
On-device Real-time Hand Gesture Recognition

George Sung Kanstantsin Sokal Esha Uboweja Valentin Bazarevsky Jonathan Baccash
Eduard Gabriel Bazavan Chuo-Ling Chang Matthias Grundmann

Google Research
1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA

{gsung, kanstantsin, eshauboweja, bazarevsky, jbaccash, egbazavan, chuoling, grundman}@google.com

Abstract

We present an on-device real-time hand gesture recogni-
tion (HGR) system, which detects a set of predefined static
gestures from a single RGB camera. The system consists of
two parts: a hand skeleton tracker and a gesture classifier.
We use MediaPipe Hands [14, 2] as the basis of the hand
skeleton tracker, improve the keypoint accuracy, and add the
estimation of 3D keypoints in a world metric space. We cre-
ate two different gesture classifiers, one based on heuristics
and the other using neural networks (NN).

1. Introduction

Hand gesture recognition (HGR) is a natural and intu-
itive method for human-computer interaction (HCI), and
has been an active research area [11, 10]. A wide vari-
ety of input devices and techniques have been investigated,
and skeleton-based HGR is a popular choice due to its ro-
bustness to background and light variations [7, 6]. Many
skeleton-based HGR systems rely on depth sensors, such as
RGBD cameras, which are not nearly as common as RGB
cameras on mobile devices. Our HGR, on the other hand,
requires only a single RGB camera. It does so by first pre-
dicting 3D skeleton keypoints from a camera image, then
running a gesture classifier on the keypoints.

We design two gesture classifiers with different use cases
in mind. The heuristics-based classifier is easier to create
and extend, without the need for training data, and more
intuitive to develop and troubleshoot. The NN-based clas-
sifier is more accurate and precise, especially for borderline
cases. It’s also more forgiving of errors in skeleton key-
points.

Our HGR runs real-time at 30fps on mainstream mobile
devices.

Figure 1. Our hand gesture recognition system

2. Architecture
Our HGR consists of two parts: a hand skeleton tracker

improved from MediaPipe Hands and a gesture classifier,
as shown on Figure 1. The two-step approach has a few
advantages:

• Reduced engineering effort by leveraging the hand
tracker which is already real-time, robust, and fair [4].

• Simpler gesture classifier design which processes
skeleton keypoints instead of raw pixels.

• Optimized complexity by running the gesture classifier
only when hands are tracked.

2.1. Hand Skeleton Tracker

Both our gesture classifiers operate on a keypoint level
(not with RGB data), therefore accurate hand keypoint esti-
mation is a key prerequisite for gesture classification. As
a basis for our gesture recognition pipeline, we improve
MediaPipe Hands [2] by training with a new sophisticated
hand poses data (like American Sign Language). Analysis
of various gestures indicates that robust estimation of hand
rotation angle and normalization distance is key to an ac-
curate hand tracker. The original hand rotation and scale
estimation is based on the 2D vector from the wrist to the
middle finger knuckle. For various cases (like frontal view)

ar
X

iv
:2

11
1.

00
03

8v
1 

 [
cs

.C
V

] 
 2

9 
O

ct
 2

02
1



Figure 2. Hands rotation angle derived from the sum of two vec-
tors: index to pinky base knuckle (in green) and middle base
knuckle to wrist (in red).

such normalization becomes very unstable as the normaliza-
tion distance approaches zero, which results in a significant
degradation in tracking quality. To overcome this problem,
we introduce a new algorithm similar to the approach taken
by BlazePose [5].

For our case, we define two virtual keypoints to describe
hand center, scale and rotation angle: a center keypoint and
an alignment keypoint. The center keypoint is estimated as
the average of the index, middle and pinky knuckles. The
alignment keypoint location is estimated so it forms the ro-
tation/scale vector with the center keypoint. The rotation
angle is estimated from a sum of two vectors: from the
middle base knuckle to the wrist, and from the index to the
pinky base knuckle. As the component vectors tend to be
orthogonal in the majority of cases; the resulting sum vec-
tor changes smoothly for any hand pose, and never degrades
to zero, as shown on Figure 2. This increases overall hand
tracking quality for frontal hand cases. The scalar value of
the alignment vector is estimated as the distance from the
center keypoint to the farthest knuckle of the same hand.
The new rotation and scale normalization results in a sig-
nificant quality boost for the whole hand pose estimation
pipeline: 71.3 mAP vs 66.5 mAP (for the original Medi-
aPipe Hands [2] pipeline) on our validation dataset with
complex ASL hand poses.

Accurate hand pose estimation in the 3D space is a vi-
tal component for both angle based and few-shot learning
gesture classification. It minimizes the ambiguity among
projections of the same hand pose from different observer
positions in space, and allows the gesture classification to be
invariant to rotation. Therefore, in addition to predicting the
hand pose in the screen “pixel” space, we also estimate the
pose in a world metric space relatively to the hand wrist. To
obtain a 3D hand pose ground truth in a metric space, we fit
our 2D hand annotation with a statistical and highly realis-
tic GHUM [12, 13] hand model as shown in Figure 3. Due
to the nature of perspective projection, objects of different
sizes may have the same projection on the image plane: two
objects with the same shape (bigger and smaller) will have
the same projection if placed respectively further and closer
to the camera. Therefore we have to make the following as-
sumptions when we perform the hand fitting from 2D key-

Figure 3. Sample images with overlaid 2D annotations and the cor-
responding GHUM [12] hand models fitted and rendered on top.

points: human hands have minor variations in size, those
variations are always reflected in hand shapes, and thus cov-
ered by the statistical GHUM hand model. For images with
unknown camera intrinsic parameters, we assume the focal
length is the maximum of the image width and height, and
the optical center is the center of the image. Since both
the model training and inference operate on a cropped im-
age, we normalize the absolute world coordinates such that
the origin is at the middle finger knuckle, while the scale
remains the same. We also normalize 3D coordinates in a
roll plane using virtual keypoints to be consistent with input
image transformations.

Overall, our hand tracking model achieves a mean aver-
age prediction error of 1.5cm, and provides 21 hand key-
points in a metric 3D space to the gesture classfier.

2.2. Heuristics Gesture Classifier

Based on the hand skeleton tracker, we build a single-
shot, heuristics-based classifier for a small set of static ges-
tures. We start with the simple gesture classification ap-
proach described in [14], which first derives a set of angles
between various 2D hand keypoints, then applies thresholds
to the derived angles to define a discrete state for each fin-
ger (e.g. bent or straight), and finally defines a static gesture
as a logic expression based on the finger states. To get a
more accurate set of underlying angles, we replace features
based on the 2D hand keypoints with features based on the
3D world metric hand keypoints. In order to de-correlate
the gesture classifier features and make manual threshold
picking easier, we distinguish between extrinsic and intrin-
sic features with respect to the palm pose in the 3D world
metric space during the preprocessing stage:

• The extrinsic features are composed of palm pose com-
ponents such as rotation, scale and translation. For
classification purposes, we only use the rotation pose
component of the palm represented by its three Euler
angles.



Figure 4. 3D hand keypoints decoupled from the palm pose dur-
ing the preprocessing stage. The blue hand skeleton is based on
the 2D hand keypoints. The green hand skeleton is based on the
preprocessed 3D hand keypoints.

• The intrinsic features are angles between various hand
keypoints. For classification purposes, we derive a sin-
gle feature angle for each finger with a goal of thresh-
olding them to define a discrete state (e.g. fully bent,
fully straight or neither). In accordance with the un-
derlying hand skeleton topology, each finger is repre-
sented by a base joint keypoint, two intermediate joint
keypoints and a tip keypoint. To define an individual
finger feature angle, we first introduce a 3D polygonal
chain: starting from the wrist keypoint, to the finger’s
base joint keypoint, the first intermediate joint key-
point, the second intermediate joint keypoint, and fin-
ishing at the tip keypoint. Then, we define the feature
angle as the maximum angle between the first chain
segment and each of the remaining chain segments.
Additionally, we derive a feature angle for each adja-
cent pair of fingers with the same goal of thresholding
them to define a discrete state (e.g. fingers crossed,
apart or neither).

As shown on Figure 4, removing the influence of the ex-
trinsic features from the the intrinsic features produces a
consistent 3D hand keypoint set for a fixed hand shape con-
figuration, regardless of its position on the input frames. In
turn, this significantly de-correlates features and makes it
manageable to manually pick thresholds on a larger feature
set in order to define a more complex static gesture.

As the final stage of the heuristics-based classifier, we
establish a system of 6 gesture definitions based on the fea-
tures derived from the pre-processed 3D world metric hand
keypoints. Figure 5 showcases the supported gestures. This
particular gesture set is chosen so that it covers some of the
most recognizable and common static hand gestures.

To evaluate our approach, we collect and annotate an
in-house gesture dataset. The dataset contains 1882 short
video clips that cover various angles and lighting condi-
tions for 21 static hand gestures (for the full list of gestures,
please see Appendix A). The dataset contains all 6 gestures
supported by the heuristics-based classifier (see Figure 5)

Figure 5. Visualization of gestures supported by the heuristic-
based classifier. Left-to-right: OpenPalm, Victory, ClosedFist,
PointingUp, ThumbUp, ThumbDown.

and those are used as positive samples. The remaining 15
gestures are used as negative samples. The presence of
a diverse negative sample collection allows us to evaluate
how often the classifier recognizes an unknown gesture as
a known one. The limitation of this dataset is that it’s col-
lected from only 18 users with limited variation in back-
ground. The classifier achieves 0.86% false positive rate
and 44.4% recall rate on the dataset.

2.3. NN Gesture Classifier

The dataset used in Section 2.2 is for evaluation only and
too small for training NN models. We collect and mine an-
other in-house dataset containing 7307 images from 6478
users, representing a rich variety of hand shapes of both
gestures and non-gestures in the wild. In addition to regular
positive samples we collect easy and hard Negative samples.
Please see Figure 6 for some example images.

We train an NN classifier to distinguish among six static
hand gestures, namely, OpenPalm, ClosedFist, PointingUp,
Victory, ThumbUp, ThumbDown and a background Nega-
tive class. The NN model consists of 3 fully connected lay-
ers of 50 neurons each. The model inputs are the intrinsic
and extrinsic features computed in Section 2.2. We use fo-
cal loss [8] to deal with the class imbalance, where there
are a lot more negative samples than positive samples in our
dataset.

The NN classifier achieves an average recall rate of
87.9% across the 6 static gesture classes at a false positive
rate of 1%.

3. MediaPipe Implementation
The proposed HGR system is implemented using the

open source MediaPipe framework [1]. The system adds
to MediaPipe Hands, primarily consisting of a hand-
detection and a hand-keypoint component [14, 2], an addi-
tional gesture-classification component as discussed in Sec-
tion 2.2 and 2.3.

In many applications, such as remote control, the user
gestures only once in a while but the HGR is always run-
ning in the background. In order to reduce average com-
putation requirement and maintain real-time performance
across a wide range of devices, the HGR system hand de-



Figure 6. Some examples of true positive samples for gesture
classes, easy samples for Negative hand shapes and subtle vari-
ations of hand shapes that should not be confused with the gesture
class.

tection is configured to run only as needed, capped at a
maximum frequency lower than the frequency of hand key-
point generation and gesture classification, by utilizing the
flow-control and stream-synchronization support in Medi-
aPipe [9] similar to [14]. When there’s no hand in the cam-
era view, the HGR runs hand detection at a lower frequency
to save computation and power. As soon as a hand is de-
tected, it’s tracked at a higher frequency for better accu-
racy and temporal resolution. Furthermore, GPU accelera-
tion is heavily exploited end-to-end, covering tasks like ML
model inference as well as image and tensor processing, via
OpenGL/OpenCL/Metal on mobile devices and WebGL lo-
cally in Web browsers (similar to the Web ML effort en-
abling background blur/replace in Google Meet [3]).

4. Applications
Our HGR can be used as an HCI mechanism for various

applications, such as a virtual touchscreen for desktop com-
puters, sending visual commands for robots, a controller
for virtual reality gaming systems, and a remote control for
large screen displays [11].

References
[1] MediaPipe. https://mediapipe.dev/, 2019. 3
[2] MediaPipe Hands. https://solutions.

mediapipe.dev/hands, 2019. 1, 2, 3
[3] Background Features in Google Meet, Powered by Web

ML. https://ai.googleblog.com/2020/10/
background-features-in-google-meet.html,
2020. 4

[4] MediaPipe Hands Model Card. https://mediapipe.
page.link/handmc, 2020. 1

[5] Valentin Bazarevsky, Ivan Grishchenko, Karthik Raveen-
dran, Tyler Zhu, Fan Zhang, and Matthias Grundmann.
BlazePose: On-device Real-time Body Pose Tracking, 2020.
2

[6] Quentin De Smedt, Hazem Wannous, and Jean-Philippe Van-
deborre. Skeleton-based dynamic hand gesture recognition.

In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 1–9, 2016. 1

[7] Guillaume Devineau, Fabien Moutarde, Wang Xi, and Jie
Yang. Deep learning for hand gesture recognition on skeletal
data. In 2018 13th IEEE International Conference on Auto-
matic Face & Gesture Recognition (FG 2018), pages 106–
113. IEEE, 2018. 1

[8] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 3

[9] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris Mc-
Clanahan, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-
Ling Chang, Ming Guang Yong, Juhyun Lee, Wan-Teh
Chang, Wei Hua, Manfred Georg, and Matthias Grundmann.
MediaPipe: A Framework for Building Perception Pipelines.
In CVPR Workshop on Computer Vision for AR/VR, 2019. 4

[10] Munir Oudah, Ali Al-Naji, and Javaan Chahl. Hand ges-
ture recognition based on computer vision: a review of tech-
niques. journal of Imaging, 6(8):73, 2020. 1

[11] Siddharth S Rautaray and Anupam Agrawal. Vision based
hand gesture recognition for human computer interaction: a
survey. Artificial intelligence review, 43(1):1–54, 2015. 1, 4

[12] Hongyi Xu, Eduard Gabriel Bazavan, Andrei Zanfir,
William T Freeman, Rahul Sukthankar, and Cristian Smin-
chisescu. GHUM & GHUML: Generative 3D Human
Shape and Articulated Pose Models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6184–6193, 2020. 2

[13] Andrei Zanfir, Eduard Gabriel Bazavan, Hongyi Xu,
William T. Freeman, Rahul Sukthankar, and Cristian Smin-
chisescu. Weakly Supervised 3D Human Pose and Shape
Reconstruction with Normalizing Flows. In Computer Vi-
sion – ECCV 2020, pages 465–481, 2020. 2

[14] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, George
Sung, Chuo-Ling Chang, Matthias Grundmann, and Andrei
Tkachenka. MediaPipe Hands: On-device Real-time Hand
Tracking. In CVPR Workshop on Computer Vision for Aug-
mented and Virtual Reality, Seattle, WA, 2020. 1, 2, 3, 4

https://mediapipe.dev/
https://solutions.mediapipe.dev/hands
https://solutions.mediapipe.dev/hands
https://ai.googleblog.com/2020/10/background-features-in-google-meet.html
https://ai.googleblog.com/2020/10/background-features-in-google-meet.html
https://mediapipe.page.link/handmc
https://mediapipe.page.link/handmc


Appendix A. In-house static gesture dataset:
gesture code names

1. OpenPalm
2. Victory
3. ClosedFist
4. PointingUp
5. ThumbUp
6. ThumbDown
7. OK
8. CallMe
9. IndexMiddlePointingUp

10. Three
11. Four
12. ILoveYou
13. FingerHeart
14. HandHeart
15. IndexMiddlePointingUpWithClosedThumb
16. IndexMiddlePointingUpWithOpenThumb
17. IndexPointingToCamera
18. Loser
19. PinchedFingers
20. VulcanSalute
21. SignOfTheHorns


