


ΚGuerrilla is based in Amsterdam and weôre part of Sony since 

2005 

ΚWeôre working on two titles 

ΚUnannounced new IP 

ΚKillzone: Shadow Fall 

ΚThe new Killzone is PS4 launch title 

ΚOur aim for announcement event was to run on PS4 hardware 

Κ1080p, solid 30FPS, no cheats 

ΚThis talk is about the experiences we gained during the demo 

period 







Κ 60 AI characters 

Κ 940 Entities, 300 Active 

Κ 8200 Physics objects (1500 keyframed, 6700 static) 

Κ 500 Particle systems 

Κ 120 Sound voices 

Κ 110 Ray casts 

Κ 1000 Jobs per frame 



ΚThree memory areas 

ΚSystem - CPU 

ΚShared - CPU + GPU 

ΚVideo - GPU 

1,536 MB System 

128 MB Shared 

3,072 MB Video 



Sound 553 MB 

Havok Scratch 350 MB 

Game Heap 318 MB 

Various Assets, Entities, etc. 143 MB 

Animation 75 MB 

Executable + Stack 74 MB 

LUA Script 6 MB 

Particle Buffer 6 MB 

AI Data 6 MB 

Physics Meshes 5 MB 

Total 1,536 MB 



Display list (2x) 64 MB 

GPU Scratch 32 MB 

Streaming Pool 18 MB 

CPU Scratch 12 MB 

Queries / Labels 2 MB 

Total 128 MB 



Non-Steaming Textures 1,321 MB 

Render Targets 800 MB 

Streaming Pool (1.6 GB of streaming data) 572 MB 

Meshes 315 MB 

CUE Heap (49x) 32 MB 

ES-GS Buffer 16 MB 

GS-VS Buffer 16 MB 

Total 3,072 MB 



ΚNo low-level CPU optimizations 

ΚJust SIMD based math library (using SCE intrinsics) 

ΚFocused optimizations on going ówideô 

ΚAlmost all code is multi-threaded / jobified 



ΚSame model as PS3 

ΚOne main óorchestratorô thread 

ΚAll other code runs in jobs across all cores 

ΚEasier to program, so much more code in jobs 

ΚJobification of code, ballpark improvements: 

Κ(PS3 Κ PS4 - % of code running in jobs) 

Κ80% Κ 90% - Rendering code 

Κ10% Κ 80% - Game Logic 

Κ20% Κ 80% - AI Code 



ΚDemo was optimized quite well 

Κ1080p30 with very few dropped frames on CPU and GPU 

 

ΚProfiling tools are still in development this early on 

 

Κéso we developed our own CPU and GPU Profiler 

































ΚThe biggest performance challenge was thread contention 

ΚShared memory allocator, ton of mutexes. 

ΚWe gained approximately 50% of the CPU back by fixing high level 

code. 

ΚDo this first before you try to switch to some low level 

multithreading friendly malloc. 

ΚWe had a few fights with the PS4 thread scheduler 

ΚA lot of our SPU code used spinlocks 

ΚSpinlocking is not nice for on any multicore system 

ΚJust play nice, system mutexes are very fast 





 

 

 

 

 

ΚWe still use deferred shading 

ΚThe entire pipeline is HDR and linear space 



 

 

 

ΚWe switched to physically correct lighting model 

ΚEnergy preserving 

ΚProperly calculated geometry attenuation factors 

ΚAll materials support translucency and Fresnel effect 



 

 

 

 

 

 

ΚAll our lights are area lights 



 

 

 

 

 

 

ΚVolumetrics supported on every light 



 

 

 

 

 

ΚReal-time reflections and localized reflection cubemaps 

ΚProper roughness response matching the real-time lights 



ΚG-buffer with 5 MRTs + 32bit depth 

Κ1080p, RGBA16f, no MSAA at the moment 

Κ2x 8bit backbuffers 

Κ4x 2048x2048x32bit shadow maps 

ΚWe donôt use HiZ to avoid decompression before reads. 

ΚA lot of low resolution buffers for post process effects 

ΚMost of the buffers are overlapping in memory 

ΚWe still need to optimize the layout and formats 



ΚOut of order generation using jobs 

ΚGeometry passes are split into multiple jobs too 

ΚWe kick up to 60 command buffers per frame 

ΚCBs are sorted based on a how they need to be consumed 

ΚAll double buffered 

ΚWe issue WaitForFlip at the very last moment in the frame 

ΚRight before the next flip when the GPU renders into the back buffer 

ΚAllows to avoid blocking waits on CPU during long frames 



ΚCPU 

ΚCore 0 

ΚCore 1 

ΚCore 2 

 

ΚGPU 

Geo 100 Geo 101 

Geo 200 

Geo 300 

Lights 500 

Lights 600 

Post 700 

Post 701 

Geo 100 Geo 200 Geo 300 Lights 500 Lights 600 Geo 101 

Post 700 Post 701 WaitForFlip #N-1 Flip #N Blit 



































ΚAround 40k polygons for the highest LOD 

ΚEnough to capture all detail for closeups 

ΚWe provided detail guide for LOD setups 

ΚUp to 8 bone influences per vertex 

ΚMost vertices use 4-5, drops with LOD# 

Κ6 x 2k x 2k textures for character body 

ΚPlus detail maps and head textures 

Κ10ppi, everything authored as 4k 

ΚKZ3 used 10k polygons, 3 LODs and 1k 

textures 

LOD# Polycount Distance 

1 40,000 0-2 

2 20,000 2-5 

3 10,000 5-10 

4 3,200 10-15 

5 800 15-20 

6 350 20-30 

7 150 30+ 



Killzone: Shadow Fall Killzone 3 





 

Killzone: Shadow Fall Killzone 3 



 

Killzone: Shadow Fall Killzone 3 



 

Killzone: Shadow Fall Killzone 3 



 Optimization Saving 

Sorting by (vertex) shader still helps 

 

J ms 

More aggressive threshold for minimum bone influence (1%) J ms 

Normal/Tangent/Binormal compression with x10y10z10w2 J ms 

Only store Normal + Tangent + sign bit for Binormal 

 

J ms 

We removed the tangent space for distant static LODs 

Required adjustments to the directional lightmap sampling 

J ms 



 Optimization Saving 

Sorting by (vertex) shader still helps 

 

J ms 

More aggressive threshold for minimum bone influence (1%) J ms 

Normal/Tangent/Binormal compression with x10y10z10w2 J ms 

Only store Normal + Tangent + sign bit for Binormal 

 

J ms 

We removed the tangent space for distant static LODs 

Required adjustments to the directional lightmap sampling 

J ms 









 



 



ΚProbably the most extensive and customizable system we have 

ΚCan render in full resolution or half resolution or in deferred mode 

ΚCan read from- and write to the g-buffer 

ΚCan spawn another particles, meshes, lights and sounds on impact 

ΚAll particles use artist created shaders just like any other object 

ΚEngine supports deferred lighting and shadowing of all particles 

ΚEach particle can sample from forcefields (our artist placed 

forces) 

ΚAll this means artists donôt need millions of particles to achieve 

the desired effect. 



ΚAll particles are generated on the CPU - 10ms 

ΚManager job determines what is visible and needs to update 

ΚOne particle logic update job and one vertex job per subsystem 

ΚExtensive code optimizations for PS4 

ΚUpdate óstaticô particles early after the camera is available 

ΚUse simple double buffered linear allocator to avoid contention 

ΚOnly generate vertices for visible particles 

ΚPlans to move to compute in the future 





ΚReal-time reflections 

ΚDepth based and color cube color correction 

ΚExposure control 

ΚAmbient occlusion 

ΚBloom and screen space godray effects 

ΚBokeh depth of field and motion blur 

ΚExtensive artist driven lens flares 

ΚFXAA 




