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Figure 1: Shots with hundreds of volumetric crowd characters required an efficient volume generation pipeline. ©Disney/Pixar.

ABSTRACT

In order to produce shots with hundreds of multi-volume crowd
characters for Soul, we could not rely on the same I/O heavy pose-
cache pipeline used for the hero characters [Coleman et al. 2020].
Our rendering and systems teams rated the total necessary storage
for the "soul world" at over 100 TBs for an average of two hero char-
acters per shot.! For expansive crowds of these characters to hit the
same volumetric look while avoiding this I/O limitation, two new
render-time technologies were developed. The first leveraged an
existing volume rasterizer to pose volumes at render-time, informed
by a lattice deformation. The second allowed for rasterization of
surface primvars to be delivered to the volume shaders.
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1 VOLUME DEFORMATION

In addition to the I/O limitations of pursuing a pose-caching pipeline,
the Houdini hero volume generation time would have been a large
renderfarm cost if applied to crowds. With our internal volume
rasterization library, REVES? [Wrenninge 2016], we built a pipeline
around rest pose volumes and deformed lattices. This allowed us
to generate implicit volumes at render-time in order to prevent
volume data from hitting network storage.

As apart of the crowds character build, a lattice was generated for
each character’s volumes - body, hair, face details, and accessories>.
The lattice is deformed by the UsdSkel crowds pipeline [Yen et al.
2018], which yields the lattice point motion samples to a RenderMan
implicit field plugin. With the deformed lattice and a rest volume
from disk, the plugin performs the voxelization of each of the fields
at render-time including a velocity field computed from the velocity
vectors of the points. The output velocity field is later sampled
to support deformation motion blur of the volumes. Additionally,

2REVES is a volumetric implementation of the REYES algorithm.
3The resolution of each lattice is 15x15x15, which strikes a balance between preserva-
tion of detail from rasterization and performance.
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Figure 2: Time-to-first-pixel comparisons of voxel resolu-
tion LOD for a particular production shot. ©Disney/Pixar.

minmax fields are generated for optimal tracing post-rasterization
via RenderMan’s volume tracking algorithms [Fong et al. 2017].

Rasterizing the input rest pose at full voxel resolution was a high
cost for pre-pixel computation time. This slowed down iteration
time for lighters, requiring use of our stochastic LOD technology
for tuning the output field resolution [Cook et al. 2007].

2 GEOMETRY RASTERIZER

While these crowd characters were mostly built from volumes, the
eyes were meshes. The volumetric faces do not provide the same
occlusion as a surface, resulting in a "floating" eyeball look. Com-
puting the occlusion culling could be easily done with a Z-buffer —
however because our characters were not opaque and overlapped
in screen space, it was necessary to produce a unique buffer per
character. This requirement barred the use of RenderMan to gener-
ate the signals, as it assumes one render context per process, not
hundreds. We developed a CPU rasterizer* to produce in-memory
textures. With this embeddable renderer, Z-depth is rasterized to
perform a depth test against the eye surface for presence masking.

Additionally, certain fields of the rest pose volumes used for
shading could not be easily rasterized by REVES. Camera indepen-
dent fields (i.e. density or masking fields) were trivial, but some
signals (like the gradient fields) were frustum aligned. Additionally,
the REVES rasterization cost of these fields contributed to growing
time-to-first-pixel concerns. We used the geometry rasterizer to
render the necessary analogous surface properties of each volume’s
representative mesh to textures, which could then be wired into
the volume shaders as if they were coming from field data. This
enabled our shading artists to construct a shading network that
could easily be used for both the hero and crowd characters, re-
gardless of where the signals were coming from. Additionally, a
separate surface shader for emulating the volumetric look leveraged
an alpha texture produced by the rasterizer.

4We chose not to develop a GPU rasterizer since our farm is primarily CPU-based.
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It was advantageous to perform the rasterization just-in-time
in order to avoid synchronization issues with the crowds pipeline.
Furthermore, these signals were required for light shaping, meaning
rasterization needed to be a preprocess of the render as opposed
to offloading the responsibility to comp. This geometry rasterizer
has a limited feature set and is not meant to replace the capabilities
of a REYES renderer; it is simply a low cost one-sample rasterizer
designed to provide input to other parts of the scene.

2.1 In-Memory Textures

The system needed to support several 512x512 textures per charac-
ter, per frame.® In order to avoid the [/O cost of writing and reading
several thousand textures per shot, the rasterized textures were kept
in-memory as attributes of the geometry, which could be moved
to the RenderMan Rtx texture interface. We wrote an Rtx plugin
to fulfill tile fill requests from the buffers, which also supported
generating mipmaps for blurred texture access. Texture sampling
the edges of the volumes required a dilation of the rasterized signals.
We composited higher resolution mips on top of lower resolution
mips as a flooding mechanism that was fast and more temporally
coherent than OpenlmagelO’s push-pull algorithm.

3 CONCLUSIONS

Through integration of rasterization techniques into our path traced
renderer’s scene initialization, we were able to support vast amounts
of volumetric crowd characters in Soul. REVES provided a means
to pose crowds of volumes at render time, while the geometry
rasterizer yielded the necessary shader inputs in order to closely
match the hero look at a fraction of the cost.
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