
W H I T E P A P E R

GROOMING FOR
REAL-TIME REALISM:
HAIR AND FUR WITH
UNREAL ENGINE

Introduction
Why this paper?

Hair and fur in DCC applications
Terminology

Grooming workflow

Grooming best practices

Real-time hair and fur in Unreal Engine

Optimization

Import process

Groom Asset Editor

Surface attachment

Light approximation

Rendering

Light and shadows on thin hair

Simulation

Skin darkening

Use case: Human hair with MetaHuman Creator
Side-swept fringe groom

Short coil groom

Use case: Animal fur and feathers with Meerkat project

Meerkat fur

Eagle feathers

Conclusion
Resources for further study

3
4

5
5

6

7

10
10

11

11

12

14

16

17

17

18

19
19

22

27
29

31

32
33

TABLE OF CONTENTS

2

Introduction
A head of hair and a pelt of fur are complex organic structures made up of thousands of colored strands with specific
characteristics. The particular shine of hair or fur, which we instantly recognize as such, is the result of the strands’
unique translucent and reflective properties, including their tendency to clump and curl together. These strands
also react to forces like gravity or wind in ways that we, as lifelong observers of hair and fur, instinctively recognize
as natural.

The production of realistic hair and fur for computer-generated imagery has been a topic of research and study for
several decades, not only for animated characters in games and films, but also for training simulations for military,
industry, and animal science, among other fields.

Figure 1: Guide hairs in DCC application and final render in Unreal Engine

3

Grooming for real-time realism: hair and fur with Unreal Engine

The challenge of creating computer-generated (CG) hair and fur lies in fooling the human eye. However, due to the
limitations of computer processing power, a CG artist traditionally could not see the CG hair’s final colors or shadows in
context in the scene, nor the hair’s reactions to light and movement, until after a time-consuming rendering process.
After rendering, the artist, seeing room for improvement, would have to tweak the settings and render again. Thus, the
process of getting CG hair and fur to look just right has traditionally been long and arduous.

For this reason, Epic Games recently introduced the ability to render hair and fur in real time in Unreal Engine, giving the
artist the ability to see the final results in action, on screen, without a long wait for rendering.

Why this paper?

While real-time rendering presents a welcome relief from long render times normally associated with hair and fur, the
setup in Unreal Engine requires careful consideration of a number of parameters to work efficiently, and to produce the
most realistic hair or fur possible.

The purpose of this paper is to lay out the process of working with real-time hair and fur in Unreal Engine, going beyond
the documentation to discuss artistic and technical concerns that artists might encounter while using this feature.

4

Grooming for real-time realism: hair and fur with Unreal Engine

Hair and fur in DCC
applications
Hair and fur for Unreal Engine is set up in a digital content
creation (DCC) application such as Maya, 3ds Max, or
Houdini. The hair or fur is attached to a polygonal surface,
such as a model of a human head or an animal.

Common tools for generating hair and fur include DCC
plugins such as XGen, Yeti, and Ornatrix, and the Hair
Utils tool included with Houdini. In addition to hair and fur,
these tools can also be used to generate feathers, such
as those on a bird.

After the hair/fur setup is complete in the DCC
application, it can then be imported to Unreal Engine for
real-time rendering.

Terminology

To introduce the methodology and considerations for DCC
applications and the extended toolset in Unreal Engine,
here we will do a brief review of the terms and processes
involved in creating CG hair and fur.

Guide hair, guide curve - A spline primitive that
represents a grouping of hair or fur strands. The hair/
fur tool includes a mechanism for manipulating the
guide hairs, which in turn determine how the final hairs
(interpolated hairs) behave—the interpolated hairs follow
the shape of the nearest guides based on a weighted
average of the distance between them. The lengths of the
interpolated hairs are usually determined by the lengths
of the guides.

Control vertices (CVs) - One or more control vertices
are placed along the guide curve, allowing for control at
that point on the curve. The higher the CV count on a
guide hair, the more the guide hair can be molded into a
precise shape. However, a higher CV count also increases
processing time, which in turn reduces performance.

Styling - The practice of pushing/pulling guide hairs or
interpolated hairs in a particular direction, shaping them,
curling them, etc. to make the CG hair or fur match
reference images.

Grooming - A combination of defining hair growth
and natural hair properties, and the styling process.
This includes setting the thickness of strands and
their tendency to curl or clump together. The resulting
settings, and a file that holds them, is called a groom.
Grooming is accomplished through the use of guide hairs
and parametric settings in the DCC application.

Figure 3: Control vertices on guide curves

Figure 2: Relationship of guides and hairs

GUIDE

CONTROL VERTEX

ROOT

HAIR WITH 5 CVS

HAIR WITH 3 CVS

HAIR

5

Grooming for real-time realism: hair and fur with Unreal Engine

https://www.autodesk.com/products/maya/overview
https://peregrinelabs.com/
https://ephere.com/plugins/autodesk/max/ornatrix/
https://www.sidefx.com/

Grooming workflow

The grooming workflow takes place in a DCC, before the
model is imported to Unreal Engine. As a starting point,
a set of guide hairs that determine the shape and the
volume is created on a mesh area.

Grooming brushes are used to position, sculpt, and scale
groomable guide curves. Grooming brushes can curl,
trim, or even remove hairs.

With the help of sculpting and combing brushes, the
guides are shaped into the hairstyle or pelt style. Color for
the rendered hair can be defined via material parameters
or textures sampled onto the hair.

Since different areas of a character have distinct
features, a groomer might create separate grooms for the
head, eyebrows, beard, and body hair for a human, or for
an animal’s head, body, legs, and tail.

As a complex groom is created, splitting it up into
different sections makes it easier to manage various
groups once the asset is imported into Unreal Engine.

Procedural styling

Hair and fur tools within DCC applications include
parameters for procedural styling, which adjust guide
hairs or interpolated hairs. These parameters often have
names that mimic real-life styling terms like trim, curl,
and frizz. One or more numerical values are associated
with each procedure to indicate the relative degree of
alteration to the guide hair or strands.

A trim value will limit the length of guide hairs or
interpolated hairs. A curl setting will ask for the number
of curls and the radius, and will act accordingly. Frizz, or
noise, will randomize the positions of the curve’s CVs a
little or a lot, depending on the number value entered.

For such parameters, the number of CVs directly affects
how much detail the curves can support. Since complex
shapes require a larger number of CVs, you might find
it necessary to rebuild the curves from time to time to
ensure that the CVs are distributed equally along the
length of the hair.

Density and thickness

Rendering an image with hair/fur requires the system to
render multiple visible strands within each pixel. A human
head has hundreds of thousands of hair strands—a
reasonable strand count for human hairstyles in Unreal
Engine is around 50k—each with an average diameter
of about 100 micrometers. (For animal fur, the number
of strands and average diameter varies widely from one
animal to the next.)

An optimal groom sets the right balance between
the density and thickness to balance realism
with performance.

Figure 4: Guide hairs for hair on human head shape

Figure 5: Virtual grooming brush

Figure 6: Procedural styling tools

HAIR TRIM CURL

6

Grooming for real-time realism: hair and fur with Unreal Engine

Clumping

Clumping is a phenomenon we see naturally occurring in
hair and fur, such as on a lock of hair, an individual curl, or
wet fur. The principal reason for adding levels of clumping
is to bring detailing, variation, and breakup to the larger
forms, to achieve a more realistic look.

In CG, the clumping algorithm creates the effect by
pulling the tips of strands together during rendering.

To give the hair a breakup effect and natural structure,
clumps work in a three-tiered process: large, medium,
and small clumps. We also refer to them as primary,
secondary, and tertiary clumps. Primary clumps are the
main group of hair strands from which the secondary and
tertiary are derived.

There is no real set of rules when using these extra
levels of clumping—it just comes down to the reference
that is being matched. Clumps in real life can be highly
detailed, and achieving a look similar to the reference can
be challenging. It’s best to start with the larger clump
structures first, then layer in sub-clumping structures
until the overall structure matches.

Procedural versus manual approaches

A procedural approach is to use parameters (modifiers,
expressions) to place hairs and to set the curl, length,
etc. of one or more hairs. Conversely, a manual approach
is to place hairs by hand, and sculpt individual hairs
or small groups of hairs with a mouse-based brush to
match reference.

A groom is generally built using a combination of
these two methods; the choice of when to move from
procedural to manual manipulation is up to the groomer.
A simplistic set of guides can have its final state defined
procedurally via a series of styling modifiers, while
individual guides can be placed manually and intricately
sculpted into a final shape.

Procedural approaches tend to lend themselves to
shorter hair and fur. It is usually good to start out using
as much of a procedural approach as possible to block in
areas of a groom before starting to hand-place clumps
and individual hairs.

If a character is far from the camera or is in a high-
action sequence, a procedural approach usually works
best. Procedural grooms, for the most part, have fewer
layers or node networks than assets built using a
manual approach.

A manual approach can be essential for hero assets that
are seen up close, even if the process is considerably
more time-consuming. With this technique, the groomer
can hand-place hairs to match to specific detail to
achieve the desired result. In visual effects for feature
films, for example, groomers often move single eyelashes
to match a live actor’s appearance, or move individual
fur strands to match to a very specific fur structure
from reference.

Grooming best practices

References

Sourcing reference, and paying close attention to fine
detail, is the best way to achieve the highest level of
fidelity. Gathering high-resolution images ensures that
close-up details such as fine hairs or subtle breakup are
represented clearly. Looking for references that cover
various angles is critical since they will inform the overall
volume and shape of the groom.

Figure 7: Clumping pulls tips of strands together

CLUMP OF HAIR

GUIDE

7

Grooming for real-time realism: hair and fur with Unreal Engine

Combining multiple references by choosing interesting structures from several different sources helps create a groom
that is unique yet based on reality. The groomer can separate those key reference images as primary reference,
referring to the rest as secondary throughout the grooming process.

For grooms with a lot of directional changes, relying on image planes and sketching out the directional changes can be
a useful trick. This technique can speed up the process of laying out guides more quickly and in the correct areas.

Figure 8: Reference photos of meerkats (left) and renders (right)

8

Grooming for real-time realism: hair and fur with Unreal Engine

Growth mesh

While it is possible to attach the groom to the hero version of the model, sometimes it can be easier to have a growth
mesh—a separate piece of geometry that exists for the sole purpose of emitting the hair or fur. When you later import
the groom into Unreal Engine, you will be able to bind the groom to the hero mesh’s skin.

If the model is still undergoing design changes, using a growth mesh can reduce the number of transfers (refitting/
transferring the groom to the mesh). Generating more than one growth mesh, each one representing a separate area of
the groom, can make it easier to focus on the groom for each area.

Another advantage to separate groom meshes is that geometry in areas that won’t take any hair or fur—eyeballs, eye
sockets, inside of the mouth, teeth, clothing, and so on—can be removed or hidden.

If there are areas of the mesh’s UV layout that lack sufficient resolution, it can be helpful to use a separate set of UVs
for painting groom attribute maps.

Figure 9: Sketches of directional changes

9

Grooming for real-time realism: hair and fur with Unreal Engine

Real-time hair and fur in Unreal Engine
Unreal Engine primarily performs hair/fur optimization, rendering, simulation, and generation of LODs, with only a very
few controls for styling. Ideally, you would have your groom styled exactly as you like before importing it to Unreal
Engine. It is not unusual for styling changes to be required after the first import; in such a case, simply adjust the
styling in your DCC application and re-import the groom.

Unreal Engine uses the Alembic file format as its hair/fur import language. A naming convention-based schema is
provided to facilitate the import of static grooms from DCC application tools like XGen, Ornatrix, Yeti, and Houdini
Hair Utils.

It is important to note that when creating grooms in a DCC application and exporting them to Alembic, you will want to
make sure certain attributes are exported into the Alembic file, as described in the Import process section of this paper.
Ornatrix and Yeti offer capabilities to export these attributes to the Alembic file for import into Unreal Engine.

Optimization

With the strand-based hair system described here, high-density grooms can easily contain hundreds of thousands
or even millions of strands, and each strand can contain dozens of CVs. The combination of these two factors affects
performance for import, rendering, and simulation.

Real-time dog fur in Unreal Engine courtesy of Jelena Jovanovic - Digitalbite

10

Grooming for real-time realism: hair and fur with Unreal Engine

http://www.alembic.io/
https://www.autodesk.com/products/maya/overview?term=1-YEAR&support=null
https://ephere.com/plugins/autodesk/max/ornatrix/
https://peregrinelabs.com/
https://www.sidefx.com/

With an offline rendering process for feature film VFX, real-world densities and widths are typically used to achieve
the highest level of realism possible. But when working with real-time rendering, while it’s reasonable to start with
real-world densities and widths to match the reference as closely as possible, it is usually necessary to evaluate
performance and eventually optimize from there as required.

Optimization for real-time hair and fur is accomplished in the DCC application, before import to Unreal Engine. To start
optimizing, it can be helpful to look at the CV count first. If the hair is short and straight, the number of CVs can be
significantly reduced without too much visual difference. If the hair is long, scraggly, and complex, there is a limit to how
much the CVs can be reduced before loss of structure takes place.

The next step would be optimization through densities and widths. Start by halving the densities and doubling the
widths, and re-evaluating as needed. For an average human hair width, a thickness of 0.008 centimeters is usually
a good value to start with. Lower values are typically needed for fine hairs around the hairline, for sideburns, and for
strays and flyaways.

There is a balancing act between the visual perception of density and the actual density. The illusion of a denser groom
can be achieved by having thicker strands, as this will block both light and the direct visibility of the skin. Generally,
as density is reduced, it’s best to compensate with increased widths until a balance of performance and fidelity
is achieved.

This doesn’t always work well if the asset is very close to the camera, because the widths will look unrealistic. LODs
can sometimes help with this by introducing strand culling and thickening as the camera gets further away, which will
improve performance while still enabling your groom to get as close as possible to real-world widths and densities. For
further optimization, you can also fall back on the traditional card-based method, where a small number of large, flat
sheets is used to give the approximate shape and motion of a much larger number of individual hairs. Unreal Engine
provides functionality for these approaches.

Import process

To bring a groom into Unreal Engine, you must first export it from your DCC application to Alembic format. You can then
import it to Unreal Engine, where it becomes part of a Groom Asset.

Instead of reconstructing the groom based on guides and interpolation rules, Unreal Engine imports both guides and
strands, which precisely preserves the authored groom.

During the import process, the importer will look for attributes and groups that follow the Alembic naming conventions
outlined in the Alembic for Grooms specifications page, and will import them to a new Groom Asset. When the schema
is implemented, it enables the transfer of attributes such as width and color into Unreal Engine, along with guide
attributes that are identified for the simulation of interpolated hairs. Multiple hair groups within a single Alembic
file are supported via group_id. Among these attributes, the rootUV attributes will fetch the UV of the underlying
surface (e.g. skin surface). This enables the creation of some spatial variation across the groom, depending on the
underlying surface.

If the Alembic file contains only curves but doesn’t follow the Alembic export schema, the groom will still be imported
into Unreal Engine, but without custom attributes.

To learn more about the import process, see the Hair Rendering topic in the Unreal Engine documentation.

Groom Asset Editor

The Groom Asset Editor is available when a Groom Asset is selected. The controls in this editor assist with coloration,
optimization, and other aspects of the groom within Unreal Engine.

11

Grooming for real-time realism: hair and fur with Unreal Engine

https://docs.unrealengine.com/en-US/WorkingWithContent/Hair/AlembicForGrooms/index.html
https://docs.unrealengine.com/en-US/WorkingWithContent/Hair/Overview/index.html

While the Groom system is primarily designed to handle grooms made of strands, alternative geometry representations
such as cards and meshes are also supported for scalability purposes. For an easy setup, all these geometric
representations are managed within a single asset (Groom Asset) and component (Groom Component). An LOD panel
configures which geometrical representation should be used for each LOD, and how strands should be decimated. A
groom asset can be made of several groups (a fringe group, a pony tail group, etc.) and each group can have its own
LOD settings.

For more information on using this feature, refer to the Groom Asset Editor User Guide and the Hair Properties
Reference in the Unreal Engine documentation.

Surface attachment

The groom is ordinarily attached to a SkeletalMesh Component which has been rigged.

To attach a groom to a skinned surface, a Groom Component needs to be attached under a SkeletalMesh Component in
the hierarchy, and a Binding Asset needs to be provided (see the Binding Asset Options section of the Hair Properties
Reference in the Unreal Engine documentation). This Binding Asset stores information about the hair strands’
projection onto the targeted SkeletalMesh.

During the attachment process, barycentric coordinates are computed from each hair root to the closest triangle on
the mesh. The hair roots stay constrained to the SkeletalMesh when the mesh deforms during animation.

Figure 10: Groom Asset Editor in Unreal Engine

12

Grooming for real-time realism: hair and fur with Unreal Engine

https://docs.unrealengine.com/en-US/WorkingWithContent/Hair/GroomAssetEditor/index.html
https://docs.unrealengine.com/en-US/WorkingWithContent/Hair/Reference/index.html
https://docs.unrealengine.com/en-US/WorkingWithContent/Hair/Reference/index.html
https://docs.unrealengine.com/en-US/Basics/Components/SkeletalMesh/index.html
https://docs.unrealengine.com/en-US/WorkingWithContent/Hair/Reference/index.html
https://docs.unrealengine.com/en-US/WorkingWithContent/Hair/Reference/index.html
https://en.wikipedia.org/wiki/Barycentric_coordinate_system

Skin deformation

When the skin surface is deforming, the strands attached to the surface can get pinched or shift into unnatural
positions. Fine grooms such as eyelashes, eyebrows, or mustaches, for example, can be sometimes challenging to
render realistically due to the fact that they are composed of thin strands on an uneven or creased skin surface.

To address these problems, grooms can opt into a global deformation constraint. This constraint forces hairs to
remain as close as possible to their original shapes, even under heavy skin deformation. A set of radial basis functions
(RBFs) is precomputed at several points on the attached SkeletalMesh, and applied at runtime to preserve the original
groom position.

Figure 12: Breakdown of fur, guides, and binding on meerkat character

Figure 11: Illustration of how strands stay “rooted” to mesh triangles during skin deformation

STRANDS

TRIANGLE ID+ BARYCENTRIC

GUIDE1

GUIDE1

GUIDE0
GUIDE0

13

Grooming for real-time realism: hair and fur with Unreal Engine

Light approximation

The shading method for hair and fur aims to approximate the complex behavior of light on real-life hair and fur while still
staying within the bounds of real-time calculation.

In life, the color we see on hair is influenced by several factors: the color of the hair itself, the way light hits it, how it
refracts and scatters light, and how it is affected by the refracted light bouncing off other strands.

The following diagram gives a simplistic view of what happens when light hits a strand of hair or fur. The strand is both
reflective and translucent, so some light is reflected directly off the strand, forming the shine and highlights, while other
light is absorbed by the strand and then scattered.

For the light that the strand absorbs, it can be scattered in one of two ways: it can either go across to the other side
of the strand and exit, or it can bounce inside the strand itself before exiting. These two methods of scattering light,
referred to as “fiber scattering,” account for the unique, complex appearance of hair and fur. This phenomenon is well
known, and is well-described by the mathematical function called the Bidirectional Scattering Distribution Function.

In addition, light escaping from fibers in this manner can scatter light onto other fibers, causing what is called “fiber-to-
fiber scattering.” This effect is even more complex, and thus even more time-consuming to compute.

When you consider all the different ways that light can impact a rendering of hair and fur—shadows, ambient occlusion,
backlight, and so on—the effects of this scattered light on thousands of strands of hair or fur can become very complex
indeed. For example, it is relatively easy for human beings to tell the difference between fake and real animal fur just by
its appearance, which is almost entirely due to how light affects it (as opposed to the coloration of the strands). If we
are to create convincing CG hair and fur, we need to take all these lighting effects into account.

Figure 14: Cross section of a strand of hair or fur, and the activities of light that hits it.

Figure 13: Hairs on skin at rest (left), hair on pinched skin deformed without RBF constraints (middle), same skin/hair with RBF constraints (right)

"SHINE"

SKIN

Reflected
light

Scattered
light

LIGHT SOURCE

Shadow cast by light source

APPARENT
HAIR "COLOR"

• Many variations in color
• Illuminates other hairs
• Casts shadows

14

Grooming for real-time realism: hair and fur with Unreal Engine

Early methods of shading CG hair and fur tried to simulate the physics of how light behaves when it hits a strand, which
gave realistic results but was computationally intensive and caused exceedingly long render times. However, a number
of faster “shortcut” computations have since been developed which yield results very close to those of real-world
physics. Unreal Engine uses many of these approximations to achieve realistic hair and fur with real-time rendering.

One example is an approximation called dual scattering. This method decomposes this complex phenomenon of
scattering into two parts: global scattering, which is the coarse/macro estimate of how light travels through the many
fibers/hair, and local scattering, which is a simple model of how the light bounces around just one fiber. The time
needed to compute the effects of dual scattering is orders of magnitude faster than computing the effects of each
and every light ray on a series of hairs, yet still yields results very similar to those of much more computationally
intensive methods.

Another time-saving method for approximating realism in hair and fur is deep opacity maps. This approach creates
dedicated shadow maps per light, storing hair absorption into several shadow map layers. Because of the way the maps
follow the shape of the hair-emitting object, fewer maps are needed to accomplish the same level of realism as multiple
opacity shadow maps, making this method faster to compute.

For more information on these and other techniques Unreal Engine uses to approximate light behavior for hair and fur in
real time, see the Resource for further reading section of this paper.

Figure 15: CG rendering of hair with combination of reflected light (brightest areas), scattered light (medium brightness, apparent hair color),
and dark areas where little light reaches

Figure 16: Representation of shadow opacity map (left) and deep opacity map (right)

15

Grooming for real-time realism: hair and fur with Unreal Engine

Density volume

Another part of Unreal Engine’s approach to approximating light involves the creation of a virtualized density volume for
each frame. The density volume provides information on the density or “thickness” of the fur from the current viewpoint
(see Figure 17). For example, compare the “solid” appearance of the fur at the center of the meerkat’s leg (green) as
opposed to the flyaway tufts at the leg’s edge (blue). These cues give the rendering system the information it needs
to quickly approximate light behavior for that type of fur density. The density volume makes use of voxels (tiny cube-
shaped 3D placeholders), with the strands voxelized into the density volume.

The density volume is the default mechanism for hair shadowing, ambient occlusion, and environment lighting, enabling
plausible backlight, self-shadowing, and illumination. However, the artist can opt to also use deep opacity maps, which
can be set per light source in Unreal Engine.

Once the lighting is computed for visible strands, the system moves to the next step: rendering.

Rendering

For rendering in Unreal Engine, the imported hair strands are converted into individual polylines. These curves are
regrouped into small clusters of strands which are used for LOD selection and culling purposes.

When the real-time system renders multiple thin hair strands within each pixel, aliasing problems can arise. Depending
on the performance and quality budget, different approaches can be used for rendering hair. For real-time rendering,
Unreal Engine’s default primary visibility algorithm uses a combination of a MSAA (multi sampling anti-aliasing) visibility
buffer to extract the first visible strands, and also a sub-pixel coverage buffer. This combination provides a middle
ground between performance and quality.

Figure 17: Density volume, samples, and resulting fur

16

Grooming for real-time realism: hair and fur with Unreal Engine

https://en.wikipedia.org/wiki/Multisample_anti-aliasing

For cinematics, where we are willing to sacrifice performance in favor of quality, we can use a different approach,
dynamically building a list of visibility strands. This helps for having a better sorting and transparency effect. For both
algorithms, we output a list of visible strands for every pixel after a compaction pass to reduce the number of samples
per pixel.

Grooms are split into small clusters for which LODs and culling information are computed. When a groom is rendered,
these clusters allow fine-grained LOD selection based on the screen coverage and visibility/occlusion. This enables us
to adapt the rendering and performance costs based on what is actually visible on screen. It is particularly helpful for
fur on large animals, as some parts of the groom could be close to the camera at the same time that other parts are
far away.

For scalability purposes, the groom systems support alternative geometry representations, like cards and meshes, to
switch to even simpler rendering techniques when the groom covers only a few pixels, or for less powerful platforms.

Light and shadows on thin hair

Shadows cast under directional lighting by thin hair strands, like eyelashes or whiskers, might not be well-preserved
due to the lack of resolution of the shadow map or hair voxel resolution. To address this, when ray tracing is enabled,
the exact hair geometry can be directly used for casting shadows, generating sharper shadows from these thin
features. However, one needs to be careful, as the more complex the hair/fur geometry is, the more expensive this
option becomes.

The human face’s skin is entirely covered with thin hairs called “peach fuzz.” Like other hairs, peach fuzz is lit by all the
surrounding lighting. But due to their light-colored nature, a non-negligible part of their lighting comes from the light
bouncing off the skin’s surface. In Unreal Engine, grooms can opt into this special lighting contribution.

Simulation

Real hair and fur moves in a specific way when reacting to head and body movement, wind, gravity, etc. Animation of
hair and fur due to these forces is generally accomplished through a physics-based simulation, which can be very
computationally heavy. However, to achieve photorealism in animation, any CG hair or fur simulation must be able to
generate believable animation from these forces and movements.

Hairs are challenging to simulate because of their large numbers and the complexity of the motion, both with object
collisions and self-collisions. Hair dynamics rely on complex interdependencies. In the case of animal fur, muscle and
flesh sims are responsible for a large portion of the fur motion, in addition to the hair simulation itself.

Figure 18: Methods of formulating LODs for hair/fur

LOD1LOD1 LOD0LOD0 LOD2LOD2

CURVE THICKNESS
CURVE + VERTEX DECIMATION

PROGRESSIVE

17

Grooming for real-time realism: hair and fur with Unreal Engine

The guides used for simulation (which are not necessarily the same as the hair guides) drive the shape and motion of
the associated interpolated curves. The intelligent choice of guides can be more important than the number of guides—
quality is more important than quantity.

Usually the grooming guides provide some sort of structure in the groom, such as clumping, direction changes, flow,
etc. The structures will usually need to be maintained during simulation, so the grooming guides are a good starting
point for the simulation. If these guides don’t provide enough resolution, the user can supplement them with additional
simulation guides derived from the groom. If performance is the main focus, you can also decrease their number to
reduce the computation time.

Hair simulation in Unreal Engine is implemented as part of the Niagara VFX system, and for performance reasons is
available only on the GPU. The solver is based on XPBD (Position-Based Simulation of Compliant Dynamics). To solve
all the different constraints, the user needs to provide the number of substeps and solver iterations alongside all the
strands, collisions, and constitutive models parameters. The solver is targeting the original mesh under gravity (rest
pose) to keep the final style as true to the original style as possible.

When a physics asset has been created and added to the SkeletalMesh, the simulation solver handles body collisions
against the primitives of that physics asset.

Self-collisions are computed based on an average velocity field built from the rasterization of the particles’ velocity onto
a regular voxel grid. Regarding the constitutive models, the main challenge is usually finding a good hair constitutive
material model that enables strands to behave realistically, at low solver iteration count. These models control how the
strands will stretch, bend, and twist during simulation.

We are constantly testing new constitutive material models to see which ones offer the best balance between quality
and performance for hair and fur. The Cosserat Rod and Angular Spring methods are already available within the groom
asset physics properties. For more information on these techniques, see the Resources for further reading section at
the end of this paper.

Skin darkening

As the camera moves closer to certain grooms where the human hair and skin colors are very different, the base of
each hair shaft can be the most visible part of the hair strand. With human skin being relatively transparent by nature,
one can notice the hair bulb beneath the skin, also called a follicle. This follicle causes a faint but noticeable darkening
of the skin. To simulate this aspect, a follicle texture is generated for the groom and used within the skin shader (option
available on the Groom Asset).

Figure 19: Follicle map

18

Grooming for real-time realism: hair and fur with Unreal Engine

https://docs.unrealengine.com/en-US/RenderingAndGraphics/Niagara/index.html

Use case: Human hair with MetaHuman Creator
To promote further understanding of real-time hair and fur, we present here some practical use cases in Unreal Engine
along with details of their implementations.

To illustrate grooms for human hair, we will take a look at the grooms on the sample digital humans created with
MetaHuman Creator, which are available for download.

MetaHuman Creator is a new tool for building digital humans complete with facial and body rig. The model, which can be
animated in Unreal Engine, comes with a number of hair options, both for head and facial hair.

The hair choices in MetaHuman Creator are grooms pre-created in a DCC application and imported to Unreal Engine.
With controls within MetaHuman Creator, you can mix and match to create the style for hair, eyebrows, mustaches, and
beards. You can adjust the color of grooms within MetaHuman Creator prior to generating the character.

Both the grooms described here were created using the XGen plugin in Maya.

Side-swept fringe groom

The side-swept fringe groom consists of a sweeping fringe in the front and naturally shaped curls in the back.

WATCH VIDEO

19

Grooming for real-time realism: hair and fur with Unreal Engine

https://www.unrealengine.com/en-US/digital-humans
https://www.youtube.com/watch?v=S3F1vZYpH8c

Groom artist: Marija Blašković

Side-swept
fringe groom

Facial groom

20

With the fringe in the front and curls in the back, it was logical to separate the style into layers (i.e. groups). Layers were
built from the bottom up, similar to the workflow hairdressers use when cutting hair. This technique helped with the
careful layering of hair as the style was built upwards.

By inspecting references and observing how curls formed in similar hairstyles, we came up with a few rules that helped
in building this particular hairstyle; curls are mostly imperfect, and even though hair has a tendency to form clearly
defined entangled spirals, they are still quite broken up, especially in the upper layers where the hair is longer. The
curls tend to lose shape closer to roots, gradually twisting along the strand and interlocking with each other, forming
interesting shapes.

The clumps were broken into two or three sub-clumping layers, with random offset values along each strand. In
addition, in different sub-clumping layers, different percentages of clumps were set up to not follow the primary clump
shape. This further broke the shape and added clump variations.

High-frequency noise helped break the clean and generic look of straight hairs, and additional noise was added to the
tips to further break the clumping. Widening of the clumps at the tips, and randomizing length, also contributed to more
realistic curls that felt more natural.

Finally, we added two or three layers of low-frequency noise that introduced layers of hairs that were completely
disheveled. These layers significantly helped with creating a realistic look.

Figure 21: XGen modifiers stacked to produce clumping and noise

Figure 20: Guides with color-coded layers

21

Grooming for real-time realism: hair and fur with Unreal Engine

Short coil groom

22

Groom artist: Nikola Milosavljević

Short coil groom

The short coil groom is a short hairstyle with thick, somewhat kinked corkscrew curls. To look natural, the curls must
have a great deal of variation, with numerous individual curls visible in profile from every angle. The forehead hairline is
also highly visible.

For the initial creation of guides, we opted for attribute-based grooming with a rough density mask and a sculpted
volume mesh, which acted as a MeshCut modifier inside XGen. It helped to quickly block out the hair length and the
overall shape of the groom.

Short coil groom

23

Grooming for real-time realism: hair and fur with Unreal Engine

Figure 22: Density map in XGen

Figure 23: Section of head defined as initial area for groom

A percentage of hair was exported as guides to be used in a new spline description (a layer or group in a groom).

24

Grooming for real-time realism: hair and fur with Unreal Engine

Figure 24: Rough groom exported for use as guide hairs

The new description was sculpted and a base clumping map was created. It was split into three separate layers to gain
more control of parameters such as coil thickness, shape, number of turns, etc. Expressions were used to randomly
mask out a percentage of coil guides to be exported to each new layer. These expressions created a mask from the
base clumping map's IDs.

Coils were created procedurally, using expressions to blend the number of turns between the root and the tip, with
some control of the location where blending occured along the length of the guide (closer to root or tip or somewhere in
between). Disabling the Uniform CVs option yielded better results, where the shape was more precisely defined along
the length of the coil. Enabling the Uniform CVs option tended to average out the shape.

The Modifier CV Count parameter also played an important role. A good value to start with was 80-100 CVs, where we
could see the appropriate level of detail in the curls without using up an excessive amount of system resources. The CV
count was later optimized to 60-70 for export.

Figure 25: Three types of layers for coil groom

Figure 26: CV count modifications in XGen

25

Grooming for real-time realism: hair and fur with Unreal Engine

Each coil description was controlled by two clumping modifiers. One modifier had a lower clumping intensity that just
attracted hair closer to the guides, and one modifier did the actual curling. On top of that we used stacked noise, coil,
and cut modifiers to break up the uniformity.

Clumping intensity was defined by a map which was derived from the description's base clumping map. The texture was
loaded into the Mari texture-painting software, projected onto the scalp mesh, and the Edge detect filter was applied.
This was followed by the HSL and Contrast adjustment layers, which produced a grayscale map with a structure like
packed cells or reptile skin. The map was then exported from Mari and further manipulated in Photoshop, where we
created a gradient within each cell from its center to the outer edges.

Fill

Where curls do not fill in the scalp, we sometimes rely on fill hairs. The fill description's density map was created in the
same fashion as the coil's clumping intensity map, except that cell borders are colored white and the cells are black.
The map constrains hair growth to the white areas of the map, adding density only where necessary. This automates
the painting that you would otherwise have to do manually. The map can be additionally modulated by XGen's
noise functions.

The coiling effect on the fill hairs was looser than the coiling effect on the curls. Variation was generated by noise and
coil modifiers.

Figure 27: Clockwise from top left: clumping map, edge detect filter, HSL and contrast map, and final clumping map from Photoshop modification

Figure 28: Fill map

26

Grooming for real-time realism: hair and fur with Unreal Engine

Use case: Animal fur and feathers with
Meerkat project
For fur and feathers use cases, we look at the meerkat and eagle from the animated real-time short Meerkat by Weta
Digital. The film tells the tale of an amusing confrontation between a meerkat and a martial eagle. The meerkat required
real-time fur, while the eagle required real-time feathers. The grooms for both animals were created in Maya with the
Yeti plugin.

As much as possible, the shaders were built to mimic the same biological and morphological principles that govern
real hair and feathers. Understanding growth patterns, proteins in charge of pigmentation, and pigment release timing
mechanisms were key to replicating some of the patterns in living specimens of meerkat fur and martial eagle feathers.

For example, the mottled pattern seen on the back of the slender-tailed meerkat (Suricata var suricatta) is a result of
specific hair growth pattern in conjunction with timed melanin pigmentation, which causes hair strands to have two
or more bands of pigmentation caused by the agouti gene. Therefore, in the shader there needs to be control over the
colors of the fur spatially throughout the body as well as control over the timing of the colors along the hair strands.

WATCH SHORT

27

Grooming for real-time realism: hair and fur with Unreal Engine

https://www.youtube.com/watch?v=SB4nnhJv3IU
https://www.youtube.com/watch?v=SB4nnhJv3IU

Figure 29: Reference photos of meerkats

Figure 30: Sparse voxel structure allocates memory clusters only where needed

The two main characters, the meerkat and the eagle, appear on screen together several times, but the fact that they
are two very different-sized animals complicated the fur lighting and shadowing.

As described in the Light approximation section of this paper, the shadows cast by grooms and the light transmission
within the groom relies on a voxel structure. The size of the voxels determines the accuracy of the lighting and
shadowing. Having too large of a voxel will result in a “blobby” and incorrect look, but having too small of a voxel
requires a lot of allocated memory.

For addressing this latter point, we rely on a sparse voxel structure, where allocation is done only where needed. The
allocation is driven on the GPU-based on clusters built during the groom import. The bounding information of these
clusters defines where the groom occupies space, and where memory needs to be allocated. In addition to saving
memory, this sparse structure also enables faster tracing of rays by skipping empty space.

28

Grooming for real-time realism: hair and fur with Unreal Engine

Ambient occlusion and sky lighting relies on this structure to cast correct occlusion and propagate light through the
groom. Unreal Engine offers several ways to compute the sky lighting contribution, with tradeoffs between accuracy
and speed. For the Meerkat project, we used the most accurate version, which properly integrates the sky contribution
with the fur and feather material by casting several rays through the fur, and computes an accurate estimate of the
scattered lights.

For both characters, textures were painted directly on the character’s skin using Substance Painter. These textures are
low-resolution images containing RGB masks which are then used to control the color and patterns in the shader. There
are two main masks—one defines zones that control the color spatially throughout the body, while the other defines the
zones that control the timing of color banding along the hair strands.

Texture maps were generated using the skin’s UV space. These maps define the color throughout the entire length of
hair strands using their rootUV attribute.

Meerkat fur

As the meerkat moves quickly, having precise motion vectors was important for producing accurate motion blur, as
well as for anti-aliasing, as we needed to re-project previous frame lighting onto the current frame. For this purpose,
previous strands’ positions are cached, and computing motion vectors becomes as trivial as computing the difference
between positions.

Real-time performance of fur in Unreal Engine was critical, so reasonable fur densities were important. The meerkat
used only about 25% of the density one would expect in feature film VFX work. Reducing densities and balancing the
widths can help provide convincing and detailed fur in real time.

The meerkat body was groomed as a single groom, but we created separate groups for the fine face fur, the whiskers,
eyelashes, and other unique elements.

Figure 31: Spatial zone (left) and timed zone (right) masks for eagle Figure 32: Spatial zone (left) and timed zone (right) masks for meerkat

29

Grooming for real-time realism: hair and fur with Unreal Engine

Figure 33: Meerkat groom in Unreal Engine

With the meerkat, the whiskers and eyelashes were hand-placed guide curves, directly converted to strands inside the
Yeti node network.

Figure 34: Sketching meerkat guide hairs

30

Grooming for real-time realism: hair and fur with Unreal Engine

Eagle feathers

The eagle was a unique challenge due to the inherent complexity of feathers. Yeti builds feathers using a feather
primitive, where the spine of the feather is effectively a “strand” and the barbs are grown along the spine. The feather is
then instanced across the eagle’s body.

The animation called for deformation of individual feathers as the eagle flies, walks, and moves around, which meant a
rig was needed for several feathers. In addition, strands will bind only to geometry in Unreal Engine. This led us to create
a strip of instanced geometry for each feather spine, which we rigged in Maya. The barbs were imported to Unreal
Engine as fur and bound to the geometry spines.

The eagle feathers required manual placement to ensure a specific structure and appearance as well as to meet
rigging requirements.

For feathers, the timing of the release of pigments along the rachis (spine) and then onto the rami (branches off
the spine) is responsible for the seemingly complex patterns on feathers. The shader for the feathers follows the
same principles of spatial versus timing zones as the hair strands for the meerkat. The main difference is the extra
complexity of the orientation and position of the rami along the rachis. The final patterns seen on feathers are tightly
dependent on the geometry of the feather, meaning careful attention needs to be given to their construction because
they affect the final look more profoundly.

Originally, the shader for the feather was a projection of a color map painted on a flat polygonal plane in Substance
Painter. There were 13 different types of feathers for the whole body of the martial eagle. These maps were then
remapped using the UV coordinates of both the rachis and the rami.

Unfortunately, this immediately presented problems in getting natural variation in the patterns amongst the feathers,
and limiting the ability to control the hue and value in a quick and efficient way. A more procedural approach of using the
principles of pigmentation along the strands gave a much more organic look.

Figure 35: Sketching rami placement

31

Grooming for real-time realism: hair and fur with Unreal Engine

As discussed in the Import process section, the texture maps were generated using the skin’s UV space, defining
the color throughout the entire length of hair strands using the rootUV attribute. For the meerkat fur this was
straightforward, but for feathers the rootUV parameter could only define the entirety of a single feather.

In order to achieve specific patterning, we required extra attributes for the hair strands: one to define the rami position
along the rachis (0 at the base, 1 at the tip) and a second attribute to specify which side of the feather it was (medial
versus lateral vane). Color ramps were used to create the patterns of color/value along each of the hair strands in order
to control the banding along the strands.

Conclusion
The real-time hair and fur system is still fairly new, and there’s lots of room to grow.

In future releases of the hair and fur system, our objective at Epic Games is to focus on quality and performance. For
shading and rendering of hair/fur, we will be improving approximations of light by offering extra parametrization and
better lighting response.

We will also aim to improve collision response and materials, and further optimize performance to handle larger and
denser grooms.

We look forward to adding more features to future releases of Unreal Engine to advance the cutting edge of real-time
hair and fur.

Figure 36: View of the martial eagle in the final real-time rendering

32

Grooming for real-time realism: hair and fur with Unreal Engine

Resources for
further study
Formulas

Bidirectional Reflectance Distribution Function (BRDF)

Radial Basis Function (RBF)

Technical papers

Light Scattering from Human Hair Fibers

Physically Based Hair Shading in Unreal

Dual Scattering Approximation

Deep Opacity Maps

Position and Orientation Based Cosserat Rods

Artistic Simulation of Curly Hair

Related software

MetaHuman Creator

33

https://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function
https://en.wikipedia.org/wiki/Radial_basis_function
http://www.graphics.stanford.edu/papers/hair/hair-sg03final.pdf
https://blog.selfshadow.com/publications/s2016-shading-course/#course_content
http://www.cemyuksel.com/research/dualscattering/
http://www.cemyuksel.com/research/deepopacity/
https://www.google.com/url?q=https://www.cg.informatik.uni-mainz.de/files/2016/06/Position-and-Orientation-Based-Cosserat-Rods.pdf&sa=D&source=editors&ust=1616166713410000&usg=AOvVaw09kNU1ZQl7UWxb77-Q0gX2
https://graphics.pixar.com/library/CurlyHairA/paper.pdf
https://www.unrealengine.com/en-US/metahuman-creator

About this document
Authors
Gaelle Morand

Charles de Rousiers

Michael Forot

Contributors
Shawn Dunn

Nathan Farquhar

Darrin Wehser

Marija Blašković

Nikola Milosavljević

Editorial
Editor: Michele Bousquet

Layout: Jung Kwak

Copyright © 2021 Epic Games, Inc. All rights reserved.

34

