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Fig. 1: Given a set of RGB images and an initial 3D reconstruction (left), our inverse rendering approach is able to synthesize
novel frames and optimize the scene’s parameters (right). This includes structural parameters like point position and camera
pose as well as image settings such as exposure time and white balance.

Abstract— We present a novel point-based, differentiable
neural rendering pipeline for scene refinement and novel view
synthesis. The input are an initial estimate of the point cloud
and the camera parameters. The output are synthesized images
from arbitrary camera poses. The point cloud rendering is
performed by a differentiable renderer using multi-resolution
one-pixel point rasterization. Spatial gradients of the discrete
rasterization are approximated by the novel concept of ghost
geometry. After rendering, the neural image pyramid is passed
through a deep neural network for shading calculations and
hole-filling. A differentiable, physically-based tonemapper then
converts the intermediate output to the target image. Since all
stages of the pipeline are differentiable, we optimize all of the
scene’s parameters i.e. camera model, camera pose, point posi-
tion, point color, environment map, rendering network weights,
vignetting, camera response function, per image exposure, and
per image white balance. We show that our system is able
to synthesize sharper and more consistent novel views than
existing approaches because the initial reconstruction is refined
during training. The efficient one-pixel point rasterization
allows us to use arbitrary camera models and display scenes
with well over 100M points in real time.

I. INTRODUCTION

Synthesizing realistic virtual environments is one of the
most researched topics in computer graphics and computer
vision. An important decision is how 3D shapes should
be encoded and stored in memory. Users usually choose
between triangle meshes, voxel grids, implicit functions,
and point clouds [1], [2]. Each representation has different
advantages and disadvantages. For efficient rendering of
opaque surfaces, triangle meshes are commonly chosen.
Voxel grids are often used in volume rendering while im-
plicit functions can be used to precisely describe nonlinear
analytical surfaces. Point clouds, on the other hand, have
the advantage of being easy to use because no topology
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has to be considered, which makes them a good candidate
for intermediate output or as a representation in a scientific
context. In the early 2000s, point cloud rendering, especially
with point splatting, has been a well researched field in
computer graphics [3]. In parallel, image-based rendering
techniques gained increasing interest [4]. Based on a coarse,
reconstructed 3D model, as well as a registered set of
images of an object, novel views are synthesized. These
approaches suffer from imprecision in the input, for example,
ghosting artifacts appear if the geometry contain holes or the
input images are not perfectly aligned. Neural image based
rendering approaches such as [5] use neural networks to
remove these artifacts and can generate photo-realistic novel
views of unprecedented quality. Aliev et al. [6] show that this
is also possible by pairing a traditional point rasterizer with a
deep neural network. This is especially beneficial in the field
of 3D reconstruction because dense point clouds are often
the initial output. An unnecessary and potentially erroneous
triangulation can therefore be skipped and the reconstructed
scene directly visualized.

Our approach (see Fig. 1) builds on Aliev et al’s [6]
pipeline and improves it in various ways. In particular, we
add a physical, differentiable camera model and a differ-
entiable tone mapper, and provide a formulation for better
approximation of the spatial gradient of one-pixel point
rasterization. This differentiable pipeline allows us to not
only optimize the neural point features, but also to correct
imprecisions from the input during the training stage. So
our system adjusts the camera pose and camera model
based on the visual loss from the neural rendering network
and estimates per-image exposure and white-balance values
paired with a vignetting model and sensor response curve per
camera. Based on this cleaned and corrected input, rendering
quality is significantly improved. Further, our method is able
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to synthesize arbitrary HDR and LDR setups and to correct
under- or overexposed views. Finally, the number of param-
eters inside the deep neural network can be significantly
decreased because brightness and color changes are now
handled separately by a physically correct sensor model.
Rendering performance is therefore increased and overfitting
artifacts are reduced. In summary, the contributions of our
work are:
• An end-to-end trainable point-based neural rendering

pipeline for scene refinement and visualization.
• A differentiable rasterizer for one-pixel point splats

using the concept of ghost geometry.
• A differentiable physically-based tonemapper that mod-

els lens and sensor effects of digital photography.
• A stochastic point discarding technique for efficient

multi-layer rendering of large point clouds.
• An open source implementation1 of the proposed

method, which is easy to use and adapt to new problems.

II. RELATED WORK

A. Point-Based Rendering

Point-based rendering has been a topic of interest in
computer graphics research for some time [7]. Over the past
decades two orthogonal approaches have been emerged [3].
The first major approach is the rendering of points as oriented
discs, which are usually called splats or surfels [8], with the
radius of each disc being precomputed from the point cloud
density. To get rid of visible artifacts between neighboring
splats, the discs are rendered with a Gaussian alpha-mask
and then combined by a normalizing blend function [9]–[11].
Further extensions to surfel rendering exist, for example,
Auto Splats, a technique to automatically compute oriented
and sized splats [12]. In recent years, deep learning-based
approaches have been presented that improve image quality
of surfel rendering, especially along sharp edges [13], [14].

The second major approach to point-based graphics is
point sample rendering [15], where points are rendered as
one-pixel splats generating a sparse image of the scene.
Using iterative [16] or pyramid-based [15], [17], [18] hole-
filling approaches, the final image is reconstructed as a post
processing step. To reduce aliasing in moving scenes, points
with a similar depth value can be blended during render-
ing [19], [20]. It has been shown that software implementa-
tions [20], [21] outperform hardware accelerated rendering
through GL POINTS [22]. Recently developed approaches
replace traditional hole-filling techniques with deep neural
networks to reduce blurriness and better complete large
holes [23], [24].

B. Novel View Synthesis

Traditional novel view synthesis, which is closely related
to image-based rendering (IBR), relies on the basic principle
of warping colors from one frame to another. One approach
is to use a triangle-mesh proxy to directly warp the image
colors to a novel view [4], [25], [26]. However, imperfect

1https://github.com/darglein/ADOP

geometry leads to ghosting artifacts around silhouettes. This
can be improved by replacing hand-crafted heuristics in
the classic IBR pipeline with deep neural networks [5],
[27]–[29]. If no proxy geometry is available, learning-based
approaches have been developed that create a multi plane
image representation [30]–[33] or directly estimate the re-
quired warp-field [34]–[36]. Novel view synthesis can also
be performed by reconstructing a 3D model of the scene
and rendering it from novel view points. Thies et al. [37]
learn a neural texture on a triangle mesh which can be
rendered using traditional rasterization. The rasterized image
is then converted to RGB by a deep neural network. Other
approaches use ray-casting to automatically learn a voxel
grid [38]–[40] or an implicit function [41], [42]. It has
also been shown that point clouds are suitable geometric
proxies for novel view synthesis [23], [24]. Neural Point-
based Graphics (NPBG) [6], which is closely related to our
method, renders a point cloud with learned neural descriptors
in multiple resolutions. These images are then used to recon-
struct the final output image by a deep neural network. NPBG
is very flexible as it doesn’t require a textured triangle mesh
as proxy and shows impressive results on public datasets.
Similar to NPBG, Dai et al. show that rendering multiple
depth layers of a point cloud can also be used to synthesize
novel views [43].

C. Inverse Rendering

Inverse rendering and differentiable rendering have been
a topic of research for some time. However, major break-
throughs have only been made in recent years due to im-
proved hardware and advancements in deep learning [44]. Its
application can be challenging though: Traditional triangle
rasterization with depth-testing has no analytically correct
spatial derivative [44], [45]. Available systems therefore
either approximate the gradient [45]–[48] or approximate the
rendering itself using alpha blending along edges [49]–[51].
Volume raycasting on the other hand is differentiable by ac-
cumulating all voxel values along the ray [44]. This has been
used by multiple authors to build volumetric reconstruction
systems [52]–[54] or predict the signed distance field of an
object [55]. Instead of a voxel grid, an implicit function can
also be used inside a differentiable volumetric raycasting
framework [56]–[59]. Mildenhall et al. show with Neural
Radiance Fields (NeRF) that a deep neural network can be
trained by volumetric raycasting to store the view-dependent
radiance of an object. Due to the impressive results of
NeRF, multiple extensions and improvements have been
published in the following years [60]–[63]. Inverse rendering
has also been proposed for point cloud rasterization [44],
[64]. The spatial gradients of the points can be approxi-
mated in different ways. This includes gradient computation
along silhouettes [65], gradients for Gaussian splatting [66]–
[68], and gradient approximation using a temporary 3D
volume [69]. A different approach is taken by Lassner et al.
who render the points as small spheres instead of splats [70].
Our differentiable point rendering approach is similar to the
differentiable splatting techniques of [66], [68]. However we

https://github.com/darglein/ADOP
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Fig. 2: Overview of our point-based HDR neural rendering pipeline. The scene, consisting of a textured point cloud and an
environment map, is rasterized into a set of sparse neural images in multiple resolutions. A deep neural network reconstructs
an HDR image, which is then converted to LDR by a differentiable physically-based tonemapper. All parameters in the
rectangular boxes, as well as the neural network can be optimized simultaneously during the training stage.

render only one pixel per point, which allows our approach
to be multiple magnitudes more efficient than competing
methods [70].

III. PIPELINE OVERVIEW

Our complete end-to-end trainable neural rendering
pipeline is presented in Figure 2. As input, we use the novel
frame’s camera parameters, a point cloud where each point is
assigned to a learned neural descriptor, and an environment
map. The output is an LDR image of the scene from the
given novel viewpoint. This output image is compared to
the ground truth, for example a photograph, and the loss
is backpropagated through our rendering pipeline. Since all
steps are differentiable, we can simultaneously optimize the
scene structure, network parameters, and the sensor model.

The first step in the pipeline is the differentiable rasterizer
(Figure 2 left). It renders each point as a one-pixel-sized splat
by projecting it to image space using the camera parameters.
If the point passes the fuzzy depth-test [20] its descriptor is
blended into the neural output image. All pixels that have not
been colored by a point are filled by the background color
sampled from a spherical environment map. Since we render
points as one-pixel-sized splats, the output image might be
very sparse depending on the spatial resolution of the point
cloud and the camera distance. Therefore we render multiple
layers in different scales and let the neural rendering module
manage occlusion and illumination. Further details on the
differential rasterizer are presented after this overview in
Section IV.

The neural renderer (Figure 2 middle) takes the multi-
resolution neural image to produce a single HDR output
image. It consists of a four layer fully convolutional U-
Net with skip-connections, where the lower resolution input
images are concatenated to the intermediate feature tensors.
Downsampling is performed using average-pooling and the
images are upsampled by bilinear interpolation. As con-
volution primitives, we use gated convolutions [71] which
have been initially developed for hole-filling tasks and are
therefore well suited for sparse point input. Overall the
network architecture is similar to Aliev et al. [6] with one less
layer and a few modifications to enable HDR imaging. First,

we remove the batch-normalization layers, as they normalize
the mean and standard deviation of intermediate images to
fixed values. The total sensor irradiance is therefore lost
and cannot be propagated from a 3D point to the final
image. Additionally, we store the neural point descriptors
logarithmically if the scene’s radiance range is sizable (larger
than 1 : 400). Otherwise the neural descriptors are stored
linearly. For logarithmic descriptors, we convert them to
linear space during rasterization so that the convolution
operations only use linear brightness values.

The last step in the pipeline (Figure 2 right) is the learnable
tone mapping operator, which converts the rendered HDR
image to LDR. Our tonemapper mimics the physical lens and
sensor properties of digital cameras. It is therefore best suited
for LDR image captures of smartphones, DSLR cameras, and
video cameras. A detailed description of the tonemapper is
presented in Section V.

IV. DIFFERENTIABLE ONE-PIXEL POINT RENDERING

As already mentioned in the overview, our differentiable
rasterizer renders multiple resolutions of a textured point
cloud using one-pixel-sized splats. Formally speaking, the
resolution layer l ∈ {0,1 . . . ,L−1} of the neural image I is
the output of the render function Φl

Il = Φl(C,R, t,x,n,E,τ), (1)

where C is the camera model, (R, t) the camera pose, x the
point position, n the point normal, E the environment map,
and τ the neural texture. In the following section, we provide
an in-depth explanation of the render function Φl . After that
we show how the gradients of each input parameter can
be computed. Finally, further optimizations are presented to
improve gradient robustness and rendering efficiency.

A. Forward

The forward pass of our point rasterizer can be broken
down into three major steps, which are projection, occlusion
check, and blending. The first step is the projection of each
world point x into the image-space of layer l. Using the
camera model C and the rigid transformation from world to



Fig. 3: One-pixel point rendering with fuzzy depth testing
and threshold α = 0 on the left and α = 0.01 on the right.
Geometric aliasing is significantly reduced due to blending
of points with similar z-values.

camera-space (R, t), we define this projection as the function
P:

Pl(C,R, t,x) =
1
2l C(Rx+ t) (2)

The real valued result of P is then converted to pixel coordi-
nates by rounding it to the nearest integer. A specific world
point xi ∈ R3 is therefore projected to the pixel coordinates
pi ∈ Z2 of layer l by

pi =
⌊

Pl(C,R, t,xi)
⌉
. (3)

Note that the rounding operation makes the projection dis-
crete, which requires us to approximate its derivative (see
Section IV-B). After all points have been projected to image-
space, we discard them if they fail at least one of the
following three conditions:

Bounds Test: pix ∈ [0,w[ ∧ piy ∈ [0,h[ (4)

Normal Culling: (Rni)
T · Rxi + t
|Rxi + t|

> 0 (5)

Depth Test: z≤ (1+α)minz(pi) (6)

The last condition (6) is the fuzzy depth-test as described
in [20]. A point passes the fuzzy depth-test if its z-value
is smaller than or equal to the scaled minimum depth
value at that pixel. If the camera model does not provide
a valid z-value, we instead use the distance between the
camera and the 3D point. A large value of α in Eq. (6)
increases the number of points that pass the depth-test. This
leads to a smooth image but also can introduce artifacts
when background points are merged into the foreground. In
practice we use α = 0.01 as suggested by [20].

After the bounds check (4), normal culling (5), and fuzzy
depth-test (6), for each pixel (l,u,v) we obtain a list of
points Λl,u,v. If a pixel is not hit by any point, we sample the
output color from the environment map E using the inverse
camera projection C−1. Otherwise, we sample the texture τ

of every point and write the mean into the output image. The
blending function Bl can therefore be separately written as:

Il(u,v,Λ) =

{
E(RTC−1(u,v)) Λl,u,v = /0

1
|Λl,u,v| ∑p∈Λl,u,v

τ(p) else
(7)

Figure 3 shows two color images that have been rendered
using the one-pixel point rasterization technique described in

Fig. 4: Pixel lookup for the spatial gradient computation of
the center (dark blue) point. The white pixels are from the
background and the teal pixels are other rasterized points.

this section. We can see that with α = 0.01 (right image) the
aliasing is significantly reduced and for example the letters
are easier to read.

B. Backward

The backward pass of our point rasterizer first computes
the partial derivatives of the render function (1) w.r.t. its
parameters.

δΦ

∂C
,

δΦ

∂R
, . . . (8)

Using the chain rule, we can then compute the parameter’s
gradient w.r.t. the loss and pass it to the optimizer. The
difficult part of this calculation are the partial derivatives of
the structural parameters C,R, t and x. This will be explained
in the following section. The derivatives of the texture τ

and environment map E are straightforward and will not be
detailed in this work. The interested reader is encouraged to
study the accompanied source code.

The problem of deriving Φ w.r.t. the structural parameters
is the rounding operation Eq. (3) of our one-pixel point
rasterizer. This prevents an exact derivation of the blending
function (7) and forces us to approximate δ I

∂ p by finite
differences with a step size of h = 1. As visualized in
Figure 4, we compute this approximation by virtually shifting
p = (u,v) one pixel in each direction. The induced intensity
change of these shifts are

δ I
∂u

∣∣∣∣
p=(u+1,v)

,
δ I
∂u

∣∣∣∣
p=(u−1,v)

, . . . (9)

from which we can approximate the gradient for u (equally
for v) at the desired location with

δ I
∂u

∣∣∣∣
p=(u,v)

≈ 1
2

(
δ I
∂u

∣∣∣∣
p=(u−1,v)

+
δ I
∂u

∣∣∣∣
p=(u+1,v)

)
. (10)

To compute each induced change of Eq. (9), multiple cases
have to be considered. As shown in Figure 4, the neighboring
elements of p can either be background pixels or other
rasterized points. If the neighbor is a point, again three
difference cases have to be considered. Firstly, the virtually
shifted point can be completely behind the neighbor in which
case no intensity change would be induced. Secondly, the
shifted point can be in front of the neighbor replacing the
old color with the point’s texture. Lastly, the neighbor point
can have a similar depth value according to the fuzzy depth
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Fig. 5: Forward and backward pass of our differentiable
point rasterizer using ghost geometry. The gradients for point
position, camera pose, and camera model are only computed
for points that have been discarded by the dropout module
(ghost points). The remaining points are blended into the
neural image and contribute to the gradient of the texture
and environment map.

test (6), which causes us to have to compute the change of
the blend function (7) if p is added to the neighboring Λ. In
summary, the four cases to compute local spatial gradients
are (with (i, j) = (u±1,v±1)):

δ I
∂u

∣∣∣∣
p=(i, j)

=
τ(u,v)− Il(i, j) Λl,u,v = /0
0 z > (1+α)minz(u,v)
τ(u,v)− Il(i, j) z(1+α)< minz(u,v)
|Λi, j |Il(i, j)+τ(u,v)

1+|Λi, j | − Il(i, j) else
(11)

C. Ghost Gradients

Using Eq. (10) and (11) we can now compute the image-
space gradient δ I

∂ p . Assuming that the camera model is
differentiable, the desired partial derivatives (8) are computed
with the chain rule. However, after implementing a direct
bundle adjustment with perceptual loss, we found that the
gradients in Eq. (11) are not accurate. In some extreme
cases, we even observed divergence of the optimization. We
believe that this problem comes from high variations inside
perceptual loss paired with the large step size h = 1 in
gradient computation. Other work may have found similar
results as they mention that gradient computation is not
viable for one-pixel points [67] and has to be skipped [70].

However, we propose a trick to significantly improve
the gradient quality and make differentiable one-pixel point
rasterization viable. The idea is that a large h is usually
only feasible if the current solution is far away from the
optimum. Once the optimization converges to the solution,
h has to be reduced for a better gradient approximation.
Since we cannot reduce h in one-pixel point rasterization, we
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Fig. 6: The number of blended points per pixel with original
rendering [20] (left) and our stochastic discarding technique
(right). Especially in low resolution layers (bottom), our
approach can significantly reduce the number of blended
points with a total speed-up of over 20%.

apply this concept by artificially worsening the image using
ghost geometry. As shown in Figure 5, a dropout layer is
inserted before the blending stage, which divides the point
cloud into two sets. The first set is blended normally and
contributes to the output image. These points are used to
compute the texture gradient δΦ

∂τ
, though we do not compute

any spatial gradients for them. The second set, which we
call the ghost points is not used in the forward pass. They
are only rendered during backpropagation and the spatial
gradient (11) is evaluated at the projected positions. We
further analyze ghost points in the evaluation (Section VI-B)
and show that they improve the convergence by around 20%.

D. Stochastic Point Discarding

During further performance analysis we found that es-
pecially at the small resolution layers, hundreds of points
can pass the fuzzy depth-test of a single pixel. To reduce
this number to a reasonable range, we apply a stochastic
point-discarding technique similar to [72]. As a first step, we
compute the world-space radius rworld for each point inside
its local neighborhood. This radius is projected into screen-
space during rendering, which gives a rough approximation
of the circular splat-size rscreen. Based on the splat-size we
can then discard points stochastically to obtain a desired
number of points per pixel. For example, if we want to
render roughly one point per pixel and we have computed the
screen-space splat size as one quarter of a pixel, then we want
to discard this point by a probability of 3

4 . We achieve this
by assigning each point a uniform random value β ∈ [0,1]
and render it only if the following condition succeeds:

rscreen√
1−β

>
1
γ

(12)

The parameter γ roughly controls how many points are
rendered per pixel. For example, if γ = 1 all points with
rscreen > 1 are rendered because

√
1−β is always less than



one. Only if a point covers less than one pixel, Eq. (12)
starts discarding points based on the sampled γ . In our
experiments, we use γ = 1.5 for all datasets and scenes. The
effect of stochastic discarding is visualized in Figure 6 by
coloring each pixel based on the number of blended points.
A blue color means that only a few points have been blended,
while a red color indicates that over 100 points contribute to
that pixel. Using our stochastic discarding technique (right
images), the point density is close to uniform over the image.

E. Implementation Details

To implement the forward pass efficiently, we mainly
follow the work of [20]. They propose a three-pass point
rasterizer that outperforms traditional point rendering with
GL POINTS. After a depth-only render pass, the color is
accumulated for all points that pass the fuzzy depth-test.
During accumulation, we track the number of points per
pixel so we can compute (7) without writing the set Λu,v to
memory. To further improve efficiency, we have adopted the
proposed blocked-morton-shuffle on the point cloud and use
optimized local reductions inside the rasterization kernels.
A side-effect of not explicitly storing Λu,v is that during
backpropagation all points have to be rendered again. How-
ever, this re-rendering only marginally impacts performance
as the total backpropagation time is dominated by the neural
networks.

To further improve the pose estimation of our inverse
rendering pipeline, we follow state-of-the-art SLAM systems
[73]–[75] that optimize the rigid transformation (R, t) ∈
SE(3) in tangent-space. Linearized pose increments are ex-
pressed as the Lie-algebra elements x ∈ se(3) and applied to
a transformation by

(R′, t ′) = exp(x) · (R, t), (13)

where exp(x) is the exponential map from se(3) to SE(3).
To implement tangent-space optimization in Torch [76] [77],
we create a tangent tensor for the pose which is updated by
the optimizer. After each step, the tangent is applied to the
original pose (13) and reset to zero.

V. DIFFERENTIABLE TONE MAPPING

The HDR output image of the neural renderer is con-
verted to LDR by a learnable tonemapping operator. Our
tonemapper mimics the physical lens and sensor properties
of digital photo cameras. For cameras directly supporting
HDR imaging, a more straightforward adaption can be used.
The first tone mapping stage applies brightness correction
to the HDR image IHDR using the estimated exposure value
EVi of image i.

Ie =
IHDR

log2(EVi)
(14)

If image meta information is available, we initialize EVi
using Eq. (15), where f is the f-number of the optical system,
t the exposure time in seconds, S the ISO arithmetic speed
rating, and EV the mean exposure value of all images.

Otherwise, if no meta information is available, we initial-
ize EVi to zero for all images.

EVi = log2

(
f 2
i
ti

)
+ log2

(
Si

100

)
−EV (15)

After brightness correction, we compensate for a changing
white balance by estimating the white point (Rw

i ,G
w
i ,B

w
i ) for

each image. The white balance is applied using Eq. (16)

Iw = Ie�
[

1
Rw

i

1
Gw

i

1
Bw

i

]T
, (16)

where � is the element-wise multiplication of each texel
with the vector. If no prior knowledge is available the white
point is initialized to (1,1,1). During optimization, we keep
Gw

i constant so that the white point can not change the total
image brightness.

As a next step, we model the vignette effect of digital
cameras, which is a radial intensity falloff due to various
optical and sensor-specific effects. The model we use is the
polynomial vignette model of [78], which first computes the
distance r of a pixel p to the vignette center cv. Then, a
polynomial is evaluated to compute a linear scaling factor
from r. For better stability, we normalize p and cv to be in
the range [0,1]. The coefficients ai are initialized to zero and
cv is initialized to the image center.

r2 = |p− cv|2 (17)

Iv = Iw · (1+a2r2 +a4r4 +a6r6) (18)

The last stage in the tone mapping operator maps the linear
RGB values to non-linear image intensities. This mapping
consists of applying the camera response function (CRF) [79]
and an optional color space conversion from RGB to sRGB.
To simplify the optimization we combine both operations
into a single function R, which is implemented using a 1-D
texture for every color channel.

Ildr = R(Iv) (19)

To guide the optimization towards a plausible response
function, we initialize R(x) to x0.45 and add the following
additional constraints based on [80]:

R(0) = 0
R(1) = 1

R′′(x) = 0

These constraints ensure that the whole intensity range is
covered and the response function is smooth. Overexposed
and underexposed pixels are clamped to the maximum and
minimum output values of 1 and 0. This matches digital
camera behavior, however we found that an end-to-end
training of the rendering pipeline is not reliable when im-
plementing the clamping. Depending on the random network
initialization, it is possible that the whole image is over/under
exposed generating a zero gradient over the complete image.
Inspired by the LeakyReLU activation function [81], we



Geometry # Layers Forward Backward Forward Backward Forward Backward Forward Backward

Synsin Disc Splats 1 856.63 14.14 1692.63 17.15 3859.1 31.16 7342.05 25.73
Pulsar Spheres 1 45.18 4.8 78.29 7.66 124.72 13.45 209.17 17.2
GL POINTS 1-Pixel Points 1 0.3 × 0.54 × 1.09 × 1.85 ×
Ours 1-Pixel Points 1 0.83 0.62 1.09 0.78 1.59 1.39 2.33 2.34
Ours 1-Pixel Points 4 1.4 0.77 1.82 1.24 2.52 1.74 3.65 2.8
Ours + Stoc. Disc. 1-Pixel Points 4 1.28 0.66 1.66 1.07 2.15 1.66 3.08 2.64

# Points 1,348,406 2,570,810 5,400,615 10,283,243

TABLE I: Forward and backward render-time in milliseconds of a 1920×1080 image on a RTX 2080 Ti. In comparison to
other differentiable renderers, our approach is around two magnitudes more efficient. The highlighted row is our approach
with stochastic point discarding (see Section IV-E) that we use for scene refinement and novel-view synthesis.

define a separate response function Rt during training that
leaks small values instead of clamping them.

Rt(x) =


αx x < 0
R(x) 0≤ x≤ 1
−α√

x +α +1 1 < x
(20)

The last term of Eq. (20) asserts that the maximum leaked
value is (1+α). This is important in HDR scenes, because
an overexposure of multiple magnitudes should not create a
large gradient. In practice we use α = 0.01, which results in
a maximum image intensity of Rt(∞) = 1.01.

VI. EXPERIMENTS

We have conducted several experiments to verify the
effectiveness of our method. In Section VI-A, we compare
the runtime of our forward and backward one-pixel point
rasterization to other differentiable rendering systems. Then,
we perform an ablation study on ghost gradients (Section VI-
B) and show how our inverse rendering pipeline is able to
align images to a point cloud (see Section VI-C). Finally,
we evaluate the use-case of novel-view synthesis on various
datasets including HDR scenes (Section VI-D and VI-E). For
further experiments and evaluation of temporal stability we
refer to the supplementary video at:

https://youtu.be/zVf0HqzHY3U

A. Runtime Performance

Runtime performance has been a limiting factor for dif-
ferentiable rendering systems in the past [44]. Most software
rasterization techniques exceed the 100 ms barrier even for
small scenes and render resolutions [70]. This limits their
usefulness in real-world applications such as 3D recon-
struction from high-resolution photographs. Currently, the
two most performant differentiable rendering methods that
are able to process point-cloud data are Synsin [67] and
Pulsar [70]. Synsin, which is the default point render engine
of PyTorch3D [82], splats each point to a disk and blends
the K nearest points of each pixel into the output image.
Pulsar converts each point to sphere and blends them with a
similar approach as Soft Rasterizer [50]. Both methods are
fully differentiable, meaning that the point position and color
can be optimized during rendering.

Table I shows the measured GPU frame-time for Synsin,
Pulsar, our approach, and OpenGL’s default point rendering
with GL POINTS. These timings only include the raster-
ization itself without the neural network and tonemapper
described in the previous sections. For our method, we
also include the rendering time of four layers in different
resolutions. This is a more fair comparison to the other
methods because all four layers are required for the neural
rendering network. The output of Synsin and Pulsar is
more complete and therefore a single layer can already be
successfully used. The right most columns of Table I show
the forward and backward render time of a 1920× 1080
image for a point cloud with around 10M points. Both Synsin
and Pulsar are not real-time capable at such dimensions with
forward timings of 7342 ms and 209 ms respectively. Our
approach takes two magnitudes less time than Pulsar with
a combined rendering time of 3.65 ms for all four layers.
This result is expected though because previous work has
shown that software one-pixel point rendering can outper-
form hardware rasterization techniques [20]. Point splatting
and sphere rendering is inherently more complex because
each point effects multiple output pixels.

If we enable stochastic discarding (see Section IV-E),
the rendering performance is further increased. The largest
gains are achieved for multi-resolution rendering of large
point clouds. For example, generating a multi-layer image
of the cloud with 10.4M points takes 19% less time with
our stochastic discarding approach. However, if only a single
image layer is required, the speedup due to stochastic dis-
carding reduces to 3%, as points are only discarded if they
fill less than one pixel in the output image. The pixels inside
the low resolution layers are much larger and therefore more
points are discarded. In comparison to native GL POINTS
rendering, our approach is only slightly slower (by about
26%). This is an impressive result, because we have im-
plemented a three-pass blending approach with fuzzy depth-
test as described in Section IV-E. The GL POINTS reference
implementation in Table I uses a single pass without blending
and standard GL LESS depth test.

B. Ghost Gradient Ablation Study

In Section IV-C, we have proposed the novel concept of
ghost gradients for differentiable one-pixel point rendering.
The basic idea is that spatial gradients are only computed for

https://youtu.be/zVf0HqzHY3U
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Fig. 7: Image to point cloud alignment after adding an
artificial rotational and translational error to each camera
pose. The top images show the pixel error before the first
iteration and after the last iteration. Using ghost gradients,
our systems converges to the initial solution before the noise
has been added. Without ghost gradients, 20% of the images
were not aligned correctly resulting in a larger perceptual
loss.

points that have been discarded by the dropout module. We
have claimed that ghost gradients improve gradient accuracy
and increase robustness during scene refinement. In the
following, we provide an ablation study to confirm this claim.

To this end, we first train our pipeline on one of the multi-
view stereo scenes from the tanks and temples dataset [83].
We are now able to accurately synthesize each image of the
input sequence with an average perceptual loss of 355. Then
we randomly pick 30 images and add Gaussian-distributed
positional and rotational noise to the camera pose. The
standard deviation of the Gaussian noise is 15 mm and 1◦

respectively. The neural rendering of these images is now
off by 5 to 30 pixels and the average perceptual loss of
these images is 1030. Finally, we setup an optimizer that
refines the camera pose based on the perceptual loss for 600
epochs. One time with ghost gradients enabled and one time
with ghost gradients disabled. All other parameters, e.g. the
neural texture, are kept constant during this optimization.
The results of this experiment are presented in Figure 7.
The images at the top illustrate the pixel error between the
synthesized image and the ground truth before and after
pose optimization. The graph at the bottom shows the mean
perceptual error during training. We can clearly see that
with ghost gradients the perceptual loss converges towards
the initial solution before adding positional and rotational
noise. The images are therefore correctly aligned to the
scene. Without ghost gradients (green line in Figure 7) the
optimization converges to a worse local optimum with a
mean perceptual loss of 486. In this local optimum, only 80%
of the 30 test images were aligned correctly. The remaining
20% have been stuck in a local minimum and sometimes
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Fig. 9: The initial camera pose estimates of the SLAM-
System are slightly misaligned w.r.t. the LiDaR point cloud.
Reprojecting the pixel color of several source views into a
target view produces ghosting artifacts (center row). Our
system is able to optimize the camera poses resulting in
almost pixel perfect reprojections (bottom row).

moved even further away from the correct solution. We have
repeated this experiment five times with different random
seeds for the pose noise. In each run, the ghost gradient
optimization outperformed traditional gradient computation.
This shows that ghost gradients indeed improve robustness
for differentiable one-pixel point rendering. From here on,
we enable ghost gradients for all further experiments.

C. Image to Point Cloud Alignment

Another application of our differentiable rendering
pipeline is the alignment of camera images to point-clouds
that were reconstructed by external devices. NavVis pro-
vided us a dataset captured by the VLX mobile scanning
platform [84]. This platform consists of a high performance
LiDaR scanner and four 5472×3648 pixel fisheye cameras.
Their reconstruction software is able to combine multiple
laser scans into a consistent point cloud and provides camera
pose estimates for panorama generation and point cloud
coloring. However, the image to point cloud registration is
not perfect. Small errors during the SLAM-based tracking
and vibrations due to the hand-held operation result in pose
errors in the scale of millimeters. If we then use these
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Fig. 8: Comparative results of novel-view synthesis on the Train and Playground scene from the tanks and temples
dataset [83]. The ground truth reference image is placed in the last row. The blueish images illustrate the per-pixel error
after comparing the generated image to the ground truth. All methods show great result on both views however our approach
preserves the most detail and provides a better color and brightness accuracy. A quantitative evaluation of this task can be
found in the table below.

Train Playground M60 Lighthouse
Method VGG ↓ LPIPS ↓ PSNR ↑ VGG ↓ LPIPS ↓ PSNR ↑ VGG ↓ LPIPS ↓ PSNR ↑ VGG ↓ LPIPS ↓ PSNR ↑

Synsin + Unet 706.0 0.3853 16.97 521.3 0.3198 21.81 564.3 0.2904 20.16 679.7 0.3655 15.41
Pulsar + Unet 677.9 0.3418 17.78 661.2 0.3849 20.00 508.2 0.2403 21.42 587.1 0.3112 17.82
NRW 817.5 0.4552 14.44 632.8 0.4110 19.47 741.2 0.4476 16.96 709.5 0.3835 14.88
NBPG 553.6 0.2290 16.92 399.0 0.1892 23.04 385.7 0.1576 23.81 524.5 0.2270 16.38

ADOP (ours) 475.1 0.1899 20.24 374.4 0.1710 24.00 385.6 0.1567 23.78 409.3 0.1700 21.07

TABLE II: Quantitative evaluation of novel view synthesis on four scenes of the tanks and temples dataset. The values in
this table represent the mean loss over all test images. All approaches have been trained using the VGG preceptual loss. Our
method (last row) achieves the best scores on the Train, Playground, and Lighthouse scenes. On the indoor-scene M60, the
results of our approach are almost idendical to NPBG. The other differntiable rendering systems, Synsin and Pulsar, show
consistently worse results than NPBG and ADOP.



poses for precise operation, such as reprojecting the color of
neighboring source images into a target view, small ghosting
artifacts can be observed (see Figure 9 center row). We train
our neural rendering pipeline on this office dataset, which is
composed of 688 images and 73M points, to synthesize all
captured views. During training, our system also optimizes
the camera pose of each frame. The refined poses are then
used to reproject the colors into the same target frame as
before (see Figure 9 bottom row). It can be seen that the
ghosting artifacts are mostly eliminated and the synthesized
image is a lot sharper. This experiment shows that the
proposed method is able to perform pixel-perfect alignment
of fisheye camera images to a point cloud of a LiDaR
scanner. To our knowledge, no other available differentiable
renderer can fulfill this task, as they assume a pinhole camera
model or are not able to handle a point cloud with 73M
points.

D. Novel View Synthesis

In addition to scene refinement, our method can be used
to synthesize novel views on multi-view stereo datasets. We
show in this section that our approach outperforms state-
of-the-art neural rendering pipelines that operate on point-
cloud input data. In particular, we provide a qualitative and
quantitative evaluation of novel view synthesis on four scenes
of the tanks and temples dataset [83]. These scenes are
Train, Lighthouse, Playground, and M60. They consist of
300-350 images in Full-HD resolution captured by a high-
end video camera. We use COLMAP [85] to reconstruct
the dense point-cloud as well as the camera extrinsics and
intrinsics. The number of points in the datasets are in order
10M,8M,12M, and 11M. For evaluation, 5% of the input
frames are put aside for testing. The remaining images are
used to train each pipeline.

The methods we compare against are NPBG [6], NRW
[24], Pulsar [70], and Synsin [67]. The latter two are general
differentiable rendering front-ends that have been adapted
by us to the novel view synthesis problem. We use them
to render the point-geometry into a neural image that is
then passed through a deep neural network for the final
output. They can be seen similar to our approach and NPBG
with the difference of using sphere and splat-based rendering
instead of a multi-layer one-pixel point rendering. Pulsar
and Synsin only support pinhole cameras. Therefore we
train them on the undistorted images and camera parameters
provided by COLMAP. During evaluation the synthesized
undistorted images are distorted again and compared to the
ground truth. NPBG, NRW, and our approach are trained on
the original distorted images. These methods use one-pixel
point rendering, which natively supports all camera models.

In Figure 8, we show two of the test frames synthesized
by all of the previously described methods. The bottom row
is the ground truth image, which has not been seen during
training. Column two and four visualize the per-pixel error
of the rendered image in comparison to the ground truth. A
dark blue color means the error is small, while a brighter,
reddish color indicates a large pixel error. When comparing

the result images, we can see that Synsin, NPBG, and our
approach can synthesize the reference frame very well. The
output of Pulsar and NRW is slightly worse as indicated
by the blurriness of the image. A detailed look reveals that
the renderings of our methods preserve color, brightness,
and sharpness better than the other approaches. The text on
the train has slightly more contrast and the reflections on
the playground slide are closer to the reference reflections.
However, we also note that a visual inspection is insufficient
because especially the results of NPBG are very close to
ours. Therefore, we also provide a quantitative evaluation in
Table II. This table shows the mean VGG loss [86], LPIPS
loss [87], and peak signal-to-noise ratio (PSNR) over all test
images. All approaches were trained by minimizing the VGG
loss. On three of the four scenes, our method achieves the
best results for all three quality metrics. We believe that the
reasoning behind these results are twofold. First, Train, Play-
ground, and Lighthouse, were captured outdoors on a sunny
day. The dynamic range is therefore large and a physically-
based tonemapper is required to abstract color response and
exposure changes. The other approaches, which do not have
a learnable tonemapper, encode brightness changes directly
into the neural network. Novel views are then synthesized
incorrectly based on the training frames instead of the novel
view’s image settings. The second reason why our systems
outperforms the competitors is the input scene refinement
during training. As mentioned earlier, we optimize all avail-
able parameters including camera pose, camera model, and
point position. Hence, we can correct small errors of the
initial reconstruction, which further improves sharpness due
to a more accurate point projection. These two reasons also
explain why the difference in loss of our method to NPBG is
small on the M60 scene. This scene was captured indoors and
the initial COLMAP reconstruction is already very precise.
The effect of our tonemapper, as well as, the scene refinement
is therefore reduced. However, our approach still achieves
the best scores compared to the other point-based neural
rendering approaches.

E. HDR Neural Rendering

Capturing the high-dynamic range (HDR) of real-world
scenes with consumer-grade photo equipment is a chal-
lenging task. The exposure value (EV) has to be adapted
for each shot because the radiance difference of points in
shadow regions and points that are directly lit by sunlight
is too large for digital camera systems. This means that
on the one hand the small EV required for dark regions
overexposes bright areas. On the other hand, a large EV
enables us to capture the bright regions but eliminates the
contrast in shadowed areas. To test the performance of our
pipeline on HDR scenes, we fit it to our roman vessel dataset.
It consists of 742 image captured with a Canon EOS 5D
camera with a resolution of 5760×3840 pixels. The camera
was set to auto-exposure, which adapts the exposure time
based on the received brightness at the image center. All
other image related settings such as, aperture, ISO-Speed,
and white balance are set constant for all frames. In Figure
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Fig. 10: Sample images of the roman vessel dataset. The
frames were captured using the auto-exposure setting on the
camera. The exposure value (EV) for each image is plotted
below the images.

Ground Truth Neural Rendering Error

Fig. 11: Novel views synthesized on the roman vessel dataset.
The images are rendered using the same exposure value as
the reference photograph. In the right column, the per pixel
error is visualized.

10, six samples from the dataset are shown. It can be seen
that the EV can differ even for similar capture locations
resulting in darkened or brightened images. Below the image
samples, the exposure value is plotted for every frame. The
difference between the smallest and largest EV is 8.7, which
corresponds to a factor of 28.7 = 426.67.

To reconstruct a 3D point cloud of the roman vessel we
use the photogrammetry software COLMAP [85]. The output
are the camera extrinsics, intrinsics, and a point cloud with
53 million points. Using this initial reconstruction we train
our rendering pipeline to synthesize an HDR image of the
scene, which is then tone-mapped to one of the ground truth
images. The exposure value used by the tonemapper is set
to the real EV from the EXIF meta data and kept constant
during training. To allow a high radiance variation inside the
texture, we store it logarithmically and fit it using the ADAM
optimizer [88]. The learning rate of the logarithmic texture
is reduced by a factor of 10 compared to the linear texture.
All other optimization settings are identical to the previous
experiment (Section VI-D). We have trained the system for
300 epochs on half resolution. This takes around 12 hours
on a single GPU workstation equipped with a NVidia Titan
V.

For evaluation purposes, we have removed 20 randomly
selected frames from the training set and let our system
synthesize them from the estimated pose. The exposure value
of the test frames, which is stored in the image meta-
data, is passed to the tone mapper. Figure 11 shows a few
test frames with the ground truth in the left column, the
synthesized view in the center, and the per pixel error plot
on the right. Small artifacts can be found when inspecting
the error map. For example, in row two and three, the paint’s
reflectance on the hull is not modeled correctly. It is rendered
too dark compared to the ground truth as if it is a diffuse
material. Besides that, the exterior and interior of the vessel is
reconstructed very well with an average LPIPS loss of 0.254.
Our system is able to understand HDR scenes and can model
camera-specific effects. For example, row four and five show
a similar part of the boat captured with different exposure
times.

The optimized tonemapper (TM) therefore closely resem-
bles the physical and optical properties of the digital camera
that has been used during capturing. However, these images
often look unpleasant in HDR scenes because the dynamic
range of consumer-grade digital cameras is quite low. An
idea to improve visual appearance is to replace the learned
TM at inference time by a filmic tone mapper [89]. Filmic
tonemappers are state-of-the-art in real-time graphics [90]
because they better resemble human perception than digital
sensors. The result of replacing the TM at inference time is
shown in Figure 12. On the left side you can see the ground
truth images. On the right side, the neural renderings with
replaced TM are shown. The dark area, for example, in the
shadow side of the vessel has significantly more contrast
without overexposing the bright wood inside the boat. The
colors also look more natural in the rendered images because
the filmic TM slightly reduces color saturation.
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Fig. 12: At inference time, we can replace the learned tone
mapper (TM) of the digital camera by a filmic TM. This
gives the rendered images a more natural look, because the
filmic TM can display a bigger dynamic range.

VII. LIMITATIONS

In the previous section we have shown that our method
can achieve impressive results in various tasks. However,
during our experiments we have also found some limitations.
One limitation is that due to the vast amount of different
parameters, the search of suitable hyper parameters is non-
trivial. We have to balance learning rates of the texture color,
structural parameters, tone mapping settings, and neural
network weights. An extensive grid-search was necessary
to find viable settings that work well for all of our scenes.
These hyper parameters are now included in the source code
distribution and should also fit well to novel scenes.

Another limitation is that the optimization of point position
is not stable for moderate to large learning rates. Our
pipeline therefore requires a reasonable initial point cloud,
for example, by a multi view stereo system or a LiDaR
scanner. We believe that this problem is caused by the
gradient approximation during rasterization. It works well
for camera model and pose optimization because the spatial
gradient of thousands of points are averaged in one optimizer
step. For the positional point-gradients however, only a single
approximate gradient is used to update its coordinates. A
very low learning rate is therefore required to average the
point gradient over time.

Finally, due to the one-pixel point rendering, holes may
appear when the camera is moved too close to an object
or the point cloud is very sparse. This happens because
the neural network architecture can only fill holes up to a
certain size threshold. In our experiments, we diminish this
problem by artificially increasing the point density. However,
this is not a universally usable solution as in a free view
environment the user can still move the camera arbitrarily
close to a surface. Future work should be conducted here,
for example one could try to dynamically generate new
points during magnification that have interpolated neural
descriptors.

VIII. CONCLUSION

We have presented a novel differentiable neural point-
based rendering pipeline. Each point is projected into image-
space and its neural descriptor is blended into a multi-
resolution neural image. This image is processed by a deep
convolutional neural network to generate an HDR image of
the scene. A differentiable tonemapper converts the HDR
image to LDR. We can train this pipeline end-to-end using
images, a point cloud, and the camera parameters as input.
As all stages are differentiable, the parameters that shall be
optimized can be chosen freely, e.g. the camera pose, cam-
era model, or texture color. Additionally, all differentiable
camera models can be used because the point rasterizer fills
only one pixel per point. In our experiments, we first show
that our approach achieves a higher efficiency than state-of-
the-art differentiable renderers. After that we present various
applications for ADOP. We can, for example, align camera
images to a LiDaR point cloud or synthesize novel frames
from an initial MVS reconstruction. Our pipeline can also
be fitted to HDR scenes captured with large differences in
exposure time. By replacing the tonemapper we can then
generate images with more natural and pleasant colors than
the ground truth. The complete source code of the proposed
method will be released on:

https://github.com/darglein/ADOP
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