
WrapperDLL Tutorial
(by Sven-Bertil “Sweenie” Blom)

In this tutorial we will wrap some of the classes in DirectX 9 and use these to render a teapot
inside of the Blitz window.

I will be using Visual C++ 6.0 but Bloodshed Dev-C++ should work fine too.
Make sure that you have installed the DirectX 9 SDK first.

Start by opening Visual C++ and create a new project.
Select Win32 Dynamic-Link Library and name the project. (In this case I named it
Wrapper).
Then press OK.

In the next step choose A simple DLL project.

A couple of source and headerfiles will now be created for you.
The one we are interested in is the main sourcefile. (In this case Wrapper.cpp)

Open the Wrapper.cpp file by switching to the Fileview tab and under the Source folder
doubleclick wrapper.cpp.

The sourcefile should now contain this text.

First we got to make sure that the compiler is aware of the DX9 include and library files.
Go to the menu Tools and select Options.
Select the Directories tab and make sure that the path to the DX9 include files are added to
list.

// Wrapper.cpp : Defines the entry point for the DLL application.
//

#include "stdafx.h"

BOOL APIENTRY DllMain(HANDLE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
 return TRUE;
}

The same goes for the library files.

Press OK when you are done.

Now we must make sure that the linker includes some of the .lib files we are gonna use so go
to the meny Project and select Settings (or press Alt+F7).

Add the text marked in blue in the screenshot below and press OK.

Now it’s time to start coding.

We start by adding two include files.

The first one lets us use the function timeGetTime() which we will use later on to rotate the
teapot smoothly.
The second one includes the headerfiles for the Directx 9 utility library.(The Direct3D
headerfiles are included in this as well)

Next we define a macro which simplifies exporting a bit.

Now when we want to export a function we just add the EXPORT macro infront and the
function will be exported.
The extern “C” part will make the exported function to have this format:
_Functionname@Sizeofparameters

Example:

To export this and make it available to Blitz we write it like this instead.

The __stdcall makes sure we use the Standard Calling Convention which is necessary if we
want the function to work with Blitz.

The exported function will now look like this:
_MyFunction@8
Datatype long (4 bytes) + datatype float (4 bytes) = 8 bytes

Next we define some global variables to hold our Direct3D instance, renderingdevice and
teapot.

Now it’s time to create the first function.
This function will create our Direct3D instance, the renderingdevice and the teapot.
It will also create a basic light to illuminate the teapot.
I will not go into detail on this piece of code since there are plenty of tutorials on this.

#include "mmsystem.h"
#include <d3dx9.h>

#define EXPORT extern "C" __declspec(dllexport)

long MyFunction(long Param1, float Param2)

EXPORT long __stdcall MyFunction(long Param1, float Param2)

LPDIRECT3D9 D3D = NULL; // The Direct3D instance
LPDIRECT3DDEVICE9 D3dDevice = NULL; // The rendering device
LPD3DXMESH Teapot = NULL; // The Teapot meshobject

EXPORT long __stdcall DX_InitD3D(HWND hWnd)
{
 if(NULL == (D3D = Direct3DCreate9(D3D_SDK_VERSION)))
 return E_FAIL;

 D3DPRESENT_PARAMETERS d3dpp;
 ZeroMemory(&d3dpp, sizeof(d3dpp));
 d3dpp.Windowed = TRUE;
 d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
 d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;
 d3dpp.EnableAutoDepthStencil = TRUE;
 d3dpp.AutoDepthStencilFormat = D3DFMT_D16;
 d3dpp.PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE;

 if(FAILED(D3D->CreateDevice(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, hWnd,
 D3DCREATE_HARDWARE_VERTEXPROCESSING,
 &d3dpp, &D3dDevice)))
 {
 if(FAILED(D3D->CreateDevice(D3DADAPTER_DEFAULT,D3DDEVTYPE_HAL, hWnd,
 D3DCREATE_SOFTWARE_VERTEXPROCESSING,
 &d3dpp, &D3dDevice)))
 {
 return E_FAIL;
 }
 }

 // Enable the Zbuffer
 D3dDevice->SetRenderState(D3DRS_ZENABLE, TRUE);

 // Create the teapot mesh
 D3DXCreateTeapot(D3dDevice,&Teapot,NULL);

 // Create a material for the teapot
 D3DMATERIAL9 mtrl;
 ZeroMemory(&mtrl, sizeof(mtrl));
 mtrl.Diffuse.r = mtrl.Ambient.r = 1.0f;
 mtrl.Diffuse.g = mtrl.Ambient.g = 0.0f;
 mtrl.Diffuse.b = mtrl.Ambient.b = 0.0f;
 mtrl.Diffuse.a = mtrl.Ambient.a = 1.0f;
 D3dDevice->SetMaterial(&mtrl);

 // Set up a directional light
 D3DXVECTOR3 vecDir;
 D3DLIGHT9 light;
 ZeroMemory(&light, sizeof(light));
 light.Type = D3DLIGHT_DIRECTIONAL;
 light.Diffuse.r = 1.0f;
 light.Diffuse.g = 1.0f;
 light.Diffuse.b = 1.0f;

 vecDir = D3DXVECTOR3(-1.0f,-1.0f,1.0f);
 D3DXVec3Normalize((D3DXVECTOR3*)&light.Direction, &vecDir);

 light.Range = 1000.0f;

 D3dDevice->SetLight(0, &light);
 D3dDevice->LightEnable(0, TRUE);
 D3dDevice->SetRenderState(D3DRS_LIGHTING, TRUE);
 D3dDevice->SetRenderState(D3DRS_AMBIENT, 0x00202020);

 return S_OK;
}

First I create the Direct3D instance.
Then I try to create the rendering device using Hardware TnL(Transform and Lighting).
If that fails, I try to create the rendering device without Hardware TnL.
If that also fails, bail out.

Then I enable the Zbuffer.

After that I create the Teapotmesh and create a material for it.
Finally I set up a directional light and some ambient light.
This function wants the handle of the window to render to.

The next function is the function that release the D3D Instance, device and the teapot when
we are done.

The next function is the one that handles the camera and the teapot’s rotation.

As you can see I don’t export this function since I will call this function from within the
renderfunction.
I could have exported this and added some parameters so that blitz could move the camera.
But since this example only demonstrates a rotating teapot I choose not to.

Now comes the actually rendering function.

EXPORT VOID __stdcall DX_Cleanup()
{
 if(Teapot != NULL)
 Teapot->Release();

 if(D3dDevice != NULL)
 D3dDevice->Release();

 if(D3D != NULL)
 D3D->Release();
}

VOID SetupMatrices()
{
 D3DXMATRIXA16 matWorld;
 D3DXMatrixRotationY(&matWorld, timeGetTime()/1000.0f);
 D3dDevice->SetTransform(D3DTS_WORLD, &matWorld);

 D3DXVECTOR3 vEyePt(0.0f, 3.0f,-5.0f);
 D3DXVECTOR3 vLookatPt(0.0f, 0.0f, 0.0f);
 D3DXVECTOR3 vUpVec(0.0f, 1.0f, 0.0f);
 D3DXMATRIXA16 matView;
 D3DXMatrixLookAtLH(&matView, &vEyePt, &vLookatPt, &vUpVec);
 D3dDevice->SetTransform(D3DTS_VIEW, &matView);

 D3DXMATRIXA16 matProj;
 D3DXMatrixPerspectiveFovLH(&matProj, D3DX_PI/4, 1.33f, 1.0f, 1000.0f);
 D3dDevice->SetTransform(D3DTS_PROJECTION, &matProj);
}

First I clear the backbuffer and empty the Zbuffer.

Then I call the SetupMatrices function which set the current rotationmatrix for the Teapot and
the camera.
It also sets the correct projectionvalues.

Then I render the teapot by calling the Teapotobject’s method DrawSubset.
Subsets could be compared to Blitz’s surfaces.
Finally I present the rendering on screen.

To allow for some interaction I added a function that lets you decide if the teapot should be
rendered as wireframe or not.

Now when you compile this project the compiler will produce a file called wrapper.dll.
If you open this dll with PEview or Dumpbin /EXPORTS you will see the following
functions:

_DX_InitD3D@4
_DX_Cleanup@0
_DX_Render@0
_DX_Wireframe@4

Using these it’s time to create the userlib declarationfile.

EXPORT VOID __stdcall DX_Render()
{
 if(NULL == D3dDevice)
 return;

 // Clear the backbuffer to a blue color and empty the Zbuffer
 D3dDevice->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
 D3DCOLOR_XRGB(0,0,255), 1.0f, 0);

 if(SUCCEEDED(D3dDevice->BeginScene()))
 {
 SetupMatrices();
 Teapot->DrawSubset(0);
 D3dDevice->EndScene();
 }

 // Flip the backbuffer
 D3dDevice->Present(NULL, NULL, NULL, NULL);
}

EXPORT VOID __stdcall DX_Wireframe(int Enable)
{
 if (Enable==TRUE)
 D3dDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_WIREFRAME);
 else
 D3dDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
}

First create a empty textfile called Wrapper.decls
Then add the following text:

Save it in the userlibs directory in the Blitzfolder.

Since DX_InitD3D want the Blitz window handle you may need to create a second decls file
to add some functions from USER32.DLL to retrieve this window handle.

Create a second decls file called user32.decls or something like that.
Add the following text to it.

Put it in the same place as the wrapper.decls file.

Now copy the compiled dll to the userlibs directory and create a new blitzproject.

Enter this piece of code and run the program:

.lib "wrapper.dll"

DX_InitD3D%(Hwnd%):"_DX_InitD3D@4"
DX_Cleanup():"_DX_Cleanup@0"
DX_Render():"_DX_Render@0"
DX_Wireframe(Enable%):"_DX_Wireframe@4"

.lib "user32.dll"

GetActiveWindow%():"GetActiveWindow"

Graphics 800,600,0,2
hwnd%=GetActiveWindow()

result%=DX_InitD3D(hwnd)
If result<>0 Then
 Print "Couldn't initialize Direct3D!"
 Waitkey
 End
EndIf

While Not KeyHit(1)

 If KeyHit(57) Then
 Switch=1-Switch
 If Switch=0 Then DX_Wireframe(False)
 If Switch=1 Then DX_Wireframe(True)
 EndIf

 DX_Render
Wend

DX_Cleanup

End

If everything was done correct you should see a rotating red teapot within the Blitz window.
That’s about it.
I would like to mention that this DLL could be used with visual basic or any other language
that supports API-calls as well.

//Sven-Bertil Blom
Last modified: 12 Sep. 2004

