals 1 if the
simulated trajectory veers off-road (e.g., outside the road
boundary), and O otherwise. Note that we exclude those
agents that are already off-road or labeled as pedestrians.

Scene Average Displacement Error (SADE). SADE com-
putes the average Euclidean distance (L2 norm) between
logged ground-truth trajectories and simulated trajectories



Table S4. Influence of the auxiliary trajectory predictor on closed-loop performance

Task Predictor Main Metric (1) minADE (m) (})

. v 0.7842 (Realism Meta) 1.3123
Waymo Sim Agents - 0.7682 1.4117
nuPlan Val14-NR f 89.75 (Clo;;:dg-g)oop Score) :

Table S5. Influence of action-to-state conversion on open-loop multi-agent trajectory prediction

Method ‘ CR (%)l OR(%)] SADE(m)] minSADE (m) |

W/ conversion 4.875 3.274 3.122 1.840

W/o conversion 8.875 6.066 4.353 2.853
across all agents and scenarios: diffusion steps, generating the final predictions under this

N N configuration.
1 1 1 &, MTR [39] is a high-performance motion prediction model
— J_ 9t
SADE = Ny Z Ng Na Z Z lsi = s ll2, (S6) achieving state-of-the-art results on the Waymo Motion Pre-
Ny j=11i=1

where s? ¢ represents the ground-truth trajectory of an agent.
Minimum SADE (minSADE). This metric captures the
minimum SADE (averaged over objects and minimum over
samples), providing a measure of the best-case alignment
with ground truth.

Na
1 1 ,
minSADE = — Y  min — st — 9, (ST
NT%) | NA;Hl  CRNCE)

Goal-reach Rate (GR). This metric measures the aver-
age number of agents that successfully reach their assigned
goals across all scenarios. An agent is considered to have
reached its goal if the distance between its position and the
goal position is less than 1 meter. The final value is obtained
by averaging over the total number of scenarios.

D.2. Baseline Methods for Open-loop Tasks

SMART [49] is a state-of-the-art autoregressive next-token
generation model for traffic agent simulation, achieving top
performance on the Waymo Sim Agents benchmark. In our
experiments, we use the tiny variant of SMART with 7M
parameters. We adopt the open-source implementation pro-
vided in CAT-K [53] and follow the default training and in-
ference settings. To ensure a fair comparison, we do not
perform closed-loop fine-tuning and only use the first-stage
behavior cloning training.

VBD [18] is a diffusion-based generative model for traf-
fic agent simulation and ranked second in the 2024 Waymo
Sim Agents Challenge. VBD performs joint trajectory dif-
fusion, where all agents at a given diffusion step share the
same noise level. We reproduce the model using the au-
thors’ open-source implementation and evaluate it with five
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diction benchmark. We adapt MTR for multi-agent simu-
lation by using the same encoder as in our model and ex-
tending the decoder to produce predictions for all agents si-
multaneously. Predefined trajectory anchors serve as initial
queries for each agent, allowing marginal predictions for all
agents in a single forward pass without iterative querying.

E. Additional Results
E.1. Ablation Studies

Influence of the Auxiliary Predictor. To examine the ef-
fect of the auxiliary trajectory predictor in the model, we
conduct an ablation study by removing the predictor head
from the model. As summarized in Tab. S4, excluding the
predictor leads to a consistent decline in performance across
both benchmarks. On the Waymo Sim Agents evaluation,
the realism meta-metric drops from 0.7842 to 0.7682, while
minADE increases from 1.3123m to 1.4117 m, reflecting
degraded simulation realism and motion accuracy. Simi-
larly, on the nuPlan Vall4 benchmark, CLS decreases from
89.75 to 86.90, indicating reduced planning performance.
These results demonstrate that the auxiliary predictor en-
hances representation learning within the scene encoder by
providing trajectory-level supervision.

Influence of Action-to-State Conversion. The
Transformer-based denoiser operates on a spatiotem-
poral representation of agent behaviors. To better capture
motion dynamics, a differentiable kinematic function
converts agent actions (e.g., acceleration and yaw rate)
into corresponding physical states (z,y,6,v), which are
then encoded and denoised. We evaluate the impact of
this action-to-state conversion on multi-agent open-loop
trajectory prediction. All models are trained with five noise
levels and evaluated using five-step temporal denoising



Table S6. Influence of model scale on open-loop multi-agent trajectory prediction

Scale # Model Params ‘ CR (%)l OR (%)) SADE(@m)] minSADE (m)/
D=128 2.5M 5.477 4.585 3714 2.358
D=256 10.0M 4.875 3.274 3.122 1.840
D=512 39.4M 4.905 3.425 3.289 1.921

Table S7. Ablation on attention mechanisms in the MDG denoiser on open-loop multi-agent trajectory prediction

Attention Modules

Maetrics

Intra-Agent Inter-Agent Agent-Scene ‘ CR (%) SADE (m)] minSADE (m) |

ANENENEN

4.875 3.122 1.840
6.821 3.580 2.060
5.612 3.460 1.990
9.964 4.070 2.310

to ensure consistent settings. As shown in Tab. S5, inte-
grating the conversion module substantially improves all
evaluation metrics. Specifically, incorporating physical
state transformation reduces collision and off-road rates by
more than 40% and decreases both SADE and minSADE
by a significant margin. This improvement highlights the
importance of embedding kinematic consistency within the
denoiser: the conversion enables the model to reason over
sequential dynamics rather than isolated action tokens, re-
sulting in more physically coherent and accurate trajectory
generation.

Influence of Model Scale. We examine the impact of
model scale on open-loop prediction performance by vary-
ing the hidden dimension of the Transformer while keep-
ing the number of layers fixed. All models are trained for
the same number of epochs, with batch sizes adjusted to
fit GPU memory constraints. As shown in Tab. S6, en-
larging the hidden dimension from 128 to 256 consistently
improves performance across all metrics. However, further
scaling to 512 yields no additional gains, indicating dimin-
ishing returns. This saturation may stem partly from smaller
batch sizes used at larger scales, but the primary factor is
likely the limited training data, which restricts the model’s
ability to fully leverage its increased capacity.

Influence of Attention in Denoiser. We analyze the con-
tribution of each attention module in the Transformer de-
noiser. As reported in Tab. S7, removing any of the three
components consistently degrades prediction performance
across all metrics, while the full model achieves the best
overall results. These findings highlight the complementary
roles of intra-agent, inter-agent, and agent-scene attention
in the denoiser.

E.2. Visualization

Denoising Process. We provide visualizations of the de-
noising process to illustrate its behavior. Fig. S3 depicts

18

the temporal denoising process over five steps. Initially,
the denoising results exhibit similarities across predictions.
However, as the process progresses, subsequent denoising
steps yield increasingly distinct outcomes for future predic-
tions. Temporal denoising primarily focuses on the agents’
dynamic behaviors, and increasing the number of denois-
ing steps enables greater variation in intermediate actions.
This, in turn, enhances the behavioral diversity across the
entire time horizon. In Fig. S4, we demonstrate the denois-
ing process along the agents over five steps. Unlike tem-
poral denoising, agent-axis denoising emphasizes iterative
trajectory-level refinement. Early denoising results are sub-
optimal for agents with high noise levels. However, as the
denoising progresses, the trajectories become increasingly
refined. This iterative process leads to a gradual determina-
tion of agents’ behaviors, ultimately producing diverse and
multi-modal joint agent trajectories.

Closed-loop Reuse. An example of the closed-loop reuse
denoising method in the Waymo dataset is illustrated in
Fig. S5. In the case of a simple one-step denoising method,
the ego agent’s planning results exhibit significant variabil-
ity across consecutive frames, even with small intervals, in-
dicating poor temporal consistency. In contrast, the closed-
loop one-step reuse method demonstrates improved tempo-
ral consistency, yielding smoother planning trajectories and
better overall planning performance.

Comparison on nuPlan Data. We compare MDG and the
Diffusion Planner [57] in a representative nuPlan scenario,
as shown in Fig. S6. The Diffusion Planner generates trajec-
tories that lack temporal coherence across planning steps,
causing the ego vehicle to drift from a safe course and ul-
timately collide with surrounding traffic. In contrast, MDG
preserves temporal consistency through its closed-loop de-
noising mechanism, enabling stable motion planning and
safe scenario completion.



Table S8. Detailed performance metrics of MDG across different benchmark splits

Benchmark ‘ Score Collision TTC Drivable area Driving direction Comfort Ego progress Speed limit

Vall4 Non-Reactive | 90.45 96.10 91.80 98.77 99.69 94.87 94.30 96.95

Vall4 Reactive 83.89 93.54 88.33 98.33 99.58 90.01 86.58 97.82

Test14 Non-Reactive | 90.16 95.93 91.46 98.78 99.69 94.51 94.08 96.85

Test14 Reactive 83.21 93.23 87.70 98.15 99.59 89.34 86.08 97.85
Step=5 EE— Step=4 E—— Step=3 — Step=2 E— Step=1

- Agent .Stop Sign Crosswalk Speed Bump Road Edge

Figure S3. Visualization of the denoising process over time with five steps. Clean, denoised samples predicted by the MDG model at
each step are shown. The process begins with similar predictions and gradually evolves to generate diverse future outcomes, emphasizing
temporal behavior refinement and increased sample diversity across the time horizon.

E.3. Detailed Benchmark Results

Tab. S8 presents the detailed metrics of the MDG (1-step
closed-reuse) method on the nuPlan benchmarks. Perfor-
mance on reactive settings is lower primarily due to the sim-
plistic IDM used for reactive agents, which produces unre-
alistic behaviors and artificial gaps.
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| 9| dwesg

Z 9dwesg

[ Agent @ Stop Sign Crosswalk Speed Bump
Figure S4. Visualization of the denoising process across agents over five steps. Clean, denoised samples predicted by the MDG model

at each step are shown. Initial predictions for agents with high noise levels are suboptimal, but iterative refinement improves trajectory
accuracy and enhances the diversity of behaviors.

1-step Closed-loop Reuse

Time=31
1-step Denoise

Time=15 _— Time=23 —_— Time=31

[ Ego Agent [ Non-controliable Agent @ Stop Sign Crosswalk Road Edge

Figure S5. Comparison of a simple one-step denoising method and the closed-loop one-step reuse denoising method. The reuse method
demonstrates improved temporal consistency and smoother planning trajectories for the ego agent.
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Figure S6. Comparison between MDG and Diffusion Planner in a nuPlan scenario. Top: The Diffusion Planner produces temporally
inconsistent trajectories, leading to a collision. Bottom: MDG maintains consistent trajectories through a closed-loop denoising strategy
and successfully completes the scenario without collisions.
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