
Smoothed Aggregation Multigrid for Cloth Simulation

Rasmus Tamstorf
Walt Disney Animation Studios

Toby Jones
Walt Disney Animation Studios

Stephen F. McCormick
University of Colorado, Boulder

Abstract

Existing multigrid methods for cloth simulation are based on ge-
ometric multigrid. While good results have been reported, ge-
ometric methods are problematic for unstructured grids, widely
varying material properties, and varying anisotropies, and they
often have difficulty handling constraints arising from collisions.
This paper applies the algebraic multigrid method known as
smoothed aggregation to cloth simulation. This method is ag-
nostic to the underlying tessellation, which can even vary over
time, and it only requires the user to provide a fine-level mesh.
To handle contact constraints efficiently, a prefiltered precondi-
tioned conjugate gradient method is introduced. For highly effi-
cient preconditioners, like the ones proposed here, prefiltering is
essential, but, even for simple preconditioners, prefiltering pro-
vides significant benefits in the presence of many constraints.
Numerical tests of the new approach on a range of examples con-
firm 6− 8× speedups on a fully dressed character with 371k ver-
tices, and even larger speedups on synthetic examples.

CR Categories: I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation

Keywords: cloth simulation, smoothed aggregation, algebraic
multigrid, equality constrained optimization

1 Introduction

Multigrid methods are well-known and theoretically optimal in
that they promise to deliver a solution to a wide variety of discrete
equations with compute time proportional to the number of un-
knowns. However, multigrid algorithms that obtain full compu-
tational efficiency can be difficult to design for new applications,
especially when constraints are introduced.

The goal of this paper is the acceleration of high-end cloth sim-
ulation, with applications ranging from feature film production
to virtual try-on of garments in e-commerce. The methods de-
veloped here also apply to the broader problem of thin-shell sim-
ulation that has many applications in engineering. Common to
all of the applications is that higher resolution leads to higher fi-
delity, but also often prohibitive computation times for conven-
tional methods.

Existing multigrid approaches to these types of problems typ-
ically require structured meshes and have difficulty with colli-
sions. Furthermore, their convergence rates and scaling proper-
ties have often not attained full computational efficiency. This

Figure 1: The method presented in this paper provides an 8× speedup for
a walk cycle animation of this character and 6× for a run cycle anima-
tion. These numbers are compared to a block diagonally preconditioned
CG method. The garments consist of a combined 371, 064 vertices.

paper investigates several possible causes and potential reme-
dies for these difficulties. One difficulty inherent to elasticity is
that the different displacement variables are interconnected in
the sense that changes in the smooth components of one variable
strongly affect others. In fact, neither geometric multigrid meth-
ods (GMG) [Brandt 1977] nor algebraic multigrid methods (AMG)
[Brandt et al. 1985], when designed in a standard way, work opti-
mally when the variables are strongly coupled. We elaborate on
this below with a small didactic example.

Our primary contribution here is to apply a multigrid precon-
ditioner based on smoothed aggregation (SA) [Míka and Vaněk
1992] to cloth simulation. SA is designed to handle coupling be-
tween variables and is superior to simple diagonally precondi-
tioned conjugate gradients even for relatively small problems. SA
is also purely algebraic, so it is agnostic to the choice of input
meshes and relieves the user of explicitly generating hierarchies
or choosing meshes such that they are amenable to coarsening.
In fact, SA works with completely irregular and potentially even
(time) adaptive meshes. It is also agnostic to the choice of tri-
angles or quads for the underlying discretization. To our knowl-
edge, this work is the first time that algebraic multigrid methods
have been applied to cloth simulation. The initial focus here is
on the formulation introduced by [Baraff and Witkin 1998], but it
has important implications on other formulations and it provides
a pathway to treating other models.

While many existing literature sources address multigrid funda-
mentals, we are not aware of any that provide the comprehen-
sive but condensed focus needed to address the several chal-
lenges present in cloth simulation. To this end, in sections 4
and 5, we present a concise discourse on the fundamentals of
multigrid methodology and the development of smoothed aggre-
gation, including some theoretical foundations and heuristics,



Figure 2: Visualization of the strength of connection within a matrix for each of the three variables, (x , y , z ), at two frames of a simulation. Strong negative
off-diagonal connections between vertices are shown in UV space as blue lines. The two red lines in the second-to-left image indicate strong positive off-
diagonal connections. For clarity, "weak" connections are omitted. In the undeformed state (three leftmost images), the x and z components are each
anisotropic but in different directions. In the deformed state (three rightmost images), different directions of anisotropy appear even within a single variable.

known and new, that guide the development of effective multi-
grid algorithms for novel applications. This discussion is new in
that it focuses on the connection between existing multigrid the-
ory and the development of effective algebraic multigrid solvers
applied to thin shells, especially with collisions. Our experiences
with the failure of standard AMG and SA for these systems led us
to reconsider basic multigrid concepts and principles, and this
discussion will hopefully act as a guide to anyone who might at-
tempt to apply multigrid to other related applications. The theory
is further elaborated upon in the supplemental material.

A critical component in cloth simulation is collision handling. We
do not propose any new methods for collision detection or re-
sponse, but we do introduce a novel way of handling the filter-
ing step originally introduced by [Baraff and Witkin 1998]. The
new method, called Prefiltered Preconditioned CG (PPCG), is one
of the principal contributions of this paper. PPCG is essential for
maintaining the advantage of the SA preconditioner in the pres-
ence of collision constraints, but it is also advantageous when
using a simple diagonal preconditioner. We introduce PPCG for
treating collisions in section 8.

In section 11, we document the effectiveness of SA and PPCG
with a comprehensive set of tests that show significant compu-
tation speedup over conventional methods for a wide range of
cloth simulations of interest. The method has been implemented
in a production-quality solver, and can be implemented in other
systems simply by replacing the innermost linear solver.

2 Challenges for multigrid

Partial differential equations (PDEs) for thin shell elasticity with
large deformations are complicated, yet most cloth models are
approximations of these equations. Even the highly simplified
models of a planar elastic membrane undergoing small defor-
mations result in biharmonic equations. For most methods, in-
cluding multigrid, these equations are substantially more com-
plicated to find solutions for than Poisson-like problems, which
is what is often considered in the multigrid literature.

Two challenges that affect our work directly are anisotropy and
strong coupling between variables. Anisotropy is usually associ-
ated with constitutive models and, in fact, cloth is an example
of an anisotropic material. However, in the context of multigrid
methods, anisotropy simply means that certain variables are con-
nected more strongly than others in the underlying matrix, and
that there is a pattern to the directionality of these strong con-
nections. The notion of a “strong connection” here corresponds
to a large off-diagonal value of the associated matrix element rel-
ative to the diagonal. What is important to note is that this type
of anisotropy occurs even with an isotropic homogeneous elastic
material. This behavior is due in part to the Poisson effect. As
an illustration, consider the simulation of an L-shaped piece of

cloth, where the boundary along the cut-out corner is held fixed
while the rest falls under gravity. The corresponding strength of
connections in the associated stiffness matrix exibits not only
distinct anisotropies, but also directions of anisotropy that vary
in space and time (see figure 2). Standard methods like semi-
coarsening or line relaxation used with geometric multigrid are
thus ineffective for this problem.

v0 v1

v2

f0

f1

f2

x

y

δx
The second challenge related to
strong coupling between vari-
ables can easily be seen by con-
sidering the simple 2D example
shown in the inset figure to the
right. In this example, two edges
are bent from their rest config-
uration, which generates the set
of bending forces labeled f 0, f 1,
and f 2. If we apply a displace-
ment, δx , to the top vertex, v2, then all the bend forces increase
in magnitude. In particular, this means that a change in the x
coordinate of v2 leads to a change in the x coordinate of f 2, but
it also leads to a change of the y coordinate of f 1. Because the
two changes have the same magnitude, the x and y variables are
interpreted to be strongly coupled from a multigrid point of view.

The theory in section 4 suggests that this strong cross-variable
coupling would lead to poor performance of standard AMG. We
confirmed this numerically by running several tests for the L-
shaped problem mentioned above. Let the number of vertices in
a simulation be n . Standard AMG then performed well for each of
the three n ×n blocks associated with the individual unknowns
when the coupling between unknowns was deleted in the ma-
trix. However, for the full matrix, its convergence rate was poor
even for small problems, and degraded further as the problem
sizes increased. Standard AMG simply was unable to provide a
significant improvement over diagonally preconditioned conju-
gate gradients (PCG).

3 Related work

Given the wide range of applications and the cost of the simula-
tions, it is not surprising that multigrid methods have been stud-
ied in the graphics community for cloth simulation and, in the
wider multigrid community, for the more generic linear elasticity
and thin-shell problems.

Some of the earliest work on multigrid for thin shells appears
in [Fish et al. 1996] where they investigated an unstructured
multigrid method for thin shells amounting to an extension of
geometric multigrid that coarsened with knowledge of the prob-
lem. However, they acknowledge that their method has limita-
tions in that it does not address higher-order interpolation and it
was never tested on large-scale problems.



More recently, Gee et al. [Gee et al. 2005] addressed more com-
plicated shell models using a finite element discretization. They
used an aggregation-based approach that has many similarities
to an SA hierarchy. However, for their method, they treat the shell
as a (thin) 3d solid unlike the typical 2d manifold approach used
for cloth. To avoid severe ill-conditioning and to obtain conver-
gence rates independent of conditioning, they apply “scaled di-
rector preconditioning”. This also allows them to model varying
thickness across the shell. In their follow-up work [Gee and Tu-
minaro 2006], the focus is on using a nonlinear solver, and adap-
tive SA is used to precondition the linearizations. In our expe-
rience, adaptive SA is currently too expensive for typical cloth
problems, although this may change in the future with improve-
ments in the adaptive algorithm and demands for much more
computationally intense simulations.

Related research within the graphics community has been fo-
cused primarily on applying various types of geometric multigrid
to cloth simulation. Oh et al. [2008] implemented a GMG method
that uses CG for the smoother on each level, with a focus on pre-
serving energy and mass at all levels of the hierarchy. Linear in-
terpolation is used between levels, the level hierarchy is attained
through regular subdivision, and constraints are only treated on
the fine grid. This produced a significant speedup for their simu-
lations but failed to show linear scaling in the size of the problem,
and the performance deteriorated in the presence of constraints.
Lee et al.[2010] used a multi-resolution approach that focused on
using adaptive meshing to only place subdivisions where needed
to provide acceleration, compared to a GMG with regular subdi-
vision. It is not clear how to use this approach in a multilevel fash-
ion, nor how it addresses the difficulties arising from the PDE and
collisions. Jeon et al. [2013] extended the work in [Oh et al. 2008]
to handle “hard” constraints, as presented in [Baraff and Witkin
1998], by converting them to soft constraints to avoid the chal-
lenges of coarsening them. They use GMG as a direct solver, with
PCG as their smoother for restriction and GS as their smoother
for prolongation, but require an expensive V(5,10) cycle.

One of the exceptions to the use of geometric multigrid in the
graphics literature is an AMG-like algorithm developed by Kr-
ishnan et al. [2013]. Their focus is on discrete Poisson equa-
tions written in terms of M-matrices, which (among other prop-
erties) have only nonpositive off-diagonal entries. Basically,
their approach is to modify the original matrix by first select-
ing unknowns that represent the coarse grid and then elimi-
nating interconnections between the remaining fine-grid-only
unknowns. This elimination is accomplished in a sparsifica-
tion/compensation process that is analogous to AMG’s so-called
stencil collapsing procedure. The difference is that, while AMG
eliminates these connections to determine interpolation, their
goal is to produce a modified matrix (to be used as a precondi-
tioner) that naturally preserves M-matrix character on coarser
levels. Their method is shown to be superior to two algebraic
multigrid techniques that were modified to similarly preserve M-
matrix character, so it is no doubt important in some applica-
tions. However, their results show a loss of efficiency compared
to more standard algebraic multigrid methods. Our aim here is
to develop an AMG approach that is not restricted to M-matrix
discretizations.

The simulator we use for our experiments is based on a com-
bination of the methods presented by Baraff and Witkin [1998]
and Bridson et al. [2002]. As stated above we do not propose any
new contributions related to the material model or the way colli-
sions are handled. In particular, we use the material model from
[Baraff and Witkin 1998], and the basic contact handling is as de-
scribed in section 6 of that paper (including approximate han-
dling of friction). Since that does not guarantee that the simu-

lation is free of continuous time collisions at the end of a time
step, we follow our linear solve by one or more loops of Bridson’s
method [Bridson et al. 2002, section 7.4]. If this still fails to resolve
all collisions, then we apply the fail-safe in [Harmon et al. 2008].
Only the contributions from Baraff & Witkin’s paper actually af-
fect what goes into the linear system that our solver sees. This in-
cludes constraints for cloth/object collisions and repulsion forces
for cloth/cloth collisions (the latter being akin to the repulsion
forces in section 7.2 of [Bridson et al. 2002] but included into the
implicit solve as originally suggested by [Baraff and Witkin 1998]).
While multigrid methods can be used as stand-alone solvers, we
found it more effective in our system to use multigrid as a pre-
conditioner within CG. The only change we made to our system
is therefore within the CG method. All other features and limita-
tions remain the same.

This work should apply without modifications to other cloth sim-
ulators such as the one in [Narain et al. 2012], which re-tessellates
the geometry adaptively throughout the simulation.

4 Multigrid fundamentals

Conventional multigrid methods, whether geometric or alge-
braic, tend to perform poorly for thin-shell applications. To un-
derstand the difficulties inherent in this application and develop
a more advanced algebraic multigrid method with improved per-
formance, we carefully consider the basic multigrid principles
and the nature of the equations that we are treating. We doc-
ument the concepts that originally guided us through this pro-
cess by providing a basic overview of the multigrid methodol-
ogy tailored to thin-shell equations. This is covered in the next
two sections, with additional background available in the sup-
plemental material. The aim in this development is to give in-
sight into the steps needed to design effective multigrid solvers
for thin-shell equations and provide a template for their devel-
opment for future applications. We draw on relevant existing
multigrid concepts and principles available in the basic tutorial
presented in [Briggs et al. 2000], the additional material devel-
oped in [Trottenberg et al. 2000], and relevant theory given in
[McCormick 1984] and [Vassilevski 2008]. We also include several
new insights that we gained in this development effort.

Multigrid relies on two complementary processes: smoothing (or
relaxation) to reduce “oscillatory” errors associated with the up-
per part of the spectrum, and coarsening (or coarse-grid correc-
tion) to reduce “smooth” errors associated with the lower part of
the spectrum. Many choices exist for smoothing, but the various
multigrid methods are distinguished mostly in how they coarsen.

Geometric multigrid methods rely on the ability to coarsen a
grid geometrically and to (explicitly or implicitly) define dis-
cretizations on coarser grids, as well as interpolation operators
between the grids. Unfortunately, geometric multigrid meth-
ods can be difficult to develop for problems with unstructured
grids, complex geometries, and widely varying coefficients and
anisotropies. As a convenient alternative to GMG methods, AMG
and its cousin SA were developed to provide automatic processes
for coarsening based solely on the target matrix. AMG coarsens
a grid algebraically based on the relative size of the entries of the
matrix to determine strong connections, thereby forming a hier-
archy of grids from the finest, on which the original problem is
defined, down to the coarsest, which typically consists of just a
few degrees of freedom. The AMG coarsening process produces
coarse grids whose degrees of freedom are subsets of those on
the fine grid (represented by identity rows in the interpolation
matrix). Thus, while AMG is an algebraic approach, a geomet-
ric representation of coarse-grid nodes in the continuum is still



easily determined.

For linear finite element discretizations of Poisson’s equation on
regular 2D grids, the parameters for AMG can be selected to pro-
duce the usual geometric coarsening with linear interpolation.
In this case, the coarse-grid matrix is essentially what FE would
produce by re-discretization on the coarse grid. AMG and GMG
solvers would then have similar interpolation, restriction, and
coarse-grid components. It is thus often safe to make assump-
tions about the convergence of a standard GMG approach by
looking at the convergence of an AMG implementation. Yet AMG
can automatically produce effective coarse levels for many prob-
lems that do not lend themselves to geometric approaches.

Smoothed aggregation is an advanced aggregation-based
method founded on algebraic multigrid principles. When coars-
ening the grid, these methods form agglomerates (by grouping
fine-grid nodes) that each become a node of the coarse grid.
The points that go into agglomerates are also formed based on
relative strength between elements of the matrix. However, for
standard SA, coarse nodes do not correspond to single fine-grid
nodes. So, for vertex-centered discretizations, it is generally not
possible to assign geometric meaning to the coarse grids that SA
produces, especially for systems of PDEs. Smoothed aggregation
also tends to coarsen more aggressively than AMG and GMG, so
the coarse matrices and interpolation operators generally must
work harder to obtain efficiency comparable to that of AMG and
GMG.

Once a coarse grid has been selected, an interpolation opera-
tor, P , that maps coarse-grid to finer-grid functions must be
formed. Selection of the interpolation operator can be guided
by classical multigrid theory. Solving a fine-grid matrix equation
of the form Au = f , where A is symmetric positive definite, is
equivalent to minimizing the discrete energy functional given by
F (v )≡ 〈Av , v 〉−2〈v , f 〉, where v is an approximation of the exact
solution u . Simple algebra shows that the best coarse-grid cor-
rection to a fixed approximation, v , in the sense of minimizing
F (v −P v c ), is expressed by

v ← v −P
�

P T AP
�−1

P T �Av − f
�

.

This objective leads to the two so-called variational conditions
that are used in forming AMG/SA hierarchies: restriction from
the fine to the coarse grid is the transpose of interpolation, and
the coarse-grid matrix is given by the “Galerkin" product Ac ≡
P T AP . GMG by comparison is often done by re-discretizing the
problem on the coarse levels to obtain Ac , and then computing

v ← v −P (Ac )−1 P T �Av − f
�

.

To construct an effective interpolation operator, we must under-
stand why conventional iterative methods tend to work well for
a couple of iterations, but then soon stall. This phenomena is
due to the error quickly becoming smooth and difficult to re-
duce. But this smoothing property is precisely all that we ask
of relaxation. The basic idea for multigrid is that smooth error
can then be eliminated efficiently on coarse levels. For coars-
ening to work well this way, interpolation must adequately ap-
proximate smooth errors, as articulated in the following property

[Vassilevski 2008]. Here and in what follows, ‖·‖ and ‖·‖A ≡ ‖A
1
2 ·‖

denote respective Euclidean and “energy” norms.

Definition 4.1 The Strong Approximation Property (SAP) holds
if a fine-grid error, e , can be approximated in the energy norm by
the coarse grid with accuracy that depends on the Euclidean norm

of its residual, Ae :

min
u c
‖e −P u c ‖2

A ≤
C

‖A‖
〈Ae , Ae 〉.

Let any vector e be called a near-kernel component if either 〈e ,Ae 〉
‖A‖

is small compared to ‖e ‖2 = 〈e , e 〉 or 〈Ae ,Ae 〉
‖A‖ is small compared to

‖e ‖2
A = 〈e , Ae 〉. The SAP is sufficient to guarantee fast conver-

gence of the most cost-effective form of a multigrid solver called
the V-cycle. (See the supplemental material for a detailed descrip-
tion.) A consequence of this guarantee is that the SAP creates a
clear goal for the interpolation operator in that it must, at the very
least, adequately approximate near-kernel components. This is
an essential observation in what follows. However, the global na-
ture of the energy norm that the SAP is based on makes it difficult
to use as a design tool. It is more common in practice to develop
schemes with estimates based on the Euclidean norm, as the fol-
lowing weaker property provides.

Definition 4.2 The Weak Approximation Property (WAP) holds
if a fine-grid error, e , can be approximated in the Euclidean norm
by the coarse grid with accuracy that depends on its energy norm:

min
u c
‖e −P u c ‖2 ≤

C

‖A‖
〈Ae , e 〉.

Developing schemes based on the WAP is easier because es-
timates involving the Euclidean norm can be made locally in
neighborhoods of a few elements or nodes. This locality provides
the basis for the classical development of both AMG and SA. Un-
like the SAP, however, the WAP itself is not enough to ensure V-
cycle convergence, which is why interpolation-operator smooth-
ing (see the next section) is used in aggregation-based methods.

Even with the above requirements there are many ways to con-
struct the interpolation operator, P . Standard GMG and AMG are
examples of so-called unknown-based multigrid methods, where
the degrees-of-freedom (DOF) are coarsened and interpolated
separately. To illustrate this approach, note that a cloth simula-
tion typically involves three displacement unknowns. The result-
ing matrix, A , can therefore be written in the form

A =







A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3






, (1)

where each block is of size n×n , with n the number of nodes used
in the discretization. When using an unknown-based method,
interpolation and coarsening are constructed based on the block
diagonals to form the full interpolation operator:

P =







P1,1 0 0
0 P2,2 0
0 0 P3,3






. (2)

The coarse-grid matrix is then formed using the Galerkin oper-
ator P T AP . This works well when the PDE is dominated by the
connections within the unknowns. However, for problems like
elasticity with strong off-diagonal connections, unknown-based
approaches can suffer poor convergence and scaling.

Another choice for applying multigrid to systems of PDEs is
the nodal approach, where the fine-grid matrix is structured in
blocks of the same size as the number of unknowns in the PDE at
each grid point. This approach complicates the determination of



strength between nodes and, in turn, coarsening, but it provides a
bridge to smoothed aggregation. Instead of coarsening a grid by
identifying a set of nodes that becomes the coarse grid, SA par-
titions the grid into aggregates that are strongly interconnected.
Akin to how finite elements use local functions, SA then assigns
each aggregate a basis of local vectors that can be linearly com-
bined with each other and bases of the other aggregates to ade-
quately (according to the WAP) approximate all fine-grid smooth
error. The coefficients in these linear combinations constitute
the coarse-grid unknowns, and the vectors themselves represent
an approximation of the near-kernel for the coarse problem. This
form gives SA the natural ability to interpolate across unknowns,
and it has the added benefit of being able to fit a much richer set
of errors.

In summary, multigrid methodology involves approximating the
algebraically smooth error left by relaxation by forming a coarse
grid and an interpolation operator from it to the fine grid that ad-
equately represents these errors in accordance with the WAP. SA,
in particular, approximates algebraically smooth errors by choos-
ing aggregates of nodes that are connected strongly enough to
enable one or a few basis elements to represent these errors lo-
cally, with the WAP guiding the choice of the basis elements that
properly approximate these smooth errors.

5 Smoothed Aggregation

Construction in SA of a hierarchy of matrices and the correspond-
ing interpolation operators between successive levels proceeds
in three stages: selection of aggregates (A i on level i = 1, 2, . . . , m
from fine to coarse grids), forming interpolation operators (Pi ),
and then forming coarse-grid operators (Ai+1 = P T

i Ai Pi ). Since
SA is a nodal approach, on any given level i of the hierarchy, Ai is
assumed to have n i nodes, each corresponding to b i ×b i blocks.
At the finest level, b1 is the number of unknowns in the original
PDE (i.e., 3 displacements in our case). The dimensions of Ai is
block n i×n i when considered nodally, and (n i ·b i )×(n i ·b i )when
all unknowns are considered.

Smoothed aggregation assumes that we are given a set of near-
kernel components that constitute the columns of a matrix, K .
This near-kernel matrix is used below to construct bases for
the agglomerates. K must have the property that any near-
kernel component e must be adequately approximated (accord-
ing to the WAP) in each aggregate by a linear combination of the
columns of K restricted to that aggregate. For scalar Poisson
equations, one near-kernel component (typically the constant
vector) is usually enough to obtain good performance. For 2D
linear elasticity, three components (typically a constant for each
of the two displacement unknowns and a rotation) are usually
needed. In section 6, we return to the problem of choosing K .

The first step in aggregating nodes is to form a strength-of-
connection (SOC) matrix, S , which serves multiple purposes. Its
primary function is to provide a structure where “strength" be-
tween any pair of nodes in the “grid" is stored. This is used to de-
cide which nodes are strongly interconnected so that they can be
grouped together into small local aggregates. Another purpose of
S is to treat a problem caused by anisotropy. The problem arises
because the interpolation should be in the direction of strength,
but the smoothing that is used to improve the interpolation op-
erator can smear in the direction of weakness. S can be used to
identify the potential for this smearing and filter smoothing by
eliminating the weak connections in the matrix.

The SOC matrix is usually chosen with a sparsity pattern that is
a subset of the original nodal matrix. This can be advantageous
in the implementation because the size of the necessary memory

allocation is known at the beginning of the construction process.
In general, S is not needed after setup, so it can be discarded after
that phase. Usually, the strength between nodes is defined in a
way that allows S to be symmetric, and the cost of assembling S
is reduced to constructing the upper (or lower) triangular part of
the matrix. Classically, the strength between nodes is defined as

s i j =







1, i = j ,

1, ρ
�

A−1/2
i i Ai j A−1/2

j j

�

>θ ·ρi ,max,

0, otherwise,

where ρ(·) denotes the spectral radius of a matrix, ρi ,max =
maxj 6=i ρ

�

A−1/2
i i Ai j A−1/2

j j

�

, and θ ∈ (0, 1). s i j effectively deter-
mines strength relative to other off-diagonals in row i . Also, Ai j

here refers to the block (of size b1×b1) associated with a nonzero
in the matrix between nodes i and j .

Based on S , define the set S to be the special nodes, by which
we mean those that are not strongly connected to any other node
or that correspond to a row in the matrix that is very diagonally
dominant. Relaxation leaves little to no error at the special nodes,
so they need not be interpolated to or from coarser levels and
are therefore gathered into one aggregate that is not affected by
interpolation from coarser levels.

Next, to facilitate description of the aggregation process, let the
set of fine-level nodes be represented by their indices, D1 =
{1, 2, . . . , n 1}. The next phase then constructs a fine-level parti-
tion, {A1,A2, . . . ,An2}, ofD1 \S into disjoint aggregates:

D1 \S =
n2
⋃

i=1

Ai , Ai ∩Aj = ;, ∀i 6= j .

Each aggregate here forms a node on the coarse level. Given the
set of special nodes, this phase is accomplished by two passes
through the nodes. In the first pass, an initial set of aggregates is
formed and, in the second, all unaggregated nodes are assigned
to existing aggregates.

Algorithm 1 Form aggregates, pass 1

1: input Set of nodes,D, and SOC matrix, S .
2: R =D
3: k = 0
4: for i = 1, . . . , n 1 do
5: FormNi = {j : s i j = 1, i 6= j }
6: if Ni ∩R =Ni then
7: Ak =Ni ∪{i }
8: k = k +1
9: R =R \ (Ni ∪{i })

10: end if
11: end for
12: n 2 = k
13: return Aggregates,A1, . . . ,An2 , and still un-aggregated nodes
R .

The goal of the first pass is to create a set of aggregates from a
maximally independent set of strongly connected nodes. One
way to do this is outlined here. Each node is examined once in
turn, in any logical order. If none of the current node’s strongly
connected neighbors are in an aggregate, then they join the cur-
rent node to form a new aggregate. Otherwise, the current node is
left alone and the next node is examined similarly. More specif-
ically, let R be the set of node indices that are not currently as-
signed to an aggregate. Initially, R = D1 \S . Let Ni = {j : s i j =
1, i 6= j } be the set of points that are strongly connected to point
i . The first pass is outlined in Algorithm 1.



K1

K2

K3

K4

Fine level kernel

n 1 f
in

e 
le

ve
l n

od
es

n2 aggregates

R1

R2

R3

R4

Coarse level kernel

n 2 
co

ar
se

 le
ve

l n
od

es

Q1

Q2

Q3

Q4

R1

R2

R3

R4

Figure 3: To form the kernel for a coarse level, we start with the kernel for the fine level (far left), where the rows have been tagged according to which
aggregate the corresponding node belongs to. All the rows with identical tags are then combined to form the local kernels (middle), and a thin QR decom-
position is applied to each local kernel. The resulting Q matrices form the building blocks for the tentative interpolation operator, P̂ , while the resulting R
matrices form the building blocks for the coarse-level kernel (far right). P̂ is obtained by replacing each K i matrix with the corresponding Qi matrix and
then permuting back to the original row ordering (second from the left).

After the initial set of aggregates is formed, a subset of unaggre-
gated nodes, R̂ , remains. The goal now is to assign the nodes in
R̂ to aggregates in the list A1, . . . ,An2 . This assignment can be
done by looping over each aggregate and assigning to it all nodes
left in R̂ that are strongly connected to one of its nodes. (An alter-
native is to loop over each node in R̂ , assigning it to the aggregate
that it is most strongly connected to.) All non-special nodes are
strongly connected to at least one node, so this step ensures that
they will all be aggregated. Each aggregate is represented by a
node on the coarse level, so that level will have size n 2. This step
is outlined in Algorithm 2.

Algorithm 2 Form aggregates, pass 2

1: input Aggregates,A1, . . . ,An2 , and still un-aggregated nodes
R .

2: for i = 1, . . . , n 2 do
3: Let m i be the number of elements inAi

4: for j = 1, . . . , m i do
5: FormNj

6: Let Pj =Nj ∩R̂
7: for k ∈ Pj do
8: Ai =Ai ∪{k }
9: R̂ = R̂ \ {k }

10: end for
11: end for
12: end for
13: return An independent set containing all nodes,A1, . . . ,An2 .

Interpolation is constructed in two basic steps. The first involves
choosing a tentative interpolation operator, P̂ , while the second
step consists of smoothing P̂ . The tentative interpolation opera-
tor is chosen such that the set of near-kernel components, K , is in
the range of P̂ , and P̂ does not connect neighboring aggregates,
so P̂ T P̂ = I . The construction of P̂ is illustrated in Figure 3. Con-
ceptually, assume that the nodes are ordered so that they are con-
tiguous within each aggregate and in correspondence to the ag-
gregate ordering. (This ordering is not necessary in practice, but
used here simply to facilitate the discussion.) The near kernel can
then be decomposed into n 2 blocks denoted by K 1, K 2, . . . , K n2

and written in block form as K =
�

K T
1 K T

2 · · · K T
n2

�T
. This

representation means that the number of rows of K i equals the
number of nodes inAi times the nodal block size for the current
level, and the number of columns equals the number, κ, of near-

kernel components.

A local QR of each block can now be formed: K i =Qi Ri ,Q T
i Qi =

I , which yields the matrices Q1, . . . ,Qn2 and R1, . . . , Rn2. The
columns of Qi form a local basis spanning the near kernel inAi .
Given this decomposition, the tentative interpolation operator,
P̂ , is formed via

P̂ =













Q1 0 0 0
0 Q2 0 0
...

...
...

...
0 · · · 0 Qn2













, R =













R1

R2

...
Rn2













.

Here, P̂ T P̂ = I by construction.

A coarse near kernel must be determined to allow for recursion
to coarser levels. But K = P̂ R means that the fine-level near
kernel can be exactly represented on the coarse level by simply
choosing K c = R . Note then that, with Ac = P̂ T AP̂ , we have
Ac K c = P̂ T AP̂ R ≈ P̂ T 0= 0 since AK ≈ 0.

As discussed in the supplemental material, this local non-
overlapping use of the near kernel may generally satisfy the weak
approximation property, but not the strong one needed to en-
sure optimal V-cycle performance. To improve accuracy of the
interpolation operator, we therefore smooth it by applying the
weighted Jacobi error propagation matrix: P = (I −ωD−1A) P̂ .
The block diagonal matrix, D , whose block diagonal agrees with
that of A, is used here because it does not change the sparsity pat-
tern of P and it responds better to the local nature of A . A typical
choice for ω is 4

3ρ(D−1A) , with care needed in estimating ρ(D−1A)
as discussed in section 6. Smoothed interpolation, while gen-
erally causing overlap in the aggregate basis functions so that
P T P 6= I , often leads to an optimal V-cycle algorithm. Also, the
smoothed near kernel is exactly in the range of smoothed inter-
polation: P K c = (I −ωD−1A)P̂ K c = (I −ωD−1A)K , which gen-
erally preserves and even improves the near-kernel components
in K . While the finest-level matrix has nodes with b1 degrees of
freedom each, all coarser levels haveκ degrees of freedom associ-
ated with each finer-level aggregate. The complexity of the coarse
level is thus dictated by the number of near-kernel components
and the aggressiveness of coarsening (that is, the size of the ag-
gregates). Both choices must be controlled so that the coarse-
level matrix has substantially fewer nonzero entries than the next
finer-level matrix has.



The above steps outline how a given matrix and near kernel pair
A , K are decomposed to form a coarse level, the operators be-
tween the two levels, and the appropriate coarse matrix and near
kernel. The combined process is summarized in Algorithm 3. The
coarsening routine is applied recursively until there is a coarse
matrix that can be easily inverted through iteration or a direct
solver. Because aggregation coarsens aggressively, the number of
levels is usually small, between three to six levels for all our tests.

Algorithm 3 Form a coarse level in the SA hierarchy

1: input The matrix and kernel for this level, A and K .
2: Precompute inverse D−1 of block diagonal of A
3: Find spectral radius of D−1A
4: Smooth kernel K to match boundary conditions
5: Form a matrix S to determine strength
6: Use S to form aggregates from nodes in A
7: For each aggregate form local QR of K
8: Use the local Q blocks to form tentative interpolation, P̂
9: Smooth the tentative interpolation to get P

10: Use P to form Ac =P T AP
11: Use local R blocks to form coarse kernel K c

12: return Interpolation and restriction operators, P , R as well as
the coarse matrix and kernel, Ac , K c .

6 Null space

In the previous section, we tacitly assumed that the near kernel
for the fine-grid problem is known. While this is not always the
case, near-kernel components can be obtained for many prob-
lems by examining the underlying PDE. For example, for elastic-
ity, if we ignore boundary conditions, then it is well-known that
a rigid-body mode (constant displacement or rotation) has zero
strain and, therefore, zero stress. So rigid-body modes that are
not prevented by boundary conditions from being in the domain
of the PDE operator are actually in its kernel. Fixed boundary
conditions prevent these modes from being admissible, so they
cannot, of course, be kernel components in any global sense. But
any rigid-body mode that is altered to satisfy typical conditions at
the boundary becomes a near-kernel component, and they can
usually be used locally to represent all near-kernel components.

To be more specific, displacements for linear elasticity are as-
sumed to be small, thereby simplifying computation of the strain
tensor. In particular, the strain is given by ε = 1

2
(∇u +∇u T ),

where u is the displacement field. In this case, it is easy to
verify that the following vector functions (which represent rota-
tions around each of the three axes) all lead to zero strain : u =
(0,−z , y ), u = (z , 0,−x ), and u = (−y ,x , 0). Here, (x , y , z ) repre-
sents material (undeformed) coordinates. Since these rigid-body
modes are linear functions, they should be well approximated in
the interior of the domain by most finite element discretization
methods. Indeed, if the finite element space includes linear func-
tions, then these modes are exactly represented in the discretiza-
tion except in the elements abutting fixed boundaries. All that
is needed in this case is to interpolate these rigid-body modes at
the nodes. In doing so, we make them admissible and retain their
near-kernel nature by forcing their values at the boundary nodes
to satisfy any fixed conditions that might be there. For further as-
surance that they remain near-kernel components, a relaxation
sweep may be applied, using them as initial guesses to the solu-
tion of the homogeneous equation.

As noted above, this discussion assumes linear elasticity. Our lim-
ited experience suggests that the rigid-body modes that work for
those equations may be good candidates for the linearized equa-
tions of nonlinear elasticity. We have not examined this issue

in any depth, so it may benefit from additional work. However,
just as relaxation sweeps may improve nearness to the kernel for
modes that are altered to satisfy the boundary conditions and lie
in the finite element space, so too may relaxation benefit the lin-
ear elasticity modes used for the nonlinear case.

A potentially more serious concern is our assumption that the
thin-shell cloth simulation is essentially a discretization of linear
elasticity. This assumption may not be valid and could suggest
that our slightly suboptimal convergence of SA on these prob-
lems is due to incorrect near-kernel components. If the near ker-
nel is unknown, then there are adaptive SA methods that attempt
to discover the near kernel as part of the setup process, [Brezina
et al. 2004; Brandt et al. 2011]. These methods have computation-
ally expensive setup costs, which for this problem would be on
the order of three times what it is for SA, not counting the need for
an additional 10 cycles. To amortize this cost, convergence from
an adaptively found kernel would need to be near optimal. We
did experiment with an adaptive approach for this discretization,
but, while increased convergence rates were indeed attainable,
the extra setup cost made time to solution slower overall.

7 Smoothing

Our algorithm uses multigrid as a preconditioner for conjugate
gradients (CG) rather than as a stand-alone solver. As a conse-
quence, the multigrid preconditioner that we use must be sym-
metric and positive definite. This requirement has multiple im-
plications. To ensure symmetry, the V-cycle that we use must be
energy-symmetric and, to ensure positive definiteness, it is criti-
cal that the smoother be convergent in energy. (See the supple-
mental material for theory that proves this claim.) While these
requirements are not surprising, it is important to take the nec-
essary steps to ensure that they are satisfied.

The basic relaxation scheme that we use is a Chebyshev
smoother, which amounts to running a fixed number of Cheby-
shev iterations at each level based on D−1A [Golub and Varga
1961]. A nice introduction to this smoother can be found in
[Adams et al. 2003]. From a theoretical point of view, it has good
properties and, in practice, it also performs the best as shown in
[Adams et al. 2003; Baker et al. 2011]. Most importantly, it has the
property of being implementable with mat-vec operations and is
thus relatively easy to parallelize compared to other smoothers
like Gauss-Seidel.

Chebyshev requires an upper bound for the spectral radius of
D−1A and an estimate of the smallest part of the spectrum that
we wish to attenuate, the same as needed for smoothing the in-
terpolation operator by weighted Jacobi. One approach to ob-
taining these estimates is to use the power method for computing
the largest eigenvalue of a matrix. Unfortunately, it does not gen-
erally provide a rigorous bound on the largest eigenvalue, and its
convergence rate is limited by the ratio of the two largest eigen-
values [Golub and Loan 1983]. In practice, these two eigenval-
ues are often very close, so that convergence is very slow, which
leads to a trade-off: too loose of an approximation to the spec-
tral radius yields slow Chebyshev smoothing rates, while tighter
approximations can be costly.

Another possibility is to use Gerschgorin’s theorem to estimate
the largest eigenvalue, but this approximation is too loose for our
requirements. A potentially better alternative is to use Lanczos’s
method [Golub and Loan 1983]. However, while its convergence
rate is better, it is also more expensive per iteration and may re-
quire careful numerical treatment to ensure convergence (e. g.,
periodic re-orthogonalization of the Krylov basis).



In the end we need an approximation to the spectral radius of
D−1A , rather than A . While D−1A is not symmetric in the tradi-
tional sense, it is symmetric in the energy inner product defined
by 〈u , v 〉A = 〈u , Av 〉. In fact, for any symmetric positive definite
preconditioner M , we have

〈u , M −1Av 〉A = 〈u , AM −1Av 〉= 〈M −1Au , Av 〉= 〈M −1Au , v 〉A .

M −1A is also positive definite in energy because

〈u , M −1Au 〉A = 〈u , AM −1Au 〉> 0

for any u 6= 0. Its eigenvalues are therefore positive, so its spec-
tral radius can be computed by finding the largest λ such that
M −1Ax =λx , x 6= 0, which is clearly equivalent to the generalized
eigenvalue problem Ax = λM x , x 6= 0. We apply the generalized
Lanczos algorithm [van der Vorst 1982] to this generalized eigen-
value problem to compute the spectral radius of D−1A .

8 Collision handling

A challenge for many of the existing multigrid methods devel-
oped for cloth simulation is proper handling of constraints. As
shown in [Boxerman and Ascher 2004], superior performance is
achieved when the preconditioner for CG is based not on the
full system, but rather on the constraint null space, by which we
mean the null space of the constraint operator. The method they
proposed constructs a pre-filtered matrix restricted to the con-
straint null space, but it is neither symmetric nor easily treated
by our multigrid approach. A reduced set of equations can be
constructed based on a null-space basis for the constraints, but
this leads to a system where the block size is no longer constant.
While this may seem like a minor inconvenience, it leads to either
a substantial increase in code complexity and a reduced ability
generate highly optimized code or reduced performance due to
less coherent memory access patterns. In fact, with a constant
block size, we can use BSR (block sparse row) matrices, where the
innermost operations are effectively BLAS3 operations with high
arithmetic intensity. By comparison, to use standard libraries for
matrices with varying block size, we would have to use CSR ma-
trices with comparatively low arithmetic intensity.

To obtain a system with a constant block size, we form a reduced
system, but replace all eliminated variables with dummy ones.
This retains the block structure while ensuring that our precon-
ditioner operates on the constraint null space. We refer to this
method as Pre-filtered Preconditioned CG (PPCG).

To explain PPCG, the “modified” linear system solved by [Baraff
and Witkin 1998] can be written in the notation from [Ascher and
Boxerman 2003] as

min
x

‖S (b −Ax )‖
s.t. (I −S )x = (I −S )z ,

(3)

where: A ∈ Rn×n is the matrix for the full system; b is the cor-
responding right-hand side; S , which represents the filtering op-
eration in [Baraff and Witkin 1998], is the orthogonal projection
matrix onto the constraint null space (not to be confused with the
SOC matrix in section 5); and z is a vector of the desired values
for the constrained variables. It is assumed that A is symmetric
positive definite.

Due to the constraint, any feasible point must satisfy

x =S x +(I −S )x =S x +(I −S )z .

To incorporate this expression into the objective function, first
note that

S (b −Ax ) =Sb −S A(S x +(I −S )z ) =S (b −Az )−S AS (x − z ).

By introducing c ≡b −Az and y ≡ x − z , we can then rewrite the
constrained minimization problem in Equation (3) as

min
y

‖S c −S ASy ‖
s.t. (I −S )y = 0.

(4)

By construction, S is symmetric and, therefore, diagonalizable.
Since it is also orthogonal, it follows that the eigenvalues must be
either 0 or 1. We can thus compute another orthogonal matrix,
Q , such that

S =Q

�

I r 0
0 0

�

Q T ≡Q J Q T , r = dim(range(S )).

If we now partition Q into V ∈ Rn×r and W ∈ Rn×n−r such that
Q = (V , W ), then V is a basis for the constraint null space while
W is a basis for the constrained subspace. From this decomposi-
tion, it follows that S =V V T and I −S =W W T .

Similarly, let

d ≡
�

d1

d2

�

=Q T c , u ≡
�

u1

u2

�

=Q T y .

Using the last definition, we have y =V u1+W u2 and, therefore,

V V T y =V u1 and W W T y =W u2. (5)

Combining the above definitions and substituting Q J Q T for S ,
we can rewrite the objective function in Equation (4) as follows :

φ = ‖S c −S ASy ‖
= ‖Q J Q T c −Q J Q T AQ J Q T y ‖
= ‖J Q T c − J Q T AQ J Q T y ‖
= ‖J d − J Q T AQ J u ‖

=









�

d1

0

�

−
�

V T AV 0
0 0

��

u1

u2

�









.

This system can clearly be reduced by eliminating u2 since any
value of u2 produces the same value of φ. However, eliminating
u2 creates a smaller system, which means that if A is block sparse
with fixed block size, then the reduced system will in general be
block sparse with different block sizes. To keep the original size of
the system we could leave all the zero blocks in place, but the re-
sulting system would then be singular, thereby introducing other
problems. On the other hand, we know from Equation (4) that
(I −S )y = 0 and, since (I −S )y =W W T y =W u2, it follows that
u2 = 0. Minimizing φ subject to the desired constraint is there-
fore equivalent to solving the following linear system :

�

V T AV 0
0 I

��

u1

u2

�

=
�

d1

0

�

. (6)

Rotating this back to our original coordinates yields

Q

�

V T AV 0
0 I

�

Q TQ

�

u1

u2

�

=Q

�

d1

0

�

or, equivalently,

�

V V T AV V T +W W T
�

y =V d1 =V V T c .

Since S =V V T and I −S =W W T , we finally arrive at

(S AS + I −S )y =S c . (7)



The importance of Equation (7) is that we now have a symmetric
positive definite (in particular, full rank) system of the same di-
mensions as the original system, but which correctly projects out
all of the constraints. From this system, the solution to Equation
(3) is easily recovered as x = y + z .

Furthermore, the condition number of the new system is no
worse than that of A, and may in fact be better. This conclusion is
based on the assumption that 1 is in the field of values of A , which
is defined to be the real numbers inclusively between the small-
est and largest eigenvalues of A. (This assumption often holds
for PDEs; otherwise, we can simply multiply I −S by a scalar that
is in A’s field of values.) To prove this assertion, first note that
our assumption implies that the field of values of V T AV is the
same as that of the matrix in Equation (6), which is in turn the
same as that of the matrix in Equation (7) because they are re-
lated by a similarity transformation. By Cauchy’s interlacing the-
orem [Horn and Johnson 1985], the field of values of V T AV is a
subset of that of A , which immediately implies that the condition
number of V T AV is bounded by the condition number of A.

For the constraints considered by Baraff and Witkin [1998], S is
block diagonal, so the computation of S AS amounts to simple
blockwise row and column scaling of A , while the addition of I−S
only affects the block diagonal. It should be noted that, while the
derivation required S to be diagonalized, the final result does not.
We refer to the system in Equation (7) as the prefiltered system,
to which we apply a standard preconditioned CG algorithm.

The constraints considered by Baraff and Witkin [1998] are lim-
ited to (cloth) vertices against (collision) objects. However, the
above method easily generalizes to any kind of equality con-
straint, including the face-vertex and edge-edge constraints used
in other collision response algorithms (e.g., [Harmon et al. 2008],
[Otaduy et al. 2009]).

Finally, it should be noted that none of the derivations in this sec-
tion depend on multigrid methods: the results can be used with
any type of linear solver. However, by using Equation (7) with
smoothed aggregation, we have an effective way of coarsening
not just the dynamics, but also the constraints.

9 Implementation

Our implementation of SA depends critically on Intel’s MKL v11.3
for highly optimized implementations of most of the basic linear
algebra operations like sparse matrix-vector and matrix-matrix
products as well as QR decompositions. To achieve good perfor-
mance, many structures are pre-allocated and re-used through-
out the simulation, leading to slightly higher memory consump-
tion, but not excessively so. The code is somewhat parallelized,
but is generally limited by memory bandwidth rather than CPU
resources. Additional improvements are definitely possible.

One of the most expensive operations in any Galerkin multigrid
algorithm is forming the coarse-grid operator since it is based
on a triple-matrix product. Despite the symmetric nature of this
product, it is currently most efficiently implemented using two
sparse mat-mat multiply operations. We use MKL for this pur-
pose, while others have explored doing it on a GPU [Dalton et al.
2015]. Regardless of the implementation of the matrix products,
care has to be taken when constructing the interpolation matrix
in the presence of special nodes. The range of interpolation is
the entire fine level and must contain zeros for all special nodes.
However, in a naive implementation, if these zero entries in the
interpolation matrix are not pruned, then the mat-mat products
will introduce structural fill-in that can significantly affect the run
time, especially after smoothing the interpolation operator.

10 Examples

To evaluate and compare our approach to existing methods, we
consider five procedurally generated examples at different res-
olutions, and a high-resolution production example to show its
practical applicability. The five simple examples are shown in fig-
ure 4, while the production example is shown in figure 1. The
animation for all of these can be seen in the supplemental video.

The first example is a fully pinned piece of cloth subjected to
gravity. The corresponding PDE is fully elliptic with a full Dirich-
let boundary, meaning in part that it is positive definite with an
order 1 constant. The cloth that is pinned on two sides in the sec-
ond example has a smaller constant and thus provides a test to
see how sensitive our methods are to variations in the strength
of ellipticity. The third example has a re-entrant corner, which
is more difficult yet because it does not possess full ellipticity,
which means that the standard approximation properties dis-
cussed above do not apply. Standard discretization and solution
methods have serious difficulties in the presence of re-entrant
corners, so they provide an especially challenging test problem
for our methodology. In the fourth example, the cloth falls flat
on a flat box with a hole in the middle. This generates many con-
tact constraints and thus illustrates the performance of our PPCG
method well. Finally, in the last example, we drop the cloth on
the same box, but this time from a vertical configuration. In this
way, we observe plenty of buckling and also lots of cloth-cloth
collisions. The examples are referred to as pinned, drooping, re-
entrant, dropHorizontal, and dropVertical, respectively. Each of
the five simple examples were run with both regular and irregu-
lar tessellations.

11 Evaluation

All simulations were run on dual socket systems with Intel(R)
Xeon(R) E5-2698 v3 @ 2.30GHz processors, each processor with
16 cores and each system configured with 64 GB DDR4 RAM. All
simulations were run with a time step of∆t = 2 ms. The stopping
criterion used in the CG method is a small relative residual er-
ror : ‖r i ‖M−1/‖r0‖M−1 <ε, where M is the chosen preconditioner,
‖ · ‖M−1 ≡ ‖M − 1

2 · ‖, r i is the residual after i iterations, and ε is a
given tolerance, which we set to 10−5.

An important point to keep in mind is that the relative residual er-
ror used to judge convergence gives an unfair advantage to poor
preconditioners like the block diagonal ones. This observation
comes from first realizing that the relative residual in practice is
only as good as how tight it bounds the relative energy norm of
the error. Remembering that r =Ae , we have the bound

‖ei ‖A

‖e0‖A
=
‖A−

1
2 r i ‖

‖A−
1
2 r0‖

=
‖A−

1
2 M

1
2 M − 1

2 r i ‖
‖A−

1
2 M

1
2 M − 1

2 r0‖
≤C
‖r i ‖M−1

‖r0‖M−1
,

where C =
Æ

λmax
λmin

, with λmax and λmin the respective largest and

smallest eigenvalues of M − 1
2 AM − 1

2 or, equivalently, of M −1A .
This bound means that the practical error measure that we use
is sharp only up to the square root of spectral condition number
of M −1A. If M is a reasonable approximation to A as it hope-
fully is for our multigrid scheme, then this bound is pretty tight.
If M is not a very accurate approximation to A , as when M is its
diagonal part, then we may believe that we have converged well
before the true relative energy norm of the error is sufficiently
small. Said differently, diagonally preconditioned iteration has
the smoothing property that the residuals they produce are very
small compared to the actual error. More precisely, as we show in



Figure 4: The five examples shown here represent problems of increasing difficulty that we use for benchmarking. They are generated procedurally, with the
vertex count ranging from 1, 000 to 100, 000. The ones shown here have 40, 000 vertices.

the supplemental material, relaxation produces error whose rel-
ative energy norm is much larger than its relative residual norm.
In other words, the smooth error left after relaxation is hidden
in the residual because it consists mostly of low eigenmodes of
A . SA tends much more to balance the error among the eigen-
modes, so a small relative residual for SA is much more reflective
of small relative energy error. This should be kept in mind in the
consideration of the results we present below.

The size of the cloth in all our examples is 1m× 1m and the ma-
terial parameters are the defaults used by our production solver,
which approximates cotton. We use θ = 0.48, but have experi-
mented with other values and found the results to be fairly insen-
sitive to the exact choice. If a suboptimal value is chosen, then the
convergence rate still tends to be good, but the time to solution
suffers from excessive amounts of fill-in on the coarser levels. For
smoothing, we use a single sweep of Chebyshev with a second-
order polynomial. Higher-order polynomials improve the con-
vergence rate significantly, but at too high a computational price.
For the spectral radius estimation, we use 10 iterations of the gen-
eralized Lanczos method. Once again, the convergence rate im-
proves if this number is increased, but not in a computationally
cost-effective way. For the kernel, we picked six vectors, one con-
stant for each of the unknowns and the three rotations described
in section 5.

The benchmark numbers are averages over all the solves required
for 10 frames of animation for the pinned, drooping, and re-
entrant examples, while we used 15 frames for dropHorizontal
and 25 frames for dropVertical. These durations are chosen to
capture most of the interesting behavior for each of the exam-
ples. In the following, we refer to block diagonally precondi-
tioned conjugate gradients simply as Diag-PCG, while we refer
to our smoothed aggregation preconditioned conjugate gradient
method with pre-filtering as SA+PPCG.

11.1 Convergence rates

The expectation for a multigrid preconditioner is that it should
improve the convergence rate of the conjugate gradient method
significantly and that the convergence rate should be indepen-
dent of (or only weakly dependent on) the problem size. To in-
vestigate this, define the convergence rate at iteration i by ρi =
‖ri ‖M−1/‖ri−1‖M−1 . The average convergence rate, ρ, within a sin-
gle solve is then the geometric mean of these values. For an entire
animation, we refer to the average convergence rate as the aver-
age over all solves of ρ.

Figure 5 shows average convergence rates of SA+PPCG and Diag-
PCG for each of our five examples. While Diag-PCG approaches
a convergence rate close to 1 very quickly, our method stays
bounded away from 1 at significantly lower values. Note that
the pinned example converges faster than the drooping exam-
ple, which in turn converges faster than the re-entrant example.
This observation is in agreement with our expectations based on
the underlying PDEs. Note the irregularity of the curve for the
re-entrant corner example, due perhaps to the loss of ellipticity.

11.2 Setup time

To achieve better convergence rates, we need both setup and pre-
filtering. The computational cost of both of these is illustrated in
figure 6. The setup cost for AMG-type methods is often domi-
nated by the cost of the triple-matrix product when forming the
coarse matrices. In our case, this is still a significant cost, but not
the dominant one. The computation of the spectral radius esti-
mates is currently expensive and the computation of aggregates
remains entirely serial. As such, there is room for improvement
of these numbers.

To reduce the setup time, it is possible to only update the precon-
ditioner periodically or adaptively based on the observed conver-
gence rate. We experimented with only performing an update if
the convergence rate after four iterations was substantially less
than in previous solve. However, we found the cost of restarting
the solver to outweigh the benefit. A more sophisticated con-
troller design might make adaptive setup more beneficial, but
this remains future work.

11.3 Time to solution

Ultimately, the most important metric is usually time to solution.
However, making fair comparisons is not entirely straightforward
because different solvers have different strengths. As an example,
Diag-PCG is generally attractive for systems that are highly diag-
onally dominant or when the required accuracy is very modest.
For cloth simulations, diagonally dominant systems generally oc-
cur with small timesteps, soft materials, and/or large masses. At
the other end of the spectrum, we compare our results to those
of Intel MKL’s highly optimized version of PARDISO. As a sparse
direct solver, it is attractive if very high accuracy is required or if
the problem is very ill-conditioned.

For our comparisons, we use a moderate accuracy (relative error
less than 10−5). We note that our results do look better with stiffer
materials and/or larger time steps, but do not report on that here.

The results for four of the examples are shown in figure 7. As can
be seen, Diag-PCG is consistently best for small problems, but
our method is superior for problems with roughly 25k vertices or
more. Somewhat surprisingly, PARDISO shows very good scal-
ing behavior considering that it is a direct solver, but it remains
about twice as slow as SA+PPCG. The empirical complexity of our
method can be seen to be close to linear in the size of the problem
as expected.

The outlier in the above set of results is the dropVertical example.
As already seen in figure 5, the convergence rate for this problem
is worse than for the others, as is the time to solution. The rea-
son for the different behavior in this example is the large number
of cloth repulsion springs added to handle cloth-cloth collisions.
While our method handles this without any special cases, they do
not stem from an underlying and well-behaved PDE, so we lose
some optimality. However, we still see the same basic scaling be-
havior as the problem size increases, and the method remains
superior to Diag-PCG for large problems.



��

����

����

����

����

��

�� ���� ���� ���� ���� �����

�
�
�
��
�
�
��
�
�
�
�
��
�
�
�
�
��
�
��

�������������������������������

������
��������
���������

��������������
������������

Figure 5: The average convergence rate over the length of the entire an-
imation for each of our examples. The orange curves are for Diag-PCG
while the blue curves are for SA+PPCG.

��

����

����

����

����

��

�� ��� ���� �����

�
�
�
��
�
�
��
��
�
��
�
��
��
��
�
���
�
��
��
��
��
���
��
�

�������������������������������

������
��������
���������

��������������
������������

Figure 6: The average time for prefiltering and setup as a percentage of
the total solve time. The combined preprocessing time is the sum of the
two. Setup is shown in blue while prefiltering is shown in orange. The
corresponding total solve time is shown in figure 7.

In figure 8, we consider the solve time for our horizontal drop
example, including now two additional solvers. The first is
smoothed aggregation without our prefiltering method. The sec-
ond is Diag-PCG with prefiltering added. For low resolutions, we
see that prefiltering further improves the superior performance
of Diag-PCG and, for all resolutions, we see that prefiltering is es-
sential for the good performance of SA. In fact, without prefilter-
ing, SA at large resolutions is no better than Diag-PCG and may
in fact be worse. However, with prefiltering, SA+PPCG contin-
ues to be the best solution for large problems. The reason pre-
filtering turns out to be so critical for SA is that SA is a very good
preconditioner, so a single step without any knowledge about the
constraints can bring the solver far from the constraint manifold,
and the subsequent projection step is likely to undo much of the
progress just made by the solver.

Finally, we present a production example in figure 9. Overall, we
observe an average 8× speedup for a walk-cycle animation and a
6× speedup for a run-cycle. However, as seen from the figure, the
variation in the solve time from frame to frame was substantially
less with our method than with Diag-PCG.

The speedups for all our examples are summarized in table 1.

������

�����

����

��

���

����

�� ��� ���� �����

�
�
�
��
�
�
��
�
��
�
��
��
�
��
�
�

�������������������������������

��������
�������
�������

Figure 7: Average time for one linear solve using Diag-PCG (orange),
SA+PPCG (blue), and PARDISO (pink). The graphs are shown for four ex-
amples : pinned (square markers), drooping (circle markers), re-entrant
(diamond markers), and verticalDrop (triangle markers)1.

������

�����

����

��

���

����

�� ��� ���� �����

�
�
�
��
�
�
��
�
��
�
��
��
�
��
�
�

�������������������������������

��������
�������
�������

��
���������

Figure 8: Average time for one linear solve in our horizontal drop exam-
ple. Note that the fastest time is always obtained using prefiltering.

��

���

����

����

����

����

�� ���� ����� ����� ����� ����� ����� ����� �����

�
�
��
�
��
��
�
��
�
�

������������

��������
�������

Figure 9: Time for each linear solve in our production example using a
walk-cycle animation.



Num. vertices Pinned Drooping Re-entrant DropHorizontal DropVertical

R
eg

u
la

r
te

ss
el

la
ti

o
n

961 0.39 0.76 0.58 0.72 0.55 0.72 0.57 0.61 0.53 0.61
1681 0.45 1.06 0.63 0.99 0.60 0.95 0.57 0.75 0.51 0.80
3721 0.40 1.31 0.50 1.18 0.54 1.17 0.62 0.96 0.35 0.94
6561 0.43 1.51 0.53 1.35 0.50 1.31 0.65 1.14 0.35 1.04

10201 0.54 1.78 0.66 1.57 0.72 1.53 0.77 1.37 0.40 1.06
22801 0.85 2.23 1.03 1.89 1.02 1.86 1.07 1.69 0.50 1.14
40401 1.07 2.29 1.35 2.03 1.36 2.01 1.40 1.89 0.60 1.18
90601 2.23 2.27 2.87 2.07 2.67 1.95 2.27 1.92 2.35 1.11

160801 3.89 2.14 5.01 1.95 4.87 1.92 3.64 1.84 1.14 0.77
361201 5.48 2.21 7.10 2.01 6.38 1.76 4.70 1.85 2.29 1.32
641601 7.12 2.26 9.28 2.10 8.84 1.96 6.09 1.89 3.46 1.53

1002001 9.20 2.40 11.64 2.20 10.89 2.04 7.53 2.13 3.01 1.80

Ir
re

gu
la

r
te

ss
el

la
ti

o
n

961 0.43 0.87 0.49 0.80 0.51 0.80 0.52 0.64 0.56 0.71
1681 0.46 1.17 0.52 1.12 0.62 1.04 0.60 0.94 0.54 1.01
3721 0.43 1.61 0.46 1.45 0.55 1.39 0.56 1.21 0.38 1.06
6561 0.46 1.86 0.50 1.65 0.56 1.72 0.69 1.44 0.44 1.32

10201 0.56 2.06 0.61 1.87 0.67 1.93 0.89 1.74 0.53 1.42
22801 0.81 2.49 0.87 2.11 0.97 2.20 1.13 2.13 0.57 1.43
40401 1.22 2.61 1.19 2.21 1.43 2.32 1.33 2.23 0.76 1.56
90601 2.32 2.54 2.51 2.21 2.36 2.33 2.20 2.19 1.29 1.39

160801 3.78 2.45 4.20 2.18 4.22 2.16 3.26 2.10 2.03 1.39
361201 5.32 2.49 5.98 2.22 6.13 2.21 4.63 2.13 2.63 1.57
641601 7.02 2.56 7.84 2.24 7.72 2.19 5.93 2.21 2.39 1.68

1002001 8.97 2.73 9.82 2.56 9.59 2.47 5.74 2.08 2.81 1.71

Table 1: The speedup factors of SA+PPCG relative to Diag-PCG (first column for each example) and PARDISO (second column for each
example). Shaded cells indicate speedups greater than 1. Diag-PCG is on average 11% faster with the irregular tessellation, while PARDISO
on average is 7% slower and SA+PPCG is 8% faster.

12 Limitations and future work

One limitation of SA compared to Diag-PCG is its somewhat
larger memory overhead. However, the overhead is generally less
than 50 percent. SA+PPCG also comes with a higher coding com-
plexity than a simple Diag-PCG, and an unoptimized implemen-
tation may often be slower.

The current algorithm is limited by memory bandwidth and, in
practice, we saw negligible speedups from parallelization after
eight cores. But it remains superior to Diag-PCG and, for our
problems, was comparable to the parallel efficiency of MKL’s
PARDISO. Even so, we believe there is room for improvement,
either by exploring techniques such as those presented in [Bell
et al. 2012] for forming aggregates in parallel or by algorithmic
changes with better parallel implications. Incremental setup
along the lines of what [Hecht et al. 2012] did for Cholesky fac-
torizations might be another way to reduce the performance hit
of time spent in setup.

While the results show near optimal behavior, they are not per-
fect. The convergence rates degrade (slowly) as the problem sizes
grow, leading to more iterations while cycling, so time to solution
is not quite scaling linearly. To attain ideal convergence and sub-
sequently linear scaling, further improvements should be made
to the construction of the kernel components to ensure that they
match the discretization at all times. Also, a more accurate dis-
cretization of the underlying PDEs than that provided by Baraff
and Witkin [1998] might offer a better foundation for building
multigrid methods. We intend to investigate this in the future.

Finally, we note that the present work only considers linear prob-
lems, but a natural extension is to use the proposed solver in
the inner loop of an outer nonlinear iteration that involves a lin-
earization strategy such as Newton’s method.

13 Conclusion

This paper presented a new preconditioner for linear systems
formed in implicit cloth simulations by developing an algebraic
multigrid hierarchy based on the underlying PDEs and discretiza-
tion. The SA solver provides a faster solution than existing meth-
ods for typical problems with 25, 000 vertices or more. For prob-
lems that are stiffer, have smaller mass, or are subjected to larger
time steps, the advantages of the method increase and show
speedups for smaller problems as well.

To realize the full potential of the SA in cloth simulation and at-
tain near optimal scaling in the presence of collisions, we had to
pair it with our new PPCG method. SA+PPCG is attractive be-
cause no changes need to be made to existing collision detection
and response methods to handle the linear solves.

Acknowledgements

The authors would like to thank Intel’s MKL team for their sup-
port and development during this project. We are also grateful
for the assistance from Jeff MacNeill, Garrett Raine, Benjamin
Huang, Heather Pritchett, and Angela McBride (WDAS) in set-
ting up and rendering our simulations. Finally, Eitan Grinspun,
Bernhard Thomaszewski, Marian Brezina, and John Ruge pro-
vided valuable discussions. All images are ©Disney 2015.



References

ADAMS, M., BREZINA, M., HU, J., AND TUMINARO, R. 2003. Paral-
lel Multigrid Smoothing: Polynomial Versus Gauss–Seidel. J.
Comput. Phys. 188, 2 (July), 593–610.

ASCHER, U. M., AND BOXERMAN, E. 2003. On the modified con-
jugate gradient method in cloth simulation. The Visual Com-
puter 19, 7-8, 526–531.

BAKER, A. H., FALGOUT, R. D., KOLEV, T. V., AND YANG, U. M. 2011.
Multigrid Smoothers for Ultraparallel Computing. SIAM Jour-
nal on Scientific Computing 33, 5, 2864–2887.

BARAFF, D., AND WITKIN, A. 1998. Large Steps in Cloth Simula-
tion. In Proceedings of the 25th Annual Conference on Com-
puter Graphics and Interactive Techniques, ACM, New York, NY,
USA, SIGGRAPH ’98, 43–54.

BELL, N., DALTON, S., AND OLSON, L. 2012. Exposing Fine-Grained
Parallelism in Algebraic Multigrid Methods. SIAM Journal on
Scientific Computing 34, 4, C123–C152.

BOXERMAN, E., AND ASCHER, U. 2004. Decomposing Cloth. In
Proceedings of the 2004 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, Eurographics Association, Aire-
la-Ville, Switzerland, SCA ’04, 153–161.

BRANDT, A., MCCORMICK, S. F., AND RUGE, J. W. 1985. Algebraic
multigrid (AMG) for sparse matrix equations. In Sparsity and
its Applications, D. J. Evans, Ed. Cambridge University Press,
257–284.

BRANDT, A., BRANNICK, J., KAHL, K., AND LIVSHITS, I. 2011. Boot-
strap AMG. SIAM J. Sci. Comput. 33, 2 (Mar.), 612–632.

BRANDT, A. 1977. Multi-level adaptive solutions to boundary-
value problems. Mathematics of Computation 31, 138, 333–
390.

BREZINA, M., FALGOUT, R., MACLACHLAN, S., MANTEUFFEL, T., MC-
CORMICK, S., AND RUGE, J. 2004. Adaptive Smoothed Aggrega-
tion (αSA). SIAM Journal on Scientific Computing 25, 6, 1896–
1920.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust Treatment
of Collisions, Contact and Friction for Cloth Animation. ACM
Trans. Graph. 21, 3 (July), 594–603.

BRIGGS, W., HENSON, V., AND MCCORMICK, S. 2000. A Multigrid
Tutorial, Second Edition. Society for Industrial and Applied
Mathematics.

DALTON, S., OLSEN, L., AND BELL, N. 2015. Optimizing Sparse
Matrix-Matrix Multiplication for the GPU. ACM Transactions
on Mathematical Software 41, 4.

FISH, J., PAN, L., BELSKY, V., AND GOMAA, S. 1996. Unstructured
multigrid methods for shells. International Journal for Numer-
ical Methods in Engineering 39, 7, 1181–1197.

GEE, M. W., AND TUMINARO, R. S. 2006. Nonlinear Algebraic Multi-
grid for Constrained Solid Mechanics Problems Using Trili-
nos. Tech. Rep. SAND2006-2256, Sandia National Laborato-
ries, April.

GEE, M., RAMM, E., AND WALL, W. A. 2005. Parallel multilevel so-
lution of nonlinear shell structures. Computer Methods in Ap-
plied Mechanics and Engineering 194, 21-24, 2513–2533. Com-
putational Methods for Shells.

GOLUB, G. H., AND LOAN, C. F. V. 1983. Matrix Computations,
3rd ed. The Johns Hopkins University Press.

GOLUB, G. H., AND VARGA, R. S. 1961. Chebyshev semi-iterative
methods, successive overrelaxation iterative methods, and
second order richardson iterative methods. Numerische Math-
ematik 3, 1, 157–168.

HARMON, D., VOUGA, E., TAMSTORF, R., AND GRINSPUN, E. 2008. Ro-
bust Treatment of Simultaneous Collisions. ACM Trans. Graph.
27, 3 (Aug.), 23:1–23:4.

HECHT, F., LEE, Y. J., SHEWCHUK, J. R., AND O’BRIEN, J. F. 2012. Up-
dated Sparse Cholesky Factors for Corotational Elastodynam-
ics. ACM Transactions on Graphics 31, 5 (Oct.), 123:1–13. Pre-
sented at SIGGRAPH 2012.

HORN, R. A., AND JOHNSON, C. R. 1985. Matrix Analysis. Cambridge
University Press. Cambridge Books Online.

JEON, I., CHOI, K.-J., KIM, T.-Y., CHOI, B.-O., AND KO, H.-S. 2013.
Constrainable Multigrid for Cloth. Computer Graphics Forum
32, 7, 31–39.

KRISHNAN, D., FATTAL, R., AND SZELISKI, R. 2013. Efficient Precon-
ditioning of Laplacian Matrices for Computer Graphics. ACM
Trans. Graph. 32, 4 (July), 142:1–142:15.

LEE, Y., YOON, S.-E., OH, S., KIM, D., AND CHOI, S. 2010. Multi-
Resolution Cloth Simulation. Computer Graphics Forum 29, 7,
2225–2232.

MCCORMICK, S. 1984. Multigrid Methods for Variational Prob-
lems: Further Results. SIAM Journal on Numerical Analysis 21,
2, 255–263.

MÍKA, S., AND VANĚK, P. 1992. Acceleration of convergence of
a two-level algebraic algorithm by aggregation in smoothing
process. Applications of Mathematics 37, 5, 343–356.

NARAIN, R., SAMII, A., AND O’BRIEN, J. F. 2012. Adaptive Anisotropic
Remeshing for Cloth Simulation. ACM Trans. Graph. 31, 6
(Nov.), 152:1–152:10.

OH, S., NOH, J., AND WOHN, K. 2008. A physically faithful multigrid
method for fast cloth simulation. Computer Animation and
Virtual Worlds 19, 3-4, 479–492.

OTADUY, M. A., TAMSTORF, R., STEINEMANN, D., AND GROSS, M. 2009.
Implicit Contact Handling for Deformable Objects. Computer
Graphics Forum 28, 2, 559–568.

TROTTENBERG, U., OOSTERLEE, C. W., AND SCHULLER, A. 2000.
Multigrid. Academic press.

VAN DER VORST, H. A. 1982. A Generalized Lanczos Scheme. Math-
ematics of Computation 39, 160 (Oct), pp. 559–561.

VASSILEVSKI, P. S. 2008. Multilevel Block Factorization Precondi-
tioners, Matrix-based Analysis and Algorithms for Solving Fi-
nite Element Equations. Springer.


